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Abstract. Domain generalization (DG) aims to enhance the abil-
ity of model learning from source domains to generalize to other
unseen domains. Existing gradient-based methods focus on learn-
ing better domain-invariant features using gradients from multiple
source domains, but do not consider the impact of gradient granu-
larity on model training. In this paper, we rethink how to mitigate
the gradient conflicting problem from an optimization perspective.
The limitations of existing gradient-based methods are theoretically
analyzed in terms of modification ratio and modification frequency,
showing that gradient granularity is a key factor in ensuring correct
modification of the gradient. To address this issue, a gradient modi-
fication method, called CorGrad, is proposed by layering and slicing
refinement operations to increase the modification frequency and the
modification ratio. It can better reduce domain-specific information
so that the model can learn better domain-invariant features. Finally,
extensive experiments are conducted to verify the effectiveness of the
proposed CorGrad, and the results show that the proposed CorGrad
can obtain competitive performance in five DG benchmarks, and an
average performance of 60.4% can be obtained on the DomainBed
when using ResNet18 as the backbone. The code is publicly available
at https://github.com/libzwo/CorGrad.

1 Introduction

Domain generalization (DG) aims to incorporate knowledge from
multiple source domains and generalize it to the unseen target do-
main by overcoming out-of-distribution (OOD) in testing data. The
assumption of independent and identically distributed (IID) is not al-
ways valid in practice due to the domain shift between the training
and testing data. To minimize the influence of domain shift, a se-
ries of gradient-based methods have been proposed. The gradient is
widely perceived as a rich representation of the task itself [1, 42],
and the gradient conflict caused by the different domains existing in
training sets is considered one of the biggest challenges for the DG
task [25].

Recent work [20, 17, 42, 25, 35, 31] has made great progress in the
DG task, showing that addressing conflicting gradients during multi-
source domain training can mitigate inter-domain interference and
typically enhance generalization capabilities for unseen domains. In
our opinion, the conflict direction component of the gradient mainly
contains domain-specific information. Therefore, elimination of the
conflicting direction component is essential to reduce the model bias
towards domain-specific features. The elimination process can help
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(c) Ours
Figure 1: Schematic diagram of different gradient granularities. Here
different colored blocks represent parameters from different lay-
ers, and block-to-block intervals represent model parameter divi-
sions. Bidirectional arrows represent conflict computation between
two gradients of the same magnitude corresponding to each other.

facilitate the learning of domain-independent features and ultimately
enhances the ability to generalize effectively to unseen domains.

Existing methods fall mainly into two categories from the perspec-
tive of gradient granularity: coarse-grained gradient [35, 31] and fine-
grained gradient [25]. The former involves selecting the gradients
of all model parameters as conflicting gradients, essentially treating
the gradients of all model parameters as a high-dimensional vector
(e.g. , ResNet18 with 11,176,512 learnable parameters). Figure 1a
illustrates the corresponding concept of the coarse-grained method.
The large cube, representing the parameters of a model, is presented
as a continuous entity without gaps, and it is considered as a high-
dimensional vector that encompasses all the model parameters. In
fact, we have shown mathematically that two high-dimensional vec-
tors from random distributions tend to be orthogonal as dimensions
go to infinity (see ection 3.2 for details). Following this principle,
suppose that there is a smaller modification ratio (see Figure 2 for
the definition) to the model in the coarse-grained method, the reason
is that the component in the direction of conflict becomes smaller as
vectors get closer to the orthogonality. It is obvious from Figure 2 that
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Figure 2: An illustration of gradient modification ratios with dif-
ferent angles, where the modification ratio of

−→
OA is defined as

|OHA|/|OA|.−→
OA is closer to the orthogonal with respect to

−−→
OX than

−−→
OB, leading

to a smaller conflict direction component
−−−→
OHA compared to

−−−→
OHB .

Our conjecture is also verified by subsequent experimental results
(see Figure 6 for details). On the contrary, the fine-grained method
uses the gradient of a single learnable parameter of the model as the
conflicting gradient, which is one-dimensional (as shown in Figure
1b). However, it is easy to lose contextual information with other
dimensions using only a single component of a vector. Similarly to
the thermal motion of frequent collisions between microscopic par-
ticles, we believe that fine-grained methods will result in frequent
collisions, thereby leading to a lower modifications frequency (see
Equation (3) for the definition). In fact, this hypothesis is further
confirmed by the frequency of gradient modification updates in sub-
sequent experiment results (see Figure 7 for details).

