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Abstract. Early lung cancer detection strongly increases survival
rate. During a navigational bronchoscopy, pulmonologists perform
tissue sampling for biopsies based on preoperative medical images.
The bronchial carina is an airway structure that appears at each
bronchus bifurcation. It is an important landmark to detect during
navigations as it indicates the need to choose between multiple paths
and keep track of the position in the lungs. In this paper, we assessed
various deep learning pipelines including the use of semi-supervised,
segmentation and recurrent methods under different setups to per-
form bronchial carinae detection. In contrast to most previous works
that focus on phantoms, cadavers or virtual images, we exploit a
large corpus of proprietary in vivo data captured during real endo-
scopic procedures using a mini probe. To the best of our knowledge,
it is the first work that deals with this quantity of real and challeng-
ing data. After performing a comparison study, we conclude that the
best performance to detect bronchial carinae is achieved by a semi-
supervised pipeline that leverages the ability of nnU-Net to solve
segmentation tasks, coupled with Gated Recurrent Units that extracts
temporal contexts from image sequences.

1 Introduction

Lung cancer is the primary cause of cancer-related fatal outcomes
in the world [18]. Currently, patients have a 5-year survival rate
of 13.0% [20], which increases to 62.8% if diagnosed and treated
early [9]. Hence, early diagnosis has a tremendous potential to save
lives. In practice, pulmonologists detect potential cancers (i.e., pul-
monary nodules) using medical imaging techniques such as Com-
puted Tomography (CT) scans, and confirm or reject their diagnosis
by performing tissue sampling for a biopsy. This process is known as
navigational bronchoscopy [4], as they use an endoscope to navigate
in the lungs, from the trachea to the target nodule(s).

Regrettably, over 60% of lung cancers are localised in the periph-
ery of the lungs and cannot be reached with regular endoscopes be-
cause of the branching complexity of the bronchial tree and the size
of these endoscopes [5]. Indeed, one must navigate many bronchial
subdivisions, which become increasingly narrower, before reaching
peripheral nodules. These subdivisions are harder to reach and the
procedure is prone to miss-interpretations of the position of the en-
doscope by the pulmonologist. As a consequence, tissues are often
taken blindly, resulting in a poor yield of biopsies [7]. While ultra-
thin bronchoscopy [11] can help reaching small bronchial subdivi-
sions, no previous research has been able to acquire a large amount
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Figure 1: Inspired from Prakash et al. [14]. Three carinae are dis-
played with their position in the airways. Each of them indicates a
bifurcation in the bronchial tree.

of such precise data in order to assess the feasibility of using var-
ious deep learning techniques on it. Next to that, few solutions are
proposed to provide accurate support for the navigation from the tra-
chea to the pulmonary nodule(s). In the lung, there exists a structure
known as the bronchial carina [14] (or carina, see Figure 1), which
appears at each bifurcation in the bronchial tree as one moves from
the trachea to the bronchioles (i.e., thin bronchus at the end of the
tree, leading to pulmonary alveoli). Detecting a carina indicates that
a bifurcation has been reached. At this location, the pulmonologist
needs to select one of several bronchus (two in most cases) to navi-
gate towards the target nodule(s).

In order to bring an end-to-end solution to navigational bron-
choscopy, three pieces can be considered: (i) a 3D map of the
lungs, (ii) a Six Degrees Of Freedom (6DOF) Electromagnetic (EM)
sensor, and (iii) a bronchial carinae detector. With these, it becomes
conceivable to bring real-time support to help pulmonologists or a
robotic system navigate to target nodule(s) in the lungs. Regarding
the first point, the Airway Tree Modeling challenge (ATM22) [23]
has yielded several pulmonary airway segmentation models that help
create 3D representations of the lungs. One such example is Navi-
Airway [21] and achieves accurate performances in constructing 3D
models of the bronchial tree up to the 12" generation of bronchi-
oles (see Figure 2) and preserves the airway topology. For the sec-
ond piece, several 6DOF EM sensors have been developed and are
able to give real-time position of the endoscope [6]. With the infor-
mation they give, the voxels from the 3D model can be translated
into real world positions. However, this information is not reliable
enough since patient’s breathing and movements add noise to those
measurements [2]. Finally, a bronchial carinae detector, which is the
subject of this paper, would give the signal that a bifurcation has been
reached. Subsequently, the 6DOF information together with the 3D
model could be used to indicate which bronchus has to be followed to
move towards the target. Despite the apparent feasibility of a carina
detector, it still constitutes a challenging task for many reasons such
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Figure 2: CT-scan slices from a real patient (left) and its corre-
sponding 3D modeling of bronchial tree generated with NaviAirway
(right).

as the high variability observed in images between different patients,
and numerous artifacts that appears when dealing with real patients
(e.g., breathing, movements, etc.).

In this work, a first step toward accurate in vivo navigational bron-
choscopy support is proposed. It distinguishes from previous work by
evaluating several deep learning techniques to detect bronchial cari-
nae, such as binary classifiers (i.e., detector), segmentation, and re-
current models. Indeed, as opposed to some previous works that rely
on geometry, deep learning has the potential to enhance robustness
against variability and artifacts by leveraging a vast quantity of data
available to us. Two pipelines are setup: a supervised pipeline and a
semi-supervised pipeline. They benefit from a large amount of data
coming from in vivo navigational bronchoscopy videos, which are
partially annotated by biomedical experts. The supervised pipeline
consists of two deep learning models trained on labeled images in
order to detect carinae. In contrast, the semi-supervised pipeline gen-
erates pseudo-labels for all the frames of an unlabeled video dataset,
and trains four deep learning models in a semi-supervised fashion.
Two models use image embeddings and Recurrent Neural Networks
(RNNGs) (to assess the benefit from adding video temporality), while
the two others directly use image embeddings with fully connected
layers (to assess the benefit from the semi-supervised pipeline) in-
stead. By evaluating those models on a third dataset of fully anno-
tated videos, we show that the best performance is achieved by a
semi-supervised pipeline that leverages the ability of nnU-Net [10]
to solve segmentation tasks, coupled with the use of Gated Recurrent
Units (GRU) [3] that accounts for the temporal context.

The main contributions of this work are the followings:

e detection of bronchial carinae with deep learning;

e ablation study of various deep learning techniques like nnU-Nets,
recurrent and semi-supervised techniques in order to assess the
result of such techniques on a large corpus of both labeled and
unlabeled data;

e cxploitation of images from in vivo navigational endoscopy
recordings that include images of very narrow bronchus bronchi
that traditional endoscopes cannot read (i.e., bronchioles and pul-
mopulmonary alveoli), as compared to other works that mostly
use phantom, cadaver or virtual images of the first generations of
bronchi.

This paper starts by reviewing related works, then it continues with
a description of the data. Next, the proposed methodologies are de-
scribed, followed by a section on experiments and results before con-
cluding on the results and further works.

2 Related Works

Previous works can be divided into two different categories. The first
one is mainly based on traditional computer vision approaches. In
their work, Shen et al. [17] extract salient regions using a Maximally

Stable Extremal Regions [13] detector on depth maps of video frames
(obtained with shape from shading), and on depth maps of virtual
images generated from CT scans. Sequentially, regions that indicate
bifurcations are detected using a SVM classifier. Nonetheless, it ap-
pears that this work uses an Olympus BF-260 that has 5.5mm of outer
diameter, which makes it impossible to reach smaller bronchi. More-
over, most of the work is validated on a phantom (i.e., an artificial
model replicating the lungs’ structure), with only 347 frames of in
vivo bronchoscopic examination.

Sanchez et al. [15] detect lumen centers as the dark region of the
image based on their appearance and geometry using gradient maps
and k-means clustering. However, this work uses only 125 bron-
choscopy images (with varying resolution of maximum 288 x 288
and minimum 114 x 144) which is very low to capture all the variance
in the problem. Furthermore, it mainly uses geometry-based tech-
niques. Most of this kind of approaches are likely to perform poorly
in real applications due to a lack of robustness as stated in several
works [16, 1]. Indeed, those methods generally make strong assump-
tions about geometrical properties of the airway, which diminishes
its ability to generalize to new patients, and do not deal well with in
vivo artifacts (breathing, movements, etc.).

The second group of approaches have shifted towards the use of
deep learning techniques. This move was mainly motivated by the
advances in the field, the availability of data, and the higher gen-
eralization power of such approaches compared to traditional ones.
For example, Sganga et al. [16] use Convolutional Neural Networks
(CNNs) to localize the endoscope in the lungs with simulated images
from CT scans. However, this work is based on a robotic device that
only operates in a restricted and controlled environment. It is also too
expensive for most practitioners to acquire. Furthermore, the model
is only evaluated on phantoms and cadavers (avoiding the hard task
of dealing with artifacts), and the phantoms are limited to only 3-8
bronchus generations (avoiding the hard task of dealing with the pe-
riphery of the lung). A previous analysis by Borrego-Carazo et al. [1]
uses RNNs and 3D Convolutions on synthetic data for vision-based
bronchoscopy tracking, which tries to estimate the position of a vir-
tual endoscope in the lungs. Unfortunately, the synthetic data are cre-
ated from CT-scans, which is not realistic in comparison to in vivo
images, both in terms of texture and conditions (e.g., no occlusion,
breathing or artifacts). Under those circumstances, one cannot infer
what the performance of the models would be in realistic conditions.
Xu et al. adopted a lumen detection strategy for lung navigation [22]
using encoder-decoder architectures. However, the data is a mix of
phantom (3,818 frames) and in vivo images (2,871 frames) captured
with an Olympus BF-P290 bronchoscope. This device has 4.2mm
of diameter, which makes it physically impossible to reach smaller
bronchi where nodules might be located. Moreover, this work does
not use sequences of frames and only predicts the presence of lumens
for a single frame without any context.

To summarize, every previous work faces at least one of the fol-
lowing issues: (i) a lack of generalization and robustness to real in
vivo conditions, (ii) use of cadaver, phantom or virtual data, (iii) a
need for specific and expensive equipment, such as robots, (iv) the
treatment of frames as single, isolated images instead of sequences of
data, and finally (v) the use of an endoscope that is too large to reach
smaller bronchus, let alone bronchioles. Our work addresses those is-
sues by assessing various deep learning techniques along with a large
amount of real in vivo data that also involves bronchioles and pul-
monary alveoli thanks to the use of a very specific medical hardware
(atotal of 777,522 frames from 252 videos featuring navigational en-
doscopy). Classic computer vision models like ResNet-50 are tested
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along with the use of segmentation, recurrent and semi-supervised
techniques in order to assess which deep learning components can
be useful for the task of carinae detection. On the one side, using
segmentation technique may be useful as it gives a better feedback
to the model while training. Indeed, model should not only perform
a classification by highlight particular regions of the images, which
forces the models to focus on the meaningful parts of the image. On
the other side, recurrence may also be meaningful as a prediction on a
frame at time ¢ may also depend on the previous frames, especially if
the camera punctually faces some challenging conditions (i.e., pres-
ence of artifacts), which is often the case in real endoscopic videos.
Also, we consider in this work the use of a semi-supervised pipeline
for leveraging a large amount of unlabeled data that can potentially
still be useful for training. To the best of our knowledge, this is the
first attempt to use unlabelled data for carinae detection.

3 Data

Through a collaboration with a company that employs biomedical
experts and specializes in lung endoscopy, the authors had access to
252 proprietary videos recorded between 2019 and 2023 in 5 Euro-
pean hospitals. Those proprietary videos (recorded with a mini en-
doscope) show in vivo navigational bronchoscopies performed by a
pulmonologist exploring a patient’s airways. As the related works
section points out, the datasets that have been explored in the past
do not contain any footage from the smallest bronchi, due to the
mechanical properties of the endoscopes that are used. Conversely,
this dataset is captured with a mini probe (much smaller than regu-
lar endoscopes), and displays recordings of very small bronchi, up to
the pulmonary alveoli (which is the farthest one can navigate in the
lungs). The images extracted from those videos either contain one or
several carinae or not. The videos are captured in RGB at a resolution
of 400 x 400 pixels with 30 frames per second, and have a duration
ranging from 30 seconds to 5 minutes. More precisely, the data used
in the next sections can be divided into 3 distinct subsets as follows:

A labeled dataset of 7,000 images carefully selected and extracted
from a subset of 100 videos. In particular, endoscopic procedure
footages often contain a lot of artifacts due to (i) poor lighting condi-
tions (too much light or not enough), (ii) physical obstructions or (iii)
the presence of liquids such as blood, mucus, etc. Hence, the selec-
tion of frames is performed by experts at the company, with the idea
to keep a set of meaningful, representative and diverse images that
also feature challenging conditions. For each of those frames, cari-
nae (if any) were highlighted using polygons. One should already
mention that the proportion of frames that show one or several cari-
nae, can differ significantly from one video to another, ranging from
0% to 100%. The resulting annotated set is imbalanced with 34%
of video frames showing at least one carina. Figure 3 shows some
examples of images along with their respective annotation mask.

A test dataset consisting of 5 videos (in full) that have been se-
lected and annotated by experts for carinae detection. This means
that for each frame, either the label O is assigned if there is no ca-
rina or the label 1 is assigned if there is at least one. Consequently,
this test dataset results in a total of 24,119 labeled images (of which
~18% display carinae). The selection criteria are video diversity (in-
cluding challenging conditions), adequate length, and a sufficiently
large amount of frames as compared to the labeled dataset (at least 3
times more in this case). These videos represent patients that are not
featured in any of the other image sets. With this set, the intent is to
simulate real navigational bronchoscopy and assess the performance
of the models.
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Figure 3: Example of images from the annotated set along with their
corresponding mask provided by an expert. (a) and (b) contain a ca-
rina, while this is not the case in (c).
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An unlabeled dataset of 147 videos (leading to 746,403 images or
frames). The annotation process is difficult, as it is a time-consuming
process that requires specific skills in medical image analysis. As a
result, those 147 videos were not considered during manual annota-
tion. Consequently, there is a large amount of unlabeled, yet poten-
tially interesting images. A semi-supervised pipeline can capitalize
on these by generating pseudo-labels (more on this in Section 4). Al-
though precise quantification of this dataset’s balancing is not pos-
sible under these circumstances, one can estimate it with a pseudo-
labeling. This process is explained in the next section, and it shows
that approximately 17% of images display carinae. This is yet an-
other indication of the data imbalance property of this last dataset.

Both the labeled dataset and the unlabeled dataset exhibit data im-
balance. In order to deal with such property, three different strategies
are applied. First, the data loaders use a sampler, such that the data
from the training come from 50% of each class. Second, the binary
crossentropy loss function uses positive weights to apply an addi-
tional penalty for classification errors on the minority class. Third,
the results are validated on the balanced accuracy metric (amongst

other), which accounts for data imbalance. Those strategies are de-
scribed in details in the subsequent sections.

4 Proposed Methodologies

This section presents our strategy for building bronchial carina de-
tectors. On the one hand, segmentation models are able to capture
masks from images, which can in turn indicate the presence of an
object such as a bronchial carina. On the other hand, using Recurrent
Neural Networks (RNNs) is a common choice for solving tasks in-
volving sequences [19], such as video frames classification. Indeed,
RNNSs are able to learn meaningful context from the sequences by
keeping track of previous events in their hidden units, and are there-
fore able to make predictions that are consistent in time. However,
data available to us only feature sparse annotations in videos, which
makes it impossible to run a straightforward training of RNN. There-
fore, based on available data, we set up two deep learning pipelines.
The first pipeline trains two bronchial carina detectors in a super-
vised way on the labeled set. The second one is a semi-supervised
pipeline that uses these trained detectors on inference mode to gen-
erate pseudo-labels for all the frames of each videos in the unlabeled
dataset. Subsequently, it trains recurrent and non-recurrent models on
those pseudo-labels. The following sections gives more details about
those two pipelines, and are summarized in Figure 4.
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4.1 Carinae detection on labeled data

The supervised deep learning pipeline trains two different models on
the labeled dataset in order to perform a binary classification task
(i.e., a carinae detection, see Figure 4). Moreover, each of the two
models are considered in the semi-supervised pipeline to generate
pseudo-labels.

As it is a common baseline in deep learning, the first detector is
made of a ResNet-50 [8] backbone pre-trained on ImageNet. The
weights of the model are frozen, except for its classification layer.
The latter is replaced by a linear layer with an output size of 1 for bi-
nary classification purposes. As the labels are initially segmentation
masks, the positive label is beforehand assigned to images for which
segmentation mask is present. The second model addresses the de-
tection task by first considering a more general segmentation task.
Starting from the segmentation masks generated by the model, one
can infer the presence or absence of a bronchial carina in the image.
The main motivation is that ground-truth masks give a much more
informative feedback to the model. Indeed, instead of just checking
if the binary output of the model is correct or not, the model is forced
to highlight the meaningful regions of the images. While the ResNet-
50 should figure out by itself the objects to detect in the images, it
becomes much more straightforward when the problem is framed as
a segmentation task. To do this, one can use nnU-Net [10], a well-
known semantic segmentation method that can automatically config-
ure U-Net architectures to a specific biomedical tasks. At the end, an
average pooling with a sliding window of size 10 x 10 is performed
on the output probabilities to smooth the predictions in the image,
and a positive label is assigned if any probability is greater than 0.5.

4.2  Carinae detection on unlabeled data

As explained in Section 3, 147 videos lack expert annotation. The
first step of this semi-supervised pipeline (see Figure 4) consists in
generating pseudo-labels for each frame of these videos. To do so,
the two models described in the previous section are used to gener-
ate pseudo-labels. For all the methods trained in the semi-supervised
pipeline, the pseudo-labels used are those obtained thanks to the
nnU-Net model in the supervised pipeline. This is motivated by the
higher performances that are obtained compare to the same setup
when using those from the ResNet-50. The nnU-Net model has been
directly trained on the labeled dataset, whereas the ResNet-50 is pre-
trained on ImageNet, similarly to the one from the previous sec-
tion. The second step involves extracting the embeddings from each
frames to serve as input features for the unlabeled data. In the case of
the ResNet-50, the last 2048-dimensional embeddings are extracted.
For the nnU-Net, the different embeddings from the encoding part
of the U-Net are concatenated to build a 2016-dimensional embed-
dings, capturing features at different scales (more details about the
architectures are given in the next section). After collecting pseudo-
labels and embeddings for all the videos in the unlabeled set, four
deep learning models are trained in the third step:

e RNN nnU-Net, which utilizes the embeddings generated by the
nnU-Net as input for a simple Gated Recurrent Units (GRU) [3]
network;

e FC nnU-Net, which inputs the embeddings generated by the nnU-
Net into a simple Fully Connected (FC) layer;

e RNN ResNet-50, which channels the embeddings generated by
the ResNet-50 as input for the GRU;

o FC ResNet-50, which passes the embeddings generated by the
ResNet-50 to a FC layer.

The rationale for building such models is two folds, and is part
of an ablation study. First, one can assess if the use of a semi-
supervised pipeline that fine-tunes a FC layer improves the model’s
performance (by comparing the FC ResNet-50 and FC nnU-Net with
the ResNet-50 and nnU-Net, respectively). In one case, a pre-trained
ResNet-50 (on ImageNet) is used. This model is the same as the one
from the supervised pipeline. In the other case, the nnU-Net model
was trained on the labeled dataset (in the supervised pipeline). This
means that the difference between the two pipelines is the underlying
training set. While, the supervised pipeline uses the labeled dataset,
the semi-supervised pipeline uses the unlabeled dataset (for which
pseudo-labels were generated). Second, one can assess if processing
sequences of frames (with a RNN) instead of individual frames (with
a FC layer) enhances performance (by comparing the FC ResNet-50
and FC nnU-Net with the RNN ResNet-50 and RNN nnU-Net, re-
spectively). Sequential models are good candidates for treating video
data in theory [19] because experts in endoscopy reported that it is
helpful to visualize previous frames when labeling a particular one,
as context matters.
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Figure 4: Pipeline 1 (supervised) shows the training process for
two models on the labeled dataset: (a) takes images (I) as input to
generate masks (M), and output the probabilities of detecting a ca-
rina ({g}), while (b) directly outputs probabilities from the images.
Pipeline 2 (semi-supervised) shows the training process for the four
models on the unlabeled dataset. (c) represents pseudo-labels gener-
ation for the unlabeled dataset (with the two models from pipeline 1).
Subsequently, two RNNs and two FC models are trained using these
generated pseudo-labels. The RNNs take sequences of embeddings
(E) as inputs whereas the FC models take a single embedding (E).
Finally, the output is a probability.

5 Experiments and Results

In the first part of this section, more practical details are given about
the data preprocessing steps, the architecture of the different models,
the meta-parameter choices, the optimizer setup, and metrics selected
for models evaluation. In the second part, results are presented before
concluding this section with a discussion.
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5.1 Experimental Setup
5.1.1 Data preprocessing

Section 4 presents two models in the supervised pipeline. The fine-
tuning of the pre-trained ResNet-50 starts with data augmentation on
the 400 x 400 RGB input images of the labeled dataset. First, a resize
to 236 x 236 pixels is performed, then a random crop to 224 x 224,
which is followed by a rotation of 0°,90°, 180° or 270° with prob-
ability 0.25 each. After this, a horizontal flip or a vertical flip with
probability 0.5 each is applied. Finally, the image is normalized. As
already stated in Section 3, the labeled set is imbalanced regarding
the two classes (34% of images show one or several carinae). There-
fore, an imbalanced sampler is used for loading images into training
batches. This sampler uses a multinomial sampling, based on the la-
bel frequencies in the data set. As a result, this sampler will force
each training batch to contain ~50% of images of each class. In or-
der to validate the different models when performing grid-search for
different meta-parameters, a stratified 5-fold cross validation is used.
The stratification helps in dealing with the diversity of the videos,
both in terms of carina ratio (from 0% to 100% of the frames may
show carinae) and of labeled frames count (each video contains be-
tween 11 to 457 frames). Indeed, with the stratification, each of the
5 folds has the same proportion of any video. The second model pre-
sented in Section 4, nnU-Net, also takes the 400 x 400 RGB input
images and is trained with its standard preprocessing [10].

The semi-supervised pipeline also uses a 5-fold cross validation
scheme to train 4 models on the unlabeled dataset’s videos. It applies
the same preprocessing for both FC and recurrent models. In this
process, an imbalanced sampler is used too, such that ~50% of the
frames considered display a (pseudo-labeled) carina. Regarding re-
current models, one must insist on the fact that full video sequences
are not used to avoid imbalance and overfitting issues. The different
images for each video are pre-processed into embeddings (see Fig-
ure 4) instead of directly using the 400 x 400 RGB images. These
embeddings vary in dimensions based on the model used for extrac-
tion. The pre-trained ResNet-50 yields embeddings with 2048 di-
mensions, leading to sequences of 2048-dimensional embeddings. In
contrast, the trained nnU-Net generates embeddings of 2016 dimen-
sions, leading to sequences of 2016-dimensional embeddings. This
brings two practical advantages. First, the training is faster by reduc-
ing the amount of I/O operation on the disk (data can fit in memory
with 64GB of RAM), which benefits both FC and recurrent models.
Second, it makes the training of the recurrent models more efficient
by focusing on learning temporal relationships instead of having to
extract features from the images. Specifically, the GRUs that are pro-
posed take advantage of the local temporal relationships by adding
contextual information to each of the video frames. In particular, the
context contains the embeddings from the 5 previous frames. Then,
this context is used in the GRUs to predict the label of the current
frame. It is important to note that frames in the future are never used
as contextual information. Indeed, as the model is used in an online
fashion during inference, only an auto-regressive scheme can be uti-
lized. Contexts of different sizes have also been evaluated without
any improvement in performance.

5.1.2 Architecture and Meta-Parameters

Most of the meta-parameters given below are obtained thanks to a
grid-search process with the 5-fold cross validation described previ-
ously. For each of the 5 folds, and for each model, the epoch showing
the highest validation balanced accuracy is kept. One should note that

to avoid overfitting, a higher validation accuracy can be considered
only if there has been less than 10% of continuous training epochs
without any improvement. This strategy allows for the implementa-
tion of early stopping for each of the 5 folds individually.

In the supervised pipeline, no modifications are applied to the
ResNet-50 except the size of the last layer, which is resized to 1
to allow fine-tuning for binary classification. Training is performed
through 200 epochs with a batch size of 256. The AdamW [12] op-
timizer is used along with a constant learning rate of 5 x 1075, a
weight decay of 1072, early stopping after 20 epochs without any
improvement and gradient clipping. The selected loss function is a
Weighted Binary Cross-Entropy (WBCE) loss. Its weight is based
on the positive label frequency in the dataset.

The architecture of the U-Net is obtained thanks to nnU-Net, and
mainly consists of 7 encoder blocks and 6 decoder blocks, with 2
convolutional layers with a kernel size of 3 x 3 per block. Encoding
blocks are followed by a 2 x 2 pooling operation, except for the first
encoding layer. The number of feature maps for the first block is set
to 32, and is multiplied by 2 after each block until it reaches the
maximal value of 512. As nnU-Net aims to automatically infer the
best architecture and training setup, neither the architecture, nor the
training loop have been modified by the authors.

As already explained, FC models and RNNs from the semi-
supervised pipeline directly use the embeddings either from the pre-
trained ResNet-50 or the trained nnU-Net. The two FC models and
the two GRUs were trained during 50 epochs each, with a learning
rate of 1075 and the AdamW optimizer. Similarly to the supervised
pipeline, the loss function is a WBCE. This loss only differs from
the one of the supervised pipeline by the value of the weight, since
the datasets differ. Moreover, gradient clipping applies and the same
early stopping as described above is used.

The architecture of the FC ResNet-50 and of the FC nnU-Net are
straightforward. The embeddings of 2048-d (ResNet-50) or 2016-d
(nnU-Net) are passed to a linear layer with 32 hidden units, followed
by a ReLU activation function, and sent to a last linear layer with
output size 1 for binary classification.

Regarding recurrent models, the best architecture among several
options is a GRU with 32 hidden units, 1 recurrent layer, and a
dropout rate of 0.3. As 5 frames of contextual information are added
to the current one, the GRU takes sequences of 6 embeddings as in-
put. Common values of each of those hyper parameters were tested
and the one with the best results on the test dataset were kept. The
LSTM architecture was also used and the performance was similar to
that of the GRU. Since the primary interest was to understand the im-
pact of RNNs against other techniques, LSTMs were not investigated
in further details.

5.1.3 Evaluation and Metrics

In order to rigorