ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.

1559

This article is published online with Open Access by 10S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA240661

RADAr: A Transformer-Based Autoregressive Decoder
Architecture for Hierarchical Text Classification

Yousef Younes >9-*, Lukas Galke"® and Ansgar Scherp!

4GESIS - Leibniz-Institute for the Social Sciences
bMax Planck Institute for Psycholiguistics
“University of Southern Denmark
4University of Ulm
ORCID (Yousef Younes): https://orcid.org/0000-0003-1271-3633, ORCID (Lukas Galke):
https://orcid.org/0000-0001-6124-1092, ORCID (Ansgar Scherp): https://orcid.org/0000-0002-2653-9245

Abstract. Recent approaches in hierarchical text classification
(HTC) rely on the capabilities of a pre-trained transformer model and
exploit the label semantics and a graph encoder for the label hierar-
chy. In this paper, we introduce an effective hierarchical text classifier
RADAr (Transformer-based Autoregressive Decoder Architecture)
that is based only on an off-the-shelf RoOBERTa transformer to pro-
cess the input and a custom autoregressive decoder with two decoder
layers for generating the classification output. Thus, unlike existing
approaches for HTC, the encoder of RADAT has no explicit encoding
of the label hierarchy and the decoder solely relies on the samples’
label sequences observed during training. We demonstrate on three
benchmark datasets that RADAr achieves results competitive to the
state of the art with less training and inference time. Our model con-
sistently performs better when organizing the label sequences from
children to parents versus the inverse, as done in existing HTC ap-
proaches. Our experiments show that neither the label semantics nor
an explicit graph encoder for the hierarchy is needed. This has strong
practical implications for HTC as the architecture has fewer require-
ments and provides a speed-up by a factor of 2 at inference time.
Moreover, training a separate decoder from scratch in conjunction
with fine-tuning the encoder allows future researchers and practition-
ers to exchange the encoder part as new models arise. The source
code is available at https://github.com/yousef-younes/RADAr.

1 Introduction

Hierarchical Text Classification (HTC) deals with the task of la-
beling a text sample based on a semantic hierarchy where la-
bels, i.e., classes, exhibit a generalization-specialization relation-
ship [19, 30, 31, 28]. In contrast to multi-label text classification,
where the labels are treated as a flat set [10], the models in HTC
should exploit not only the text samples but also learn the labels’
hierarchy during training.

Formally, in HTC, the set of labels H is organized according
to a label hierarchy where the labels are connected with a parent-
child relationship [28]. Each label represents a topical category, with
the semantics of the relationship being that parent labels represent
a broader category while child labels represent more specific cate-
gories. When the hierarchy H is organized as a tree, each label c € H,

* Corresponding Author. Email: yousef.younes @gesis.org

except the root label, has one and only one parent. HTC approaches
aim to predict a subset L C H for a given text instance. This subset
contains one or more labels relevant to the text, taking the hierarchy
into account.

HTC approaches can be categorized into global and local methods
based on how they utilize hierarchical information during training
and how many classifiers they employ. Local approaches employ one
classifier per label or per level [4, 29], whereas global approaches in-
troduce a single classifier for all labels. Global approaches generally
demonstrate superior performance compared to local methods [46].
Recent approaches in HTC often utilize a pre-trained transformer
model as the foundation of their architecture [14, 37, 42].

Global HTC models such as [46, 9, 6] often model the label hi-
erarchy and text separately, and then find a mixed representation for
the text and labels. To do that, each text sample interacts with the
entire label hierarchy, leading to unnecessary calculations [46, 6].
HGCLR [37] partially solves this problem by using Graphormer [41]
to encode the hierarchy with the text and produce a hierarchy-aware
text representation, which makes the Graphormer dispensable during
testing [37]. A recent global model called HBGL [14] achieves state-
of-the-art results by integrating hierarchical information into BERT.
It first pre-trains label embeddings on random paths sampled from
the hierarchy and subsequently employs conditional generation to
predict the labels, given the text.

In addition, Large Language Models (LLMs) such as GPT-4 [1]
have recently been used to tackle the HTC task modeled as a multiple
choice question [8]. The study shows that even for a very small hier-
archy of 17 labels, the model was not able to achieve more than 50%
accuracy. Nevertheless, the literature on text classification shows that
LLMs are strong text classifiers [45, 32, 44, 20, 43], especially given
only a few in-context learning examples, but this performance comes
with the extreme costs of dealing with large numbers of parame-
ters while not generally outperforming smaller models. For instance,
Yu et al. [43] confirm that by comparing the performance of the
decoder-only models GPT-4 [1] and Llama 2 [34] with the encoder-
only RoBERTa [22] on three classification tasks and concluded that
encoder-only models are better.

The success of HTC models is largely attributed to incorporating
linguistic knowledge found in the label names (label semantics) and
explicitly encoding the label hierarchy using a graph encoder [6, 14].

https://orcid.org/0000-0003-1271-3633
https://orcid.org/0000-0001-6124-1092
https://orcid.org/0000-0002-2653-9245
https://github.com/yousef-younes/RADAr

1560 Y. Younes et al. / RADAr: A Transformer-Based Autoregressive Decoder Architecture for Hierarchical Text Classification

For instance, popular HTC approaches such as HIAGM [46], Hi-
Match [6], and HGCLR [37] employ graph neural networks to pro-
cess the hierarchy, while HBGL uses the adjacency matrix of the
hierarchy to constrain the attention mechanism of transformer lay-
ers. We question the necessity of such features and propose an effec-
tive sequence-to-sequence model RADAr (Transformer-based Au-
toregressive Decoder Architecture) based on an off-the-shelf pre-
trained transformer as an encoder and a comparably simple autore-
gressive decoder. Thus, there is no graph encoder for the label hierar-
chy. Our decoder learns the sequence of labels organized according
to the hierarchy based on the samples. Since symbolic labels are used
instead of the original text of the labels, they provide no additional
knowledge to the trained models [28]. Thus, we do not exploit label
semantics. Our main contributions are:

e We propose RADAr for hierarchical text classification. We use
RoBERTa as an encoder and a custom autoregressive decoder with
two decoder layers. Unlike existing approaches, RADAr does not
need a graph encoder for the label hierarchy nor rely on label se-
mantics.

e Experimental results on three HTC datasets confirm the effective-
ness of the RADATr in obtaining results competitive to the state of
the art with considerably less training and half inference time.

e Unlike existing HTC approaches, which sort the labels from par-
ents to children, we show that the inverse order from children to
parents consistently produces better results.

Below, we summarize the related work. Section 3 introduces the
RADATr model. The experimental apparatus is described in Section 4.
Section 5 reports an overview of the results. Section 6 discusses the
results and analyzes the model, before we conclude.

2 Related Work

There are two types of HTC models, namely local and global
ones [46]. Recently, the focus has been on global models thanks to
the advent of word embeddings and pre-trained language models,
which encourage general solutions. We focus on global methods, as
the best-performing HTC models like [14, 37] belong to this type.

We present a set of models that were shown to be effective for
HTC, irrespective of their initial design intent. These models are
grouped into encoder-only and encoder-decoder based on their archi-
tecture, with chronological ordering within each category. We com-
pare the models regarding five distinguishing features shown in Ta-
ble 1. The features are the (i) use of the label hierarchy provided by
the dataset (or considering the labels as set), (ii) employment of a
graph encoder to represent the hierarchy, (iii) information on the or-
der in which the model receives the labels, which is either parents
to children or vice versa, (iv) use of label semantics, i. €., the textual
description of the label, and (v) the used loss function.

Encoder-only Models Encoder-only transformer models like
BERT [15] and RoBERTa [22] have shown superior classification
performance in supervised settings [43]. They perform well on the
HTC task even without considering the label hierarchy [10].

BERT performs the classification task by encoding the labels as a
multi-hot vector and feeding them along with their associated texts
into the model, which uses a classification head to do the predic-
tion [15]. By this, BERT ignores the hierarchy i. e., treats the labels
as a set like in a multi-label task.

RoBERTa is an optimized version of BERT that drops the next
sentence objective and uses more data for training [22]. Due to their

strong performance, the encoder-only models are used as a founda-
tion by many HTC methods.

Another strong approach is HHAGM, which uses two encoders, one
for text and one for encoding the label hierarchy [46]. The model
provides two variants for the hierarchy encoder: a Tree-LSTM and
GCN. The label dependencies are modeled bidirectionally, i. e., from
parents to children and vice versa. As the loss function, this model
combines recursive regularization [11] for the parameters of the final
fully connected layer with binary cross-entropy (BCE).

HTCInfoMax builds on a variant of the HHAGM model with a
modified loss function, which combines text-label Mutual Informa-
tion Maximization (MIM), label prior matching, and BCE. The MIM
helps to improve the text-label association. HTCInfoMax addresses
the inherent label imbalance issue in HTC by considering statistical
constraints on the structural encoder to improve the representation of
low-frequency labels [9].

HiMatch uses GCN as its graph encoder [6]. It addresses the text-
label association in terms of semantic matching. The system utilizes a
three-component loss function. The joint embedding loss aligns text
and label semantics, while the hierarchy-aware matching loss empha-
sizes semantic proximity of child labels to text semantics over parent
labels. In addition, cross-entropy loss is used to learn the relationship
between the text and the labels.

HGCLR [37] incorporates the hierarchy using a modified
Graphormer into a BERT representation of the text [41]. It uses the
label hierarchy to construct positive samples for contrastive learn-
ing. The NT-Xent loss [7] is applied to learn hierarchy-aware text
representations by pulling together the text input close to its positive
samples. In prediction, the model only needs the text encoder, not the
Graphormer, so it becomes a BERT-encoder with classification head.

The state-of-the-art hierarchical text classifier, HBGL, utilizes the
encoder-only BERT model in two steps. Initially, it pre-trains label
vectors based on the hierarchy. Subsequently, the BERT model and
these pre-trained label vectors are fine-tuned to predict the corre-
sponding labels. This prediction occurs level-wise by constraining
the attention matrix [14]. The training process employs BCE loss.

Encoder-Decoder Models An encoder-decoder model approaches
the HTC task as a text generation problem. It comprises an encoder
for processing the text input and a decoder for generating the corre-
sponding labels.

SGM is a Bi-LSTM encoder-decoder model with attention mech-
anism [40]. The encoder uses the attention mechanism to produce a
context vector focusing on informative words. The decoder uses the
context vector, hidden state of the previous step, and label embed-
ding vector to generate the hidden state of the current step. SGM has
no graph encoder but benefits from label semantics and uses cross-
entropy loss.

BART is a transformer-based encoder-decoder with an encoder
similar to BERT and an autoregressive decoder similar to GPT [26].
Even though it does not have a graph encoder, we use it for HTC
by framing the task as text generation since BART is effective when
fine-tuned for text generation [18]. The model generates the labels in
whatever order we use during fine-tuning but utilizes label semantics.
It is trained using cross-entropy loss.

TS is also a transformer-based encoder-decoder model that sup-
ports various NLP tasks in a text-to-text format with a different prefix
for every task [27]. Like BART, TS5 frames the HTC task as text gen-
eration, benefits from label semantics, and uses cross-entropy loss.

Similar to BERT and RoBERTa, the encoder-decoder models
BART and T5 are not designed for HTC tasks. They do not pro-
vide an explicit graph encoder. Thus, for the hierarchical multi-label

Y. Younes et al. / RADAr: A Transformer-Based Autoregressive Decoder Architecture for Hierarchical Text Classification

1561

Table 1. Model comparison. Graph encoder is the component the model uses to encode the label hierarchy. Label order refers to the order the model receives
the labels. Label semantics indicates using the linguistic knowledge found in the label names. CE stands for Cross-Entropy
Label Graph Label . .
Model ‘ Hierarchy ‘ Encoder ‘ Label Order ‘ Semantics Loss Function ‘ Description
Encoder-Only Baselines
BERT No No No No CE Transformer Model
RoBERTa No No No No CE Transformer Model
Encoder-Decoder Baselines
BART No No No Yes CE Transformer-based, denoising autoencoder
T5 No No No Yes CE Transformer-based, text-to-text framework
Hierarchical Text Classifiers (based on pre-trained encoder-only models)
HiAGM Yes Tree-LSTM, | Parent-Child Yes BCE and Obtains label-wise text features by fusing text
GCN Recursive Regularization classification model with a hierarchy encoder
HTCInfoMax Yes Tree-LSTM, Parent-Child Yes Text-label MIM, Uses MIM to improve text-
GCN Label prior matching, and BCE. | label association and label representation.
HiMatch Yes GCN Parent-Child Yes Joint embedding, Hierarchy- Models the text-label semantics
aware matching, and CE relation as a semantic matching problem.
HGCLR Yes Modified Parent-Child Yes NT-Xent and BCE Uses contrastive learning to produce
Graphormer hierarchy-ware text representation
HBGL Yes BERT Parent-Child Yes BCE Uses Attention Mask in self-attention
layers to feed BERT with label graph
Hierarchical Encoder-Decoder Models
SGM Yes No Parent-Child Yes Uses label correlations and text-
label relations
Seq2Tree Yes No Parent-Child Yes Uses TS with the decoder
constrained by the hierarchy
Uses RoBERTa as encoder and

RADAr ‘ Yes ‘

Child-Parent ‘ No ‘ Focal Cross Entropy

an autoregressive decoder on symbolic labels

classification task, the labels are treated as a set. We include these
models as baselines since they have shown strong performance de-
spite not considering the hierarchy information [10].

An approach considering the label hierarchy is Seq2Tree [42]. It
is a variant of the T5-base model and captures the hierarchical infor-
mation using the Depth-First Search (DFS) [33] over the hierarchy to
linearize the labels. The decoder uses the encoder output to generate
the DFS label sequence one at a time, considering the hierarchical
information. In other words, the candidate labels for one step are the
children of the parent predicted in the previous step.

3 The RADAr Model

In this section, we introduce the RADAr model depicted in Fig-
ure 1. RADAr is a transformer-based encoder-decoder model. Any
encoder-only model can be used as the encoder of RADAr, but
we choose to use ROBERTa base. The decoder is an autoregressive
transformer-based model trained from scratch to generate a sequence
of labels. The output of the next label is conditioned on the previous
labels to generate the labels along the hierarchy for the HTC task.
The model employs a modified version of focal loss [21] to pay more
attention to difficult samples with high loss. In the following, we
briefly describe the use of RoOBERTa as an encoder. Then, we explain
the decoder and the training and testing procedures.

Sample Roberta Roberta
Text Tokenizer Encoder

Label
Tokenizer

In Training

Log Soft
Max
Search

The RADAr Model Architecture

Loss

Symbolic
Labels

Generated Token Label

Sequence

Figure 1.

Encoder The model uses the ROBERTa base as its encoder part.
The encoder is responsible for producing a fixed-size context tensor
that captures the linguistic information found in the input text. To
obtain the context tensor, the text is fed into the RoOBERTa tokenizer
to produce the token indices and attention masks. These are then fed
into the ROBERTa model to produce an output. We use the last hid-
den state of that output, a tensor of size (512, 768), as input to the
decoder. For the decoder, we expand the dimensions of the attention
masks to avoid attending to padding tokens.

Decoder The decoder is an autoregressive transformer model
whose vocabulary corresponds to the label set. As such, the decoder’s
vocabulary is limited to the symbolic labels [28], i.e., internal label
identifiers and special tokens (see Figure 2). Our decoder iteratively
uses the previously generated tokens and the encoder’s output as con-
dition to generate the next token. It uses greedy search that picks the
token with the highest probability at each decoding step without con-
sidering future consequences [39]. It stops when it reaches the special
token </ s>, indicating the end of the sequence.

In more detail, the decoder consists of embedding and position
embedding layers, followed by decoder layers and a linear layer to
produce the logits. The whole procedure of the decoder is shown
in Algorithm 1. It receives four inputs during training: the sample’s
labels L C H, the labels’ mask l,,, the last hidden state of the en-
coder output h, and the encoder mask m. It starts by producing the
absolute position embeddings 1. for the labels to capture the hierar-
chical information from the ordered label sequence. Then, it passes
the obtained label embeddings l. along with h, m, and l,,, through a
decoder layer which performs three operations. First, it computes the
multi-head self-attention att of the label embedding. Next, it passes
the obtained att through a layer normalization [3] and dropout [13]
layers to compute the query q. After that, the encoder’s last hidden
state h is used as the key and value and sent together with the ob-

1562 Y. Younes et al. / RADAr: A Transformer-Based Autoregressive Decoder Architecture for Hierarchical Text Classification

a)original labels

b)Symbolic Labels
c)Level-wise organized
d)Reversed level-wise
e)Tokenizer output:

"Top/Features" "Top/Classifiers"”

"Top/Features/Magazine" "Top/Features/Movies™ "Top/Features/Theater” "Top/Classifieds/Job Market"
"Top/Features/Movies/News and Features" "Top/Classifieds/Job Market/Job Categories"”
"Top/Classifieds/Job Market/Job Categories/Media, Entertainment and Publishing”

: [a_23] [a_@] [a_35] [a_36] [a_42] [a_1] [a_37] [a_2] [a_14]

: [a_23] [a_@] <unk> [a_35] [a_36] [a_42] [a_1] <unk> [a_37] [a_2] <unk> [a_14] <unk>
: ['[a_14]", ‘<unk>', '[a_2]', '[a_37]", ‘'<unk>', "[a_1]', '[a_42]', '[a_36]", '[a_35]', '<unk>', '[a_@]", '[a_23]', '<unk>']
: [1, 37, [}

3, 11, 87, 3, 1@, 82, 49, 65, 3, 9, 5, 3, 2, @, @, @, @, @, e, ©, @, @, @, ©, @, @, 0,...]

Figure 2. Label preprocessing and tokenization. Line a) contains the original labels. Line b) maps the original labels to the symbolic labels. Line c) adds the

level separator token <unk>. Line d) organizes the labels level-wise from children to parents. Line e) contains the padded tokenizer output.

tained query and the encoder mask m to a transformer block to per-
form cross attention [36] and produce the output of the decoder layer.
The encoder attention mask m controls the decoder attention on the
encoder hidden states.

The output of a decoder layer is used as the label embedding for
the next decoder layer that repeats the same operations. Furthermore,
a linear layer is used to produce the logits on the output of the last
decoder layer. Finally, the logits are used to compute the focal loss,
a scaled cross-entropy that pays more attention to difficult samples.

Algorithm 1 Forward Pass of RADAr Decoder

1: Input: labels L, label masks I,,,

encoder output h, encoder mask m
: Output: loss

: le + Dropout(word-embed (L) + pos-embed(L))
for i = 1 to Nayers do
att « MultiheadSelfAttention; (le, le, le, Im)
q < Dropout(LayerNorm; (att + [.))
le < TransformerBlock;(h, h,q,m)
: end for
. logits < linear(l.)
: loss < cross-entropy (L, logits)
: loss « (1 — e7"%)7 . loss
: return loss

—_—

> focal loss adjustments

—_
(3]

Using the WOS dataset, we conducted pre-experiments regard-
ing the number of decoder layers and the features of its transformer
blocks [36]. We observe that the optimal choice is when the decoder
has two decoder layers. Each layer has a transformer block with eight
attention heads, a feedforward network and uses a dropout of 0.2.

Training and Testing The labels in HTC datasets are typically
very imbalanced [35]. To compensate for this imbalance, we em-
ploy a batch-level focal loss [21], i.e., the model aims to optimize
batches that are hard to classify. Those usually include samples with
low-frequent labels in the training data.

We optimize the model to minimize cross-entropy on the batch
level with the ground truth and apply focal loss scaling (line 11 in
Algorithm 1). To achieve that, we calculate the model confidence on
the batch e 71°%%. Then, we compute the model perplexity 1 — e =15
After that, we raise the perplexity to the power of the focusing pa-
rameter 7y to get the modulating factor. We use the modulating factor
to adjust the batch cross-entropy loss based on the batch difficulty.
If the loss is high, the model confidence is low, and its perplexity is
high, resulting in a higher final loss. On the contrary, when the loss
is low, the confidence is high, and the perplexity is low, resulting in
a lower final loss.

During testing, the decoder starts with the beginning-of-sequence
token <s>, generates tokens autoregressively, one at a time, and
stops generating labels after reaching the end-of-sequence token
</s>. RADAr uses greedy search to generate the tokens, and us-
ing beam search [39] does not improve the results. When the model
works on a batch of samples, the </ s> token is predicted for each
sample independently.

4 Experimental Apparatus

Datasets and Metrics We use three common HTC datasets. Those
are Web-of-Science (WOS) [16], NY-Times (NYT) [29], and RCV1-
V2 [17]. The WOS dataset has a hierarchy of two levels. It has ex-
actly two labels per sample, one child and its parent, which makes it
easier than the other two datasets. The NYT and RCV1-V2 datasets
have eight-level and four-level hierarchies, respectively. The RCV1-
V2 dataset has the largest test set compared to the others. Table 2
shows statistics about these datasets.

We measure the experimental results using Micro-F1 and Macro-
F1 metrics. The impact of rare labels is higher for Macro-F1 score
than for Micro-F1. For RADAr experiments, we report the mean and
standard deviation over five runs with different random seeds.

Data Preprocessing The labels in the hierarchies of the datasets
are usually provided with plain, human-readable text. Previous works
[37, 14] tried to benefit from the linguistic knowledge found in the
human-readable label names, known as label semantics [28]. On the
contrary, our model does not rely on such label semantics.

Rather, we replace the original labels with symbolic labels.
For example, the symbolic label [a_14] represents the label
“Top/Classifieds/Job Market/Job Categories/Media, Entertainment
and Publishing” in the NYT dataset as shown in Figure 2.

The label tokenizer’s vocabulary consists of the set of symbolic
labels of the dataset. The label tokenizer is responsible for tokenizing
the input symbolic labels and generating a fixed-size vector whose
size accommodates the maximum possible number of labels (not the
average) for the dataset and other special tokens. This vector size
differs from one dataset to another; it is 6, 48, 22 for the WOS, NYT,
and RCV1-V2 datasets.

The tokenizer uses the <s> and </s> tokens to mark the begin-
ning and end of the label sequence. It also uses the <pad> token
to fill the rest of the vector after the </s> token. In addition, the
<unk> token separates hierarchy levels.

The exact purpose of the <unk> token is demonstrated in an ex-
ample shown in Figure 2. It shows the label preprocessing and tok-
enization on one label set corresponding to a sample from the NYT
dataset. The line a) contains the original labels organized hierarchy
level-wise from parents to children. Line b) contains the symbolic
labels corresponding to the original labels. Line c) shows how the
<unk> token separates the labels from different levels. Line d) rep-
resents the tokenizer’s input and contains the labels organized level-
wise from children to parents. Line e) expresses the tokenizer’s out-
put given line d) as input.

Procedure and Hyperparameters During training, we use the
AdamW optimizer [23] with default settings and learning rates of
5-1075 and 3 - 10~ * for the encoder and decoder, respectively. Two
learning rates are necessary because the encoder is pre-trained while
the decoder is trained from scratch. We also use the ReduceLROn-
Plateau scheduler [2] with patience of 3. After each epoch, the av-
erage validation loss is used to measure progress. If the validation
loss does not decrease for three epochs, the scheduler multiplies the
learning rates by a factor of 0.1 for both the encoder and decoder.

Y. Younes et al. / RADAr: A Transformer-Based Autoregressive Decoder Architecture for Hierarchical Text Classification 1563

Table 2. Statistics of the datasets. |H| is the number of Labels. D is the maximum level of hierarchy. Avg(L;) is the average number of labels per sample.

Avg(PL;) is the average number of parent labels per sample. Avg(LL;) is the average number of leaf labels per sample. These average fields show the

statistics for train, dev, and test sets.

Dataset | |H| D Avg(L;) Avg(PL;) Avg(LL;) Train Dev Test
WOS 141 2 2.0/2.0/2.0 1.0/1.0/1.0 1.0/1.0/1.0 30,070 7,518 9,397
NYT 166 8 7.6/1.6/1.5 5.9/5.9/5.9 1.7/1.6/1.7 23,345 5,834 7,292

RCV1-V2 | 103 4 3.18/3.18/3.24 1.98/1.98/2.02 1.20/1.21/1.23 20,833 2,316 781,265

The encoder’s learning rate decreases until it is lower than 5 - 1077,
At that point, the encoder is frozen, and the decoder continues to
learn alone. The training loop has a patience of 10, so it stops if the
average validation loss does not decrease for ten consecutive epochs.
We use focal loss with focusing parameter v = 2 as described in
Section 3. Focal loss depends on cross-entropy with label smoothing
of 0.1. We use teacher forcing [38] and gradient accumulation over 2
batches (32 examples each). For reproducibility, we use a fixed ran-
dom seed. With these settings, the model took 29, 30, and 40 training
epochs on the WOS, NYT, and RCV1-V2 datasets, respectively. With
a patience of 10, the model saturates at 23 epochs on average. The
experiments were implemented in PyTorch and run on an NVIDIA
A100-SXM4-40GB GPU.

The hyperparameter values like learning rates, batch size, focus-
ing parameter, and label smoothing are selected per dataset based on
the validation sets using wandb [5] as follows. We specify ranges for
the values depending on the common values from the literature and
also based on our pre-experiments. For example, 5 - 1075 is known
to be a reasonable learning rate for ROBERTa [10], so we specify the
range [5 - 107*,5 - 1079) to contain that value. Then, using these
ranges, we initialize each hyperparameter randomly over 20 experi-
ments and select the best value. We use the best values for individual
hyperparameters and test all their possible combinations, i.e., grid
search [5], again on the validation sets. The values used to select the
hyperparameters are in the code repository associated with the paper.

5 Results

Table 3 shows Micro-F1 and Macro-F1 on three datasets. We com-
pare our model to the models from the literature (see Section 2).
Some hierarchical text classification models like HiMatch and Hi-
AGM did originally not use pre-trained language models as text en-
coder. Yet, the HGCLR paper [37] shows that replacing the text en-
coder in such models with a BERT model leads to improved results,
which we use for our comparison.

Table 3 is organized into five groups, depending on the models’
architecture. The first group reports the results for the encoder-only
baseline models BERT [15] and RoBERTa [22], which treat the la-
bels as a flat set. The second group includes encoder-decoder base-
line models T5 [27] and BART [18], which yield lower performance
than the encoder-only baselines. The third group comprises HTC
models using encoder-only models, namely HIAGM [46], HTCIn-
foMax [9], HiMatch [6], HGCLR [37], and HBGL [14]. We report
the results of HHAGM, HTCInfoMax, and HiMatch models with their
original text encoder replaced with BERT. The highest scoring model
in this group is HBGL. We report the results of HBGL using both
BERT and RoBERTa.

The fourth group reports the results of the following hierarchical
encoder-decoder models SGM, SGM-TS5, and Seq2Tree. SGM uses
its own vocabulary and trains its word embedding from scratch [40].
Nevertheless, SGM beats all other models on the Macro-F1 score of
the NYT dataset. SGM-TS outperforms SGM. It is a modified ver-

sion of SGM that uses T35 as its encoder-decoder backbone [42]. The
Seq2Tree model is the best-performing model in this group. It even
achieves a Macro-F1 score better than all other models on the WOS
dataset. Because SGM and Seq2Tree models outperform HBGL only
in isolated metrics across specific datasets, we regard HBGL as the
current state-of-the-art.

The fifth group contains the results of our RADAr model. It out-
performs the encoder-only baselines by achieving improvements in
Macro-F1 of 2.77%, 3%, and 2.62% on WOS, NYT, and RCV1-
V2, respectively. Compared to HBGL, the RADAr model achieves
a similar Micro-F1 score on the RCV1-V2 dataset. For the other
two datasets, it achieves results with differences ranging from 0%
to 1.55% in all measures. Here, we should indicate that we com-
pare RADAr to HBGL with the BERT encoder since it is the one
used in the original paper. However, using ROBERTa as HBGL's en-
coder does not make a big difference in the results. Nevertheless, in-
cluding those results is important to highlight the competitiveness of
RADAr w.r.t. HBGL. Finally, our RADAr model outperforms most
HTC models, while it does not use label semantics or a graph encoder
for the hierarchy.

6 Discussion

The results show that RADATr is competitive with other HTC meth-
ods, providing a strong indication that an explicit graph encoder is
not needed as long as the labels are ordered according to the hier-
archy. This conceptual advantage has an immediate effect on train-
ing and inference times. Although RADATr has more parameters than
HBGL (137M vs. 110M), it requires less time for training and in-
ference. Averaged over our three datasets, HBGL needs 48 epochs,
each taking 11.67 minutes, while RADAr needs 33 epochs, each tak-
ing 8.7 minutes. Comparing inference times, we found that HBGL
requires approximately 135, 184, and 12, 406 seconds compared to
74, 82, and 6,716 on the WOS, NYT, and RCV1-V2 test sets, re-
spectively. On average, RADAr provides a speed-up of 97.03% for
inference time relative to its strongest competitor HBGL — effectively
doubling the throughput for practical applications.

The primary distinction of our RADAr model from previous mod-
els is that it does not use a graph encoder or label semantics. Instead,
RADAr captures hierarchical information from the organization of
the label sequences it is trained on. To understand the impact of label
organization and the components of RADAr, we conduct an ablation
study (Section 6.1) and an error analysis (Section 6.2).

6.1 Ablation Study

We analyze the different components of RADAr to understand their
impact. The ablation study covers different variants of label sequence
organization, the effect of focal loss, the effect of label semantics, and
employing different text encoders. Table 4 summarizes the results of
our ablation studies, beginning with the best scores achieved with our
RADAr, which we describe in the following.

1564

Y. Younes et al. / RADAr: A Transformer-Based Autoregressive Decoder Architecture for Hierarchical Text Classification

Table 3. Hierarchical text classification results. The RADAr model results are the average over five runs and are reported along with the standard deviation.

For numbers from the literature, "-" means not available in the original paper.

Model WOS NYT RCV1-V2 Provenance
Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1 |
Encoder-Only Baselines
BERT-base 85.63 79.07 78.24 65.62 85.65 67.02 [37]
RoBERTa - - 77.05 55.53 86.99 62.29 [10]
Encoder-Decoder Baselines
BART 84.08 77.43 19.21 6.49 86.20 65.11 our experiment
T5 82.03 74.62 46.71 20.06 84.9 57.01 our experiment
Hierarchical Encoder-Only Classifiers
HGCLR 87.11 81.20 78.86 67.96 86.49 68.31 [37]
BERT+HiAGM 86.04 80.19 78.64 66.76 85.58 67.93 [37]
BERT+HTCInfoMax 86.30 79.97 78.75 67.31 85.53 67.09 [37]
BERT+HiMatch 86.70 81.06 - - 86.33 68.66 [6]
HBGL+RoBERTa 87.66 81.96 79.98 70.57 87.52 70.52 our experiment
HBGL+BERT 87.36 82.00 80.47 70.19 87.23 71.07 [14]
Hierarchical Encoder-Decoder Models
SGM 67.74 74.01 64.68 72.78 71.85 35.29 our experiment
SGM-T5 85.83 80.79 - - 84.39 65.09 [42]
Seq2Tree 87.20 82.50 - - 86.88 70.01 [42]
RADAr 87.17(0.04) | 81.84(0.08) | 79-84(0.07) | 68.64(0.28) | 87.23(0.05) | 69.64(g.12) | ourexperiment
difference to HBGL -0.19 -0.16 -0.63 -1.55 0.0 -1.43

Table 4. The ablation experiment’s nomenclature reflects feature deviation from our RADAr model. RADATr features include using RoBERTa as an encoder

and focal loss on the batch level. It also include working on labels ordered from child-parent hierarchy level-wise using the <unk> token to separate labels from

different levels and without using label semantics.

Experiment WOS NYT RCV1-V2
Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1
RADATr model. .. 87.19 81.84 79.88 69.09 87.22 69.48
.. but parent-to-child ordering 86.55 81.20 79.22 66.43 87.04 68.57
.. w/o <unk> token separators 87.20 81.85 76.28 65.40 85.88 64.05
... using <unk> to separate paths instead of levels 87.19 81.84 77.35 62.95 79.35 63.64
... but shuffled labels w/o <unk> 86.16 80.77 67.08 47.50 86.12 64.30
..children only + hierarchy 87.11 81.61 79.94 68.49 87.13 69.61
.. focal loss on label level 86.64 81.10 80.11 69.0 87.10 69.36
.. w/o focal loss 87.01 81.41 79.55 68.37 87.25 69.40
... with labels semantics 86.58 81.49 79.60 67.52 86.96 69.51
...BERT Encoder 86.51 80.77 78.93 67.19 87.05 68.64
.. XLNET-base Encoder 86.98 81.60 79.32 67.26 86.60 68.15
.. Sentence Transformer Encoder 86.76 81.15 76.77 63.89 84.68 62.31

First, we compare the results of organizing the label sequence from
parents to children versus children to parents (see also the example
in Figure 2). Our ablation demonstrates that ordering the labels from
parents to children decreases all measures over all datasets. This drop
reaches its maximum 2.66% less Macro-F1 score on the NYT. Or-
dering the labels children to parent positively affects all measures.
This effect relates to the depth of the hierarchy, i.e., the deeper the
hierarchy is, the more remarkable the effect is.

The experiment without the use of the <unk> token as a separator
(see line *“ w/o <unk> ") shows a small negative impact on the WOS
dataset but is essential for the NYT and RCV1-V2 datasets. In this
experiment, the model runs on the labels organized level-wise from
child to parent but does not use the <unk> token to indicate the
different levels of the hierarchy. The small effect on WOS since is
expected because WOS has exactly two labels: one parent and one
child. Adding the <unk> token is not very helpful in this case.

The RADAr model uses <unk> as a level separator to delimit dif-
ferent hierarchy levels. Instead one could use the <unk> token to
separate different paths of the same sample (see line “using <unk> to
separate paths instead of levels”). The model runs on the full paths,
where a path is constructed starting from a child label up to the root.

As the results show, organizing the labels in this way makes the prob-
lem more difficult for datasets with complex hierarchies. Again, it
does not affect the WOS dataset, which only has a two-level hierar-
chy and only one assigned leaf label per document.

To show the influence of organizing the label sequence, the “shuf-
fled labels w/o <unk>" experiment fine-tunes the model on shuffled
label sequences. The results show that organizing the labels is es-
sential for the model to perform well. Since the model cannot pick
up a random but fixed order of labels, it also shows that the order in
terms of the child to parent actually is a simplified form of entail-
ment where the child is the premise and its parent is the hypothesis.
In other words, the model is doing a form of inference on the sym-
bolic labels [24]. Again, the effect of organized labels depends on the
depth of the label hierarchy in the dataset. For example, the Macro-F1
score drops by 1.07%, 5.18%, and 21.59% for the WOS, RCV1-V2,
and NYT datasets, respectively. This also indicates that the deeper
the hierarchy is, the more effect the label organization has.

Next, we simplify the HTC task using the label hierarchy since
every child label has only one parent. If the child label is pre-
dicted, we can use the hierarchy to extract all its parents up to the
root. The “children only + hierarchy” experiment runs the model

Y. Younes et al. / RADAr: A Transformer-Based Autoregressive Decoder Architecture for Hierarchical Text Classification 1565

on the datasets by removing all the labels that are extractable from
the hierarchy based on other labels. For every sample, we start
from the children labels in the sequence and include a label if
it has no children in the sequence. Applying this method on line
d) of Figure 2 resultsin [[a_14], <unk>, [a_37], <unk>,
[a_42], [a_35], <unk>],which contains the minimum label
set necessary to reconstruct line d) using the hierarchy. Such a sce-
nario is feasible if the hierarchy is available at test time, which is
commonly the case as these hierarchies are typically openly avail-
able [12, 25]. After the model generates the minimized label set, we
use the hierarchy to extract the remaining labels up to the root. The
model performs well in this scenario and produces a slightly better
Micro-F1 score on the NYT dataset than our best-performing model.
This improvement is due to the problem’s simplification, which is
more noticeable given the complexity of the NYT dataset.

The third group of experiments in Table 4 investigates the effect
of focal loss. In the “focal loss on label level” experiment, the model
runs with the focal loss computed on every label. That increased the
Micro-F1 score of the NYT dataset but decreased other measures.
The “w/o focal loss” experiment removes the adjustment of focal
loss, which seems to have a good effect on the RCV1-V2 dataset. For
that dataset, the Micro-F1 is slightly better than the state-of-the-art in
Table 3 but worse than our best-performing model on other measures.
In general, we conclude that it is helpful for the RADAr model to
pay attention to the difficult samples, but too much attention has a
negative impact. Thus, focal loss on batch level is the best choice.

The “with labels semantics” experiment uses the linguistic infor-
mation in the label names, as done in previous work [14]. We exploit
the label semantics by initializing the decoder with ROBERTa em-
beddings of the original label text. For each symbolic label, we feed
its associated text into ROBERTa to obtain token embeddings. We
compute the mean over these token embeddings and use it to initial-
ize the corresponding vector in the decoder’s embedding and output
layer. Exploiting label semantics results in slightly lower scores than
our best-performing model. Perhaps the reason is that the decoder is
simpler than the encoder and uses a different vocabulary, so using
label semantics in the decoder has a negative impact.

Lastly, we examine the effect of using a different encoder. Using
BERT instead of RoOBERTa results in around 1% decrease on all mea-
sures. We have also evaluated different encoder models like Sentence
Transformer and XLNET-base, but RoOBERTa performed best.

6.2 Error Analysis

This section analyzes the type of errors our RADAr model produces.
The examples presented here are from our best-performing model.

WOS The hierarchy of this dataset is only two levels, with each
sample having exactly two labels, one from each level. In 1, 630 out
of 9,397 test samples, the RADAr model made one or more mis-
takes while generating labels. Among them were 852 cases in which
the model mispredicted the child label, but the parent label was cor-
rect. For example, on one sample, the model predicted [[a_11]1,
<unk>, [a_79],<unk>] but the ground truth is [[a_72],
<unk>, [a_79], <unk>].Looking at the hierarchy, we found
that the predicted child label [a_11] and the corresponding ground
truth label [a_72] share the same parent [a_79], which explains
why the model was able to get the parent right. For the remaining
778 wrong cases, the model mispredicted both labels. So, the model
always predicts the parent label correctly, but when it fails to predict
the correct child label, it builds on that error and mispredicts its par-
ent. This problem is known as exposure bias [40]. In other words,

the model has learned the dataset’s child-to-parent relationships but
faces difficulties generating the correct child labels in the first place.

NYT Unlike WOS, the NYT dataset has an eight-level hierarchy.
We observe different types of errors in 3, 791 out of 7,292 test sam-
ples. Among the errors, the model generates shorter sequences for
1, 805 samples and longer sequences for 1, 699 samples, while only
287 samples have the same number of tokens as the gold standard.
This type of error indicates that the model has difficulty generating
the end-of-sequence token correctly. Let us further investigate the
three cases. For shorter sequence cases, the model fails to predict
a label that starts a new path somewhere toward the end of the
sequence as in the following ground truth sequence: [[a_52],
<unk>, [a_48], [a_30], <unk>, [a_47], [a_29],
<unk>, [a_46], [a_36], [a_24], <unk>, [a_23],
<unk>1]. In this label sequence, the model fails to predict the
label [a_36], which comes before the root node with no previous
children, but correctly predicts two labels after the first generated
label. This phenomenon indicates that the model depends on the
sample text at the beginning of the sequence but gradually shifts its
focus to depend on the predicted labels as it generates more of them.

For longer sequences, the model fails to select the correct starting
level from the eight hierarchy levels. For example, given the ground
truth sequence [[a_99], <unk>, [a_85] <unk>], it pre-
dicts [[a_12], <unk>, [a_2], <unk>, [a_1l][a_99],
<unk>, [a_0][a_85], <unk>], which includes the ground
truth but adds extra labels. This shows that the model captures the
hierarchy but generates labels from deeper levels than necessary.

Finally, for sequences with the same length, the model suffers from
the exposure bias problem like on the WOS dataset.

RCV1-V2 This dataset has a four-level hierarchy. The model
makes different errors generating the labels in 260,415 out of
781,265 test samples. Among them, it generates shorter sequences
for 124,622 samples and longer sequences for 104, 336 samples,
while only 31,457 samples have the same length as the gold stan-
dard. Investigating these three types of mistakes, we find similar er-
rors to those of NYT. When comparing the errors with the ones on
the NYT dataset, we notice that the model, in general, erroneously
produces many shorter sequences than longer ones.

7 Conclusion and Future Work

The paper introduces RADAr, a sequence-to-sequence model using
RoBERTa as an encoder and an autoregressive decoder for the HTC
task. It does not have an encoder for the label hierarchy but learns
it from the label sequences during training. The model shows that
organizing label sequences from children to parents, rather than the
opposite order [37, 14, 46, 9, 6] (see Table 1), is more effective. RA-
DAr demonstrates that label semantics or encoding the label hierar-
chy are not necessary for good performance. As a result, RADAr is a
flexible model with fewer requirements and easy-to-replace compo-
nents. In future work, we plan to further investigate the exposure bias
problem and also evaluate the model on non-hierarchical multi-label
classification tasks.

Limitations

Our RADAr model is an English model because we have fine-tuned
it on three English benchmark datasets. Nevertheless, the model is
extendable to other languages since the decoder uses symbolic labels
and does not utilize label semantics. Also, the encoder could be easily
replaced by a multilingual transformer encoder.

1566

Y. Younes et al. / RADAr: A Transformer-Based Autoregressive Decoder Architecture for Hierarchical Text Classification

Acknowledgements

This

work was co-funded by the DFG as part of the UnknownData

Project - Grant No. 460676019.

References

(1]

(2]

(3]

(4]

[5
(6]

—_

(7]

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. GPT-4 tech-
nical report. arXiv preprint arXiv:2303.08774, 2023.

A. Al-Kababji, F. Bensaali, and S. P. Dakua. Scheduling techniques
for liver segmentation: ReduceLRonPlateau vs OneCycleLR. In Intel-
ligent Systems and Pattern Recognition, pages 204-212, Cham, 2022.
Springer.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

S. Banerjee, C. Akkaya, F. Perez-Sorrosal, and K. Tsioutsiouliklis. Hi-
erarchical transfer learning for multi-label text classification. In ACL,
pages 6295-6300, 2019.

L. Biewald. Experiment tracking with weights and biases, 2020. URL
https://www.wandb.com/. Software available from wandb.com.

H. Chen, Q. Ma, Z. Lin, and J. Yan. Hierarchy-aware label semantics
matching network for hierarchical text classification. In ACL-IJCNLP,
pages 4370-4379. ACL, 2021. doi: 10.18653/v1/2021.acl-long.337.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple frame-
work for contrastive learning of visual representations. In International
conference on machine learning, pages 1597-1607. PMLR, 2020.

A. De Silva, J. L. Wijekoon, R. Liyanarachchi, R. Panchendrarajan, and
W. Rajapaksha. Al insights: A case study on utilizing chatgpt intelli-
gence for research paper analysis. arXiv preprint arXiv:2403.03293,
2024.

Z.Deng, H. Peng, D. He, J. Li, and P. Yu. HTCInfoMax: A global model
for hierarchical text classification via information maximization. In
K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, 1. Belt-
agy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, editors, In
Proceedings of NAACL: HLT, pages 3259-3265. Association for Com-
putational Linguistics, 2021. doi: 10.18653/v1/2021.naacl-main.260.
L. Galke, A. Diera, B. X. Lin, B. Khera, T. Meuser, T. Singhal, F. Karl,
and A. Scherp. Are we really making much progress in text classifica-
tion? A comparative review. arXiv preprint arXiv:2204.03954, 2023.
S. Gopal and Y. Yang. Recursive regularization for large-scale classifi-
cation with hierarchical and graphical dependencies. In SIGKDD, pages
257-265, 2013.

G. Grofle-Bolting, C. Nishioka, and A. Scherp. A comparison of differ-
ent strategies for automated semantic document annotation. In K-CAP
2015, pages 8:1-8:8. ACM, 2015. doi: 10.1145/2815833.2815838.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

T. Jiang, D. Wang, L. Sun, Z. Chen, F. Zhuang, and Q. Yang. Exploit-
ing global and local hierarchies for hierarchical text classification. In
EMNLP, pages 40304039, Abu Dhabi, United Arab Emirates, Dec.
2022. ACL.

J.D. M.-W. C. Kenton and L. K. Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings
of NAACL-HLT, pages 4171-4186, 2019.

K. Kowsari, D. E. Brown, M. Heidarysafa, K. J. Meimandi, M. S. Ger-
ber, and L. E. Barnes. HDLTex: Hierarchical deep learning for text
classification. In 2017 16th IEEE international conference on machine
learning and applications (ICMLA), pages 364-371. IEEE, 2017.

D. D. Lewis, Y. Yang, T. Russell-Rose, and F. Li. RCV1: A new bench-
mark collection for text categorization research. Journal of machine
learning research, 5(Apr):361-397, 2004.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer. BART: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension. In ACL, pages 7871-7880, Online, July 2020. ACL.
doi: 10.18653/v1/2020.acl-main.703.

Q. Li, H. Peng, J. Li, C. Xia, R. Yang, L. Sun, P. S. Yu, and L. He. A
survey on text classification: From traditional to deep learning. ACM
Transactions on Intelligent Systems and Technology (TIST), 13:1 — 41,
2020. URL https://api.semanticscholar.org/CorpusID:220961531.
X.Li, S. Chan, X. Zhu, Y. Pei, Z. Ma, X. Liu, and S. Shah. Are ChatGPT
and GPT-4 general-purpose solvers for financial text analytics? a study
on several typical tasks. In Conference on Empirical Methods in Natural
Language Processing, 2023.

[21]
[22]
[23]
[24]
[25]
[26]

[27]

[28]

[29]

(30]

[31]
[32]

(33]

[34]

[35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dolldr. Focal loss for
dense object detection. In /ICCV, pages 2980-2988, 2017.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov. RoBERTa: A robustly optimized
BERT pretraining approach. arXiv preprint arXiv:1907.11692, 2019.
I. Loshchilov and F. Hutter. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101, 2017.

B. MacCartney. Natural language inference. Stanford University, 2009.
F. Mai, L. Galke, and A. Scherp. Using deep learning for title-based
semantic subject indexing to reach competitive performance to full-text.
In JCDL, pages 169-178. ACM, 2018. doi: 10.1145/3197026.3197039.
A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving
language understanding by generative pre-training. 2018.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. The Journal of Machine Learn-
ing Research, 21(1):5485-5551, 2020.

F. Sebastiani. Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1-47, 2002.

K. Shimura, J. Li, and F. Fukumoto. HFT-CNN: Learning hierar-
chical category structure for multi-label short text categorization. In
EMNLP, pages 811-816, Brussels, Belgium, Oct.-Nov. 2018. ACL. doi:
10.18653/v1/D18-1093.

C. N. Silla and A. A. Freitas. A survey of hierarchical classification
across different application domains. Data mining and knowledge dis-
covery, 22:31-72,2011.

A. Sun and E.-P. Lim. Hierarchical text classification and evaluation. In
Proceedings 2001 IEEE ICDM, pages 521-528. IEEE, 2001.

X. Sun, X. Li, J. Li, F. Wu, S. Guo, T. Zhang, and G. Wang. Text clas-
sification via large language models. arXiv preprint arXiv:2305.08377,
2023.

R. Tarjan. Depth-first search and linear graph algorithms. STAM Journal
on Computing, 1(2):146-160, 1972. doi: 10.1137/0201010.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaeli,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al. Llama
2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

I. Vagliano, L. Galke, and A. Scherp. Recommendations for item set
completion: on the semantics of item co-occurrence with data sparsity,
input size, and input modalities. Inf. Retr. J., 25(3):269-305, 2022. doi:
10.1007/S10791-022-09408-9.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin. Attention is all you need. Ad-
vances in neural information processing systems (NeurIPS), 30, 2017.
Z. Wang, P. Wang, L. Huang, X. Sun, and H. Wang. Incorporating
hierarchy into text encoder: a contrastive learning approach for hierar-
chical text classification. In ACL, pages 7109-7119, Dublin, Ireland,
May 2022. ACL. doi: 10.18653/v1/2022.acl-long.491.

R.J. Williams and D. Zipser. A learning algorithm for continually run-
ning fully recurrent neural networks. Neural Computation, 1(2):270—
280, 1989. doi: 10.1162/neco.1989.1.2.270.

C. Wilt, J. Thayer, and W. Ruml. A comparison of greedy search algo-
rithms. In Proceedings of the International Symposium on Combinato-
rial Search, volume 1, pages 129-136, 2010.

P. Yang, X. Sun, W. Li, S. Ma, W. Wu, and H. Wang. SGM: Se-
quence generation model for multi-label classification. In COLING,
pages 3915-3926, Santa Fe, New Mexico, USA, Aug. 2018. ACL.

C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y.
Liu. Do transformers really perform badly for graph representation?
In NeurIPS, volume 34, pages 28877-28888. Curran Associates, Inc.,
2021.

C. Yu, Y. Shen, and Y. Mao. Constrained sequence-to-tree generation
for hierarchical text classification. In Proceedings of the 45th Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 1865-1869, 2022.

H. Yu, Z. Yang, K. Pelrine, J. F. Godbout, and R. Rabbany. Open,
closed, or small language models for text classification? arXiv preprint
arXiv:2308.10092, 2023.

L. Yuan, Y. Chen, G. Cui, H. Gao, F. Zou, X. Cheng, H. Ji, Z. Liu, and
M. Sun. Revisiting out-of-distribution robustness in NLP: Benchmark,
analysis, and LLMs evaluations. arXiv preprint arXiv:2306.04618,
2023.

Y. Zhang, M. Wang, C. Ren, Q. Li, P. Tiwari, B. Wang, and J. Qin.
Pushing the limit of LLM capacity for text classification. CoRR,
abs/2402.07470, 2024. doi: 10.48550/ARXIV.2402.07470.

J. Zhou, C. Ma, D. Long, G. Xu, N. Ding, H. Zhang, P. Xie, and G. Liu.
Hierarchy-aware global model for hierarchical text classification. In
ACL, pages 1106-1117, 2020. doi: 10.18653/v1/2020.acl-main.104.

https://www.wandb.com/
https://api.semanticscholar.org/CorpusID:220961531

	Introduction
	Related Work
	The RADAr Model
	Experimental Apparatus
	Results
	Discussion
	Ablation Study
	Error Analysis

	Conclusion and Future Work