Based on the above analysis, we can summarize the following two
points for the existing methods. (i) For coarse-grained methods, the
higher the vector dimension, the easier it is to be orthogonal, thereby
leading to smaller orthogonal conflict direction components and a
lower modification ratio. (ii) For fine-grained methods, with lower
vector dimensions, conflicts between vectors become more frequent,
resulting in a lower modification frequency. Therefore, selecting the
right gradient granularity is the key to optimizing gradient conflict
strategies, while simultaneously increasing the modification ratio and
the modification frequency remains a major challenge in the DG
task. In addition, the dominant gradient contains a large amount of
domain-specific information, and its presence may cause the model
to be biased toward specific source domains. Existing methods usu-
ally ignore the dominant gradient, which will undoubtedly have a
negative impact on the DG task. Smoothing the dominant gradients
is the key to ensuring that no bias occurs, and it is another challenge
for DG task.

To address the aforementioned challenges, we propose a gradi-
ent correction scheme from the perspective of gradient granularity
to solve the problem of gradient conflict during the training process
of multi-source domains in this work. The proposed scheme aims to
increase both the gradient modification ratio and the gradient modifi-
cation frequency, thus it is called CorGrad. Figure 1c illustrates our
train of thought for the scheme. Specifically, we first analyze the lim-
itations of existing gradient-based methods from the perspective of
gradient granularity, showing that appropriate gradient granularity is
crucial to optimize gradient conflict strategies. Then, a gradient gran-
ularity subdivision scheme is proposed to simultaneously increase
the modification frequency and modification ratio in gradient-based
methods. Finally, we propose an adaptive smoothing strategy to mit-
igate the adverse impacts of the dominant gradient on model training
during the training process. Our contributions can be summarized as
follows.

• We conducted an analysis of existing gradient-based methods

from the perspective of gradient granularity.
• A gradient granularity subdivision scheme is proposed to increase

both the modification frequency and the modification ratio in
gradient-based methods.

• An adaptive smoothing strategy is proposed to address the adverse
impacts of the dominant gradient during training.

• Extensive experiments indicate that the proposed gradient op-
timization strategy is competitive and promising during multi-
source domain learning tasks.

2 Related work

2.1 Domain Generalization

Domain Generalization (DG) aims to improve the generalization
ability of machine learning algorithms from observed source do-
mains to unseen target domain. Currently, most of the existing DG
methods can be primarily categorized into three types: Data-based,
Model-based, and Optimization-based.

Data-based DG methods. From the data perspective, data aug-
mentation methods, such as GANs [10, 22], Variational Autoencoder
(VAE) [16, 8], and other image editing methods [40, 38], can both
serve to expand the diversity of training samples. These methods aim
to enhance the robustness and generalization capabilities of models.
For example, Mixup [44] extends the training distribution by linearly
interpolating random pairs of examples and labels. Cutmix [43] cuts
out a patch from one image and replaces it with the corresponding
patch from another image. Remix [14] solves the problem of cate-
gory imbalance by assigning larger weights to small samples of cat-
egory labels.

Model-based DG methods. From the model perspective, a com-
mon approach involves training and integrating models that are spe-
cific to multiple domains. For example, Xu et al. [39] leveraged the
low-rank structure extracted from multiple latent domains to address
the challenges of DG. Mancini et al. [24] utilized information from
robust classification models to construct specific classifiers for dif-
ferent source domains and then optimally combined them to build a
classification model for the target domain. However, many of these
methods introduce complex network parameter learning, which, in
turn, complicates network optimization and convergence across mul-
tiple source domain settings.

Optimization-based DG methods. From the optimization per-
spective, many methods were proposed to learn generalized fea-
tures by designing different training strategies. For example, some
work focuses on learning domain-invariant feature representations
through explicit feature alignment[26, 9, 22, 12, 3], adversarial
learning[7, 22, 23, 41], meta-learning-based methods[4, 6, 20, 21], or
gradient-based methods[20, 17, 35], etc. Li et al. [22] designed a con-
ditional invariant adversarial network to learn domain-invariant rep-
resentations and ensure the invariance of the joint distribution across
domains. Zhang et al. [45] dealt with domain generalization from
the training scheme perspective and proposed a target-specific nor-
malization method to further boost the generalization ability in the
unseen target domain.

The aforementioned data-based methods aim to learn domain-
invariant features by expanding the data distribution of source do-
main, whereas model-based methods seek to achieve the same goal
by aggregating data distributions from various source domains. How-
ever, these methods suffer from two main drawbacks as follows. (i)
The generated source domain may have significant deviations, which
is not conducive to learning domain invariant features; (ii) They tend
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to involve extensive learning of network parameters, complicating
network optimization and convergence. To address these issues, we
propose a new gradient-based method from the optimization perspec-
tive in this work.

2.2 Gradient-based Methods

Gradients are typically the driving force behind the training and op-
timization process in deep learning algorithms. However, when at-
tempting to train a single model using data from multiple distri-
butions, gradient conflict usually occurs, thereby leading to some
suboptimal solutions. In DG, conflicting gradients usually contain
domain-specific information, which can be detrimental to learning
domain-invariant features. Existing methods to resolve gradient con-
flicts can be categorized into gradient alignment and gradient modi-
fication.

Gradient alignment. Gradient alignment is integrated into the
learning objective. For example, Shi et al. [35] explicitly optimizes
the dot product between domain gradients using an efficient first-
order algorithm. In a further study, Rame et al. [31] enforces the
alignment of gradient variance across domains. In contrast, Li et al.
[20] adopts a meta-learning approach, where the meta-objective aims
to align gradients between pseudo-source and pseudo-target domain.

Gradient modification. Gradient modification means performing
some gradient surgery at each gradient step. For example, PCGrad
[42] addresses conflicts for multi-task learning by projecting a gradi-
ent of the task onto the orthogonal plane defined by the gradients of
other conflicting tasks. In DG, the masking of gradient components
was proposed to exhibit conflicting signs across domains [25, 28].
Shahtalebi et al. [34] further extended the above approach by intro-
ducing a smoothed-out masking technique to keep agreement among
gradient magnitudes. These existing methods ignore the granularity
of the gradient, resulting in low frequency or low rate of the gradient
modification during training. To address this issue, a gradient correc-
tion scheme is proposed from the perspective of gradient granularity
in this work.

3 Preliminaries and Analysis

3.1 Basic Concepts and Definition

In DG, we have access to a training set composed of N source do-
mains Ds = {D1, D2, · · · , DN}, where the ith domain is character-
ized by a dataset Di = {(x(i)

j , y
(i)
j )}Mi

j=1containing Mi labeled data
points, and all domains have the same number of classes. The aim
is to learn a classification f(x

(i)
j ; θ) that predicts the class label ŷ(i)j

corresponding to the input x(i)
j by only using the source domains, so

that it is able to generalize well on unseen target domains Dt. For
multiple source domains, we define the training cost function as the
average loss over all source domains.

L(θ) = 1

N

N∑
i=1

Li(θ) (1)

where Li(θ) represents the loss associated with the ith domain, de-
fined as follows:

Li(θ) =
1

Mi

Mi∑
i=1

�
(
f(x

(i)
j ; θ), y

(i)
j

)
(2)

where �(·, ·) is a classification loss function, e.g. cross-entropy,
which is used to measure the error between the predicted label ŷ and
the true label y.

For ease of description, the modification frequency fm is defined
as follows:

fm =
nf

nt
(3)

where nf and nt represent the number of occurrences of the modifi-
cation gradient and the total number of occurrences, respectively.

3.2 Orthogonal Analysis

In this section, we propose a series of mathematical proofs aimed
at obtaining the conclusion that two random high-dimensional vec-
tors are nearly orthogonal. This conclusion reflects the limitations
of existing gradient-based methods. Our proposed method aims to
specifically address these limitations.

To demonstrate that two random high-dimensional vectors are
nearly orthogonal, we denote the angle between the two vectors by
θ. Due to the isotropy, we fix a vector as follows.

y = (1, 0, . . . , 0) (4)

Without loss of generality, we consider the random vector as:

x = (x1, x2, . . . , xn) (5)

Then x is transformed to hypersphere coordinates:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = cos(φ1)

x2 = sin(φ1) cos(φ2)

x3 = sin(φ1) sin(φ2) cos(φ3)

...

xn−1 = sin(φ1) · · · sin(φn−2) cos(φn−1)

xn = sin(φ1) · · · sin(φn−2) sin(φn−1)

(6)

where φn−1 ∈ [0, 2π) and the rest φ1,2,...,n−2 ∈ [0, π]. Meanwhile,
the angle between x and y is derived as:

arccos〈x, y〉 = arccos cos(φ1) = φ1 (7)

It means that the angle between the two is φ1. Then the probability
that the angle between x and y does not exceed θ is derived as:

Pn(φ1 ≤ θ) =

∫ 2π

0
· · · ∫ π

0

∫ θ

0
Δdφ1dφ2 · · · dφn−1∫ 2π

0
· · · ∫ π

0

∫ π

0
Δdφ1dφ2 · · · dφn−1

=
Γ(n

2
)

Γ(n−1
2

)
√
π

∫ θ

0

sinn−2 φ1dφ1

(8)

where Δ represents the integral on the n-dimensional hypersphere
sinn−2(φ1) sin

n−3(φ2) · · · sin(φn−2) and the probability density
function of θ is given as:

pn(θ) =
Γ(n

2
)

Γ(n−1
2

)
√
π
sinn−2 θ (9)

From Equation (9), it can be found that the maximum probability is
θ = π

2
, and sinn−2 θ is about θ = π

2
symmetric, thus its mean is

also π
2

.
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Figure 3: Angle distribution of vectors with increasing vector dimen-
sion.

However, this does not adequately describe the distribution. We
still need to consider the variance:

V arn(θ) =
Γ(n

2
)

Γ(n−1
2

)
√
π

∫ π

0

(θ − π

2
)2 sinn−2 θdθ (10)

The analytical solution for this integral is quite complex, so we pro-
vide a partial numerical solution in the following Figure 3.

Based on the above analysis, we can infer that as the dimension
increases, the angle between any two high-dimensional vectors tends
to approach orthogonality.

3.3 Gradient Modification Criterion

Inspired by [29], suppose that three gradients {g1, g2, g3} corre-
sponding to three instances {z1, z2, z3} belong to three different do-
mains (shown in Figure 4). Since θ2 < 90◦, taking a step along
g2 or g3 can improve the classifier performance on both z2 and z3.
That means that z2 and z3 contain some shared information (i.e. ,
domain-invariant features) recognized by the classifier. In contrast,
considering θ3 > 90◦, updating one gradient along z1 or z3 may
degrade the classifier performance due to the low-level information
sharing between z1 and z3.

Following the g2 direction in this example seems to be the best
choice because it can classify z3 well without affecting the perfor-
mance of z1 too much, which means that its gradient update direction
is the most favorable for learning domain-invariant features.

Through the above analysis, we can summarize the criterion of
gradient modification as follows. (i) when the inner product between
gradients from different source domains is less than 0, these gradients
may contain domain-invariant information and do not require modi-
fication. (ii) Conversely, when the inner product is greater than 0, the
components in conflicting directions may contain domain-specific
information, which is detrimental to model learning and should be
eliminated through gradient modification.
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Figure 4: Example of three gradient instances.

3.4 Layering and Slicing

In this section, we firstly propose a layering and slicing scheme from
the perspective of gradient granularity. Then, an adaptive smoothing
strategy is proposed to smooth dominant gradients, and the Gram-
Schmidt orthogonalization strategy is introduced to eliminate the
conflict component. Finally, the pseudo-code of the overall proce-
dure is given in Algorithm 1.

Based on the analysis in Section 3.2, we have shown that high-
dimensional vectors tend to be more orthogonal, thereby leading to a
low modification ratio. To address this issue, we propose two mod-
ules to reduce dimensions from the perspective of gradient granular-
ity: layering and slicing.

(i) Layering module: Due to the significant differences between
different layers in gradient magnitudes, the gradients should
be processed from different layers separately. Significantly, the
concept of layering here is different from the existing layer-
to-layer gradient back-propagation methods, and the proposed
layering module is an improvement of the existing coarse-
grained methods. The reason is that the proposed module no
longer calculates the gradients of the conflicting model param-
eters as a whole, but divides the corresponding gradients ac-
cording to different layers.

(ii) Slicing module: Considering that high-dimensional vectors are
prone to orthogonality and the gradients within the same layer
should be further sliced, we propose a conceptually clear and
operationally simple implementation that requires only one line
of code, specifically, for the original gradient of high dimen-
sions in a layer, we split it equally into n vectors, each of which
is of the same length but of lower dimensions.

The proposed layering and slicing scheme can effectively reduce
the vector dimensions, thus ensuring a wider distribution of vector
angles θ. As shown in Figure 5, higher dimensional vectors tend to
exhibit lower modification ratio due to higher orthogonality. After
being processed by the proposed layering and slicing scheme, the
angle θ between vectors no longer tends to be orthogonal. The ob-
tained angles are more widely distributed, and the modification ratio
increases as the vector dimensions decrease.

Figure 5: Comparison of vector angle distribution between before and
after slicing. The dashed lines illustrate potential angular distribu-
tions, while different colored blocks represent the gradients divided
by layer. In this schematic, the gradients of all parameters of a model
are categorized into four blocks based on layers.

3.5 Adaptive Smoothing

During the training process of multi-source domains, the existence of
dominant gradients (i.e. , the gradient from one source domain signif-
icantly surpasses the gradients from other source domains) can lead
to the model being biased toward specific source domain, thereby
introducing an excessive amount of domain-specific information,
which does not help to learn domain-invariant features. To address
this issue, an adaptive smoothing strategy is proposed to mitigate

Y. Zhou et al. / Rethinking Domain Generalization from Perspective of Gradient Granularity1546



the influence of dominant gradients. For ease of description, the gra-
dient of the ith source domain is denoted as gi = ∇θLi(θ). The
L2 norm of gradients is used to compare the magnitude of gradients
‖g‖2 =

√
(g21 + g22 + · · ·+ g2n). Considering that the magnitude of

different gradients as different observations in the same distribution,
the outlier gradient (i.e. , dominant gradient) is defined as the gra-
dient that differs from the mean of the distribution by one standard
deviation. In addition, the Equation (11) is used to smooth the domi-
nate gradient.

g′i = αgi + (1− α)gmean (11)

where α is a smoothing hyper-parameter and gmean is the mean of
the gradient across source domains.

3.6 Conflict Component Elimination

Since the conflicting direction component of the gradient contains
domain-specific information that is not conductive to model learn-
ing, it should be eliminated as much as possible. The Gram-Schmidt
process, known for efficiently orthogonalizing sets of vectors in inner
product spaces, is widely used to construct orthogonal bases [19, 42].
Inspired by this, we employ Gram-Schmidt orthogonalization in this
work to eliminate conflicting components, defined as:

g′i = gi − g(i→j) (12)

where gi represents a conflicting gradient. g(i→j) represents the con-
flicting direction component of gi with respect to gj , defined as:

g(i→j) =
〈gi, gj〉
‖gj‖2 gj (13)

Through the Gram-Schmidt orthonormalization, we project the
gradient gi onto the normal plane of the gradient gj . This amounts to
removing the conflicting component g(i→j), thereby leading to the
model learning domain-invariant features instead of being biased to-
wards a specific domain.

3.7 Overall Procedure

Suppose that the gradient of the kth layer for the domain Di is gki ,
and the gradient for the domain Dj is gkj . The processing step of the
proposed CorGrad is listed as follows.

(1) A gradient gki is divided into {gk1
i , gk2

i , · · · gkn
i } by using the

proposed slicing module.
(2) If gkn

i · gkn
j < 0, we replace gkn

i with its projection onto the

normal plane of gkn
j : gkn

i = gkn
i − g

kn
i ·gkn

i

‖gkn
i ‖2 · gkn

j else the

original gradient gkn
i remains unchanged.

(3) The CorGrad is repeated this process across all of the other do-
mains sampled in random order from the current batch Dj∀j �=
i, resulting in the gradient gPC

i that is applied for domain Di.
(4) For {gPC

i , gPC
j , · · · , gPC

m }, we calculate gPC
mean and gPC

std by
{‖gPC

i ‖2, ‖gPC
j ‖2, · · · , ‖gPC

m ‖2}.
(5) It determines whether gPC is outlier gradient by computing

gPC −gPC
mean−gPC

std , where positive values indicate outlier gra-
dient.

(6) If gPC is an outlier gradient, we replace gPC with a smoother
value gPC = αgPC + (1 − α)gPC

mean. We perform the same
procedure for all domains in the batch to obtain their respective
gradients.

The same procedure is conducted for all domains in the batch to
obtain their respective gradients, and the overall update procedure is
illustrated in Algorithm 1.

Algorithm 1: CorGrad Update Rule
Input: Model parameters θ, N source domain

D = {D1, D2, · · · , DN}, Model layers
L = {l1, l2 · · · ln}

1 gd ← ∇θLd(θ) ∀d;
2 {gl1d , gl2d · · · glnd } ← gd ∀d;
3 for Di ∈ D do

4 for Dj
uniformly∼ D −Di in random order do

5 for lk ∈ L do

6 if g
lk
i · glkj < 0 then

7 Set glki = g
lk
i − g

lk
i ·glkj
‖glki ‖2

8 gstd, gmean ← {g1, g2, · · · , gN};
9 for gi ∈ {g1, g2, · · · , gN} do

10 if gi − gmean > gstd then

11 gi = αgi + (1− α)gmean

12 return update Δθ =
∑

i gi

4 Experiments

4.1 Experiments on DomainBed

Datasets. Five distinct datasets from the DomainBed [11] bench-
mark are used to conduct a comprehensive evaluation of the proposed
method. These datasets include PACS, VLCS, OfficeHome, TerraInc,
and DomainNet. (1) PACS consists of 9,991 images categorized into
7 classes, and is widely utilized in domain generalization literature
due to its substantial distributional shift across four domains, which
includes art painting, cartoon, photo, and sketch. (2) VLCS com-
prises 10,729 images collected from five different classes. These im-
ages are originally sourced from four separate datasets, namely PAS-
CAL VOC 2007, LabelMe, Caltech, and Sun. In the domain gener-
alization context, each of these datasets is considered a distinct do-
main.(3) OfficeHome is an object recognition dataset with 15,588
images that span 65 classes, which can be further divided into four
domains: artistic, clipart, product, and real-world. (4) TerraInc en-
compasses 24,788 animal images captured in various wilderness lo-
cations. There are a total of 10 classes, with the specific location serv-
ing as the varying domain, denoted as L100, L38, L43, and L46. (5)

DomainNet boasts 586,575 images distributed across 345 classes,
with domains categorized into six types: clipart, infograph, painting,
quickdraw, real, and sketch.

Implementation details. Following the prevalent design, we use
the ImageNet pre-trained ResNet18 model as the backbone for all
datasets. The number of slices n is set dynamically n ∈ [5, 100] in
the proposed CorGrad and the weight parameter for the smooth dom-
inant gradient is initially dynamically set to α ∈ [0.5, 1] and gradu-
ally decays to 0 with the iteration rounds. For all datasets, we assess
these methods employing a leave-one-out strategy. This strategy des-
ignates one domain as the target domain, which is held out for eval-
uation, while considering the other domains as the source domains
for training and testing. Specifically, following the relevant settings
in the DomainBed benchmark, the training and test samples are ran-
domly split in the ratio of 8:2, the batch size is 32 by default, except
for the DomainNet dataset, which is trained with 15,000 iterations,
and the remaining four datasets are trained with 5,000 iterations. The
remaining hyper-parameters such as learning rate, weight decay, et
al. are dynamically adjusted according to [11].
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Table 1: Comparisons with state-of-the-art domain generalization methods. Table shows the out-of-domain accuracy of the five domain gen-
eralizations using ResNet18 as a backbone. The best result is highlighted in bold. Top5 accumulates the number of datasets where a method
achieves the top 5 performances. The results marked by † are copied from previous work. The average accuracy and standard deviation are
calculated from five trails.

Algorithm PACS VLCS OfficeHome TerraInc DomainNet Avg. Top5

MMD† [22] 81.3± 0.8 74.9± 0.5 59.9± 0.4 42.0± 1.0 7.9± 6.2 53.2 0
RSC† [13] 80.5± 0.2 75.4± 0.3 58.4± 0.6 39.4± 1.3 27.9± 2.0 56.3 0
IRM† [2] 80.9± 0.5 75.1± 0.1 58.0± 0.1 38.4± 0.9 30.4± 1.0 56.6 0
ARM† [46] 80.6± 0.5 75.9± 0.3 59.6± 0.3 37.4± 1.9 29.9± 0.1 56.7 0
DANN† [7] 79.2± 0.3 76.3± 0.2 59.5± 0.5 37.9± 0.9 31.5± 0.1 56.9 1
GroupGRO† [33] 80.7± 0.4 75.4± 1.0 60.6± 0.3 41.5± 2.0 27.5± 0.1 57.1 0
CDANN† [23] 80.3± 0.5 76.0± 0.5 59.3± 0.4 38.6± 2.3 31.8± 0.2 57.2 0
VREx† [18] 80.2± 0.5 75.3± 0.6 59.5± 0.1 43.2± 0.3 28.1± 1.0 57.3 1
CAD† [32] 81.9± 0.3 75.2± 0.6 60.5± 0.3 40.5± 0.4 31.0± 0.8 57.8 1
CondCAD† [32] 80.8± 0.5 76.1± 0.3 61.0± 0.4 39.7± 0.4 31.9± 0.7 57.9 0
MTL†[5] 80.1± 0.8 75.2± 0.3 59.9± 0.5 40.4± 1.0 35.0± 0.0 58.1 0
ERM†[37] 79.8± 0.4 75.8± 0.2 60.6± 0.2 38.8± 1.0 35.3± 0.1 58.1 0
MixStyle†[47] 82.6± 0.4 75.2± 0.7 59.6± 0.8 40.9± 1.1 33.9± 0.1 58.4 1
PCGrad[25] 81.3± 0.2 75.0± 0.3 58.3± 0.5 41.3± 0.1 36.4± 0.4 58.5 1
Mixup†[40] 79.2± 0.9 76.2± 0.3 61.7± 0.5 42.1± 0.7 34.0± 0.0 58.6 1
MLDG[20] 81.2± 0.4 75.6± 0.3 61.2± 0.2 40.1± 0.4 35.9± 0.8 58.8 1
Fishr[31] 81.4± 0.5 76.0± 0.2 61.2± 0.3 42.6± 1.0 34.3± 0.3 59.1 1
SagNet† [27] 81.7± 0.6 75.4± 0.8 62.5± 0.3 40.6± 1.5 35.3± 0.1 59.1 1
SelfReg† [15] 81.8± 0.3 76.4± 0.7 62.4± 0.1 41.3± 0.3 34.7± 0.2 59.3 2
Fish[35] 81.7± 0.5 76.9 ± 0.4 62.2± 0.4 40.3± 0.4 35.5± 0.3 59.3 2
CORAL† [36] 81.7± 0.0 75.5± 0.4 62.4± 0.4 41.4± 1.8 36.1± 0.2 59.4 2
SD† [30] 81.9± 0.3 75.5± 0.4 62.9 ± 0.2 42.0± 1.0 36.3± 0.2 59.7 3
CorGrad(Ours) 82.1 ± 0.4 76.6± 0.2 61.2± 0.3 44.9 ± 0.5 37.3 ± 0.6 60.4 4

Experimental results. The average out-of-domain performance
and the Top5 scores of the latest DG methods across the five bench-
marks are presented in Table 1. We note that the ERM method
achieves good performance compared to the existing arts. In fact,
as a strong baseline, the ERM outperforms half of the methods in
terms of average accuracy. It is obvious that the proposed CorGrad
consistently outperforms the ERM [37] on all benchmarks, show-
ing an average improvement of +2.3%. Furthermore, the proposed
CorGrad can obtain varying degrees of improvement over existing
gradient-based methods: +1.9% compared to PCGrad [25], +1.6%
over MLDG [20], +1. 3% over Fishr [31] and +1. 1% over Fish [35].
Notably, CorGrad achieves the best performance in 3 out of the 5
benchmarks, surpassing other state-of-the-art DG methods, and ranks
within the top 5 in 4 benchmarks.

4.2 Modification Ratio Analysis

To better illustrate the limitations of the coarse-grained method in
relation to modification ratios, we present the results of our method
compared to the coarse-grained method in five different data sets in
Figure 6. The modification ratio is defined as the ratio of the mag-
nitude of the conflicting direction component of the gradient to the
magnitude of the gradient itself. It is worth noting that the overall
trend of the model’s correction rate on all five different datasets is
gradually decreasing, due to the fact that during the model training
process, the disturbing information from a particular source domain
is continuously reduced, gradually approaching the ideal domain-
invariant features. It is obvious that our method consistently outper-
forms the coarse-grained method in terms of modification ratio on all
datasets, reaffirming the conclusions detailed in Section 3.2. High-
dimensional vectors are prone to orthogonality, resulting in fewer
conflict direction components and smaller modification ratios, which
are not conducive to model training.

4.3 Modification Frequency Analysis

To elucidate the limitations of the fine-grained method in terms of
modification frequency, we present a comparative analysis between
our method and the fine-grained method in five distinct datasets in
Figure 7. The modification frequency is defined as the ratio of the
number of times a modification gradient event occurs to the to-
tal number of occurrences. It is important to note that for the first
four datasets, the initial modification frequency of the fine-grained
method is approximately 1

4
. The reason is that three source domains

were utilized when employing the leave-one-out method, which the-
oretically results in an initial modification frequency of 1

2N−1 , where
N represents the number of source domains. However, in the case of
the DomainNet dataset with five initial source domains, the initial
modification frequency should be close to 1

16
. Notably, due to the

very low initial modification frequency, subsequent model modifi-
cations become very small, leading to the stagnation of subsequent
gradient updates. It is obvious that our method, which modifies gra-
dient granularity, can substantially boost the modification frequency
compared to the fine-grained method. This also proves our earlier
conjecture that the fine-grained method will result in frequent colli-
sions, thereby leading to a lower modification frequency.

4.4 Ablation Study

In the subsequent sections, we perform an ablation study to assess
the efficacy of the individual modules within CorGrad. All exper-
iments are conducted in this segment are based on the extensively
employed DomainBed benchmark. We present the average accuracy
results for various methods on the VLCS, TerraInc, and DomainNet
datasets, employing ResNet18 as the backbone. For specific exper-
imental details, please refer to Section 4.1. The leave-one-domain
strategy is employed, and the accuracy obtained represents the aver-
ages obtained from five independent trials.

The following observations can be derived from Table 2. Firstly,
PCGrad [25] and our method can both obtain significant outperfor-
mance compared to ERM, verifying the effectiveness of the gradient
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(a) PACS (b) VLCS (c) OfficeHome (d) TerraInc (e) DomainNet

Figure 6: Visualized results of the modification ratio by applying our method and the coarse-grained method on five datasets. The horizontal
coordinate is averaged into ten groups based on the number of iterations, and the vertical coordinate is the average modification ratio, which is
represented by using the ratio of the gradient’s conflicting direction component to the modulus of the gradient itself.

(a) PACS (b) VLCS (c) OfficeHome (d) TerraInc (e) DomainNet

Figure 7: Visualized results of the modification frequency by applying our method and the fine-grained method on five datasets. The horizontal
coordinate is evenly divided into ten groups according to the number of iterations, and the vertical coordinate is the average modification
frequency.

Table 2: Ablation study by using the proposed CorGrad on three benchmarks: VLCS, TerraInc, and DomainNet. Here the “L” and “S” denote the
hierarchical and slicing operations performed on the gradient granularity, respectively. “D” denotes the adaptive smoothing of the dominant
gradient. The obtained precision (%) and standard deviation are calculated using ResNet18 as backbone based on 5 trials for each target
domain.

Models
granularity dominate Test datasets Avg.
L S D VLCS TerraInc DomainNet

ERM - - - 75.8± 0.2 38.8± 1.0 35.3± 0.1 50.0
PCGrad - - - 75.0± 0.3 41.3± 0.1 36.4± 0.4 50.9
Ours w/o S,D � - - 75.4± 0.5 42.9± 0.6 36.6± 0.4 51.6
Ours w/o D � � - 75.9± 0.4 44.6± 0.6 36.9± 0.2 52.4
CorGrad(Ours) � � � 76.6± 0.2 44.9± 0.5 37.3± 0.6 53.0

conflict strategy. Secondly, our method can solve the problem of con-
flicting gradients using Gram-Schmidt orthogonalization, and it can
remove conflicting directional components, thereby learning better
domain invariant features. In particular, the incremental inclusion of
operations demonstrates tangible improvements: Hierarchical con-
sideration of the overall gradient alone raises the average accuracy by
+0.7% (50.9% → 51.6%). Further enhancements through the slicing
operation boost accuracy by an additional +0.8% (51.6% → 52.4%).
The proposed adaptive smoothing strategy can prevent biased learn-
ing towards specific source domains, increasing the average accu-
racy by another +0.6% (52.4% → 53.0%). In general, the proposed
CorGrad can obtain an average performance +2.1% better than the
PCGrad. This suggests that modifying the granularity of the gradi-
ent not only increases the modification frequency and ratio, but also
improves final accuracy. Thirdly, across the board, the proposed Cor-
Grad consistently surpasses ERM and PCGrad significantly. The re-
sults verify the effectiveness of the proposed method in addressing
the challenges of domain generalization.

5 Conclusion

In this paper, we first analyze the limitations of existing gradient
modification methods from the perspective of gradient granularity
in the area of DG, showing that coarse and fine grained methods can
lead to a low ratio and a low frequency of gradient modification,

respectively. To address this issue, a gradient modification method,
called CorGrad, is proposed by selecting the appropriate granular-
ity to increase the modification frequency and the modification ratio.
In addition, an adaptive smoothing strategy is proposed to smooth
out the influences of the dominant gradient. Finally, extensive exper-
iments are conducted to verify the effectiveness of the proposed Cor-
Grad, and the results show that the proposed CorGrad method can
obtain competitive performance, and outperform most state-of-the-
art algorithms in five DG benchmarks. Especially, using ResNet18
as the backbone, it can achieve an average performance of 60.4% on
DomainBed without using any additional information, demonstrat-
ing its strong DG capabilities.
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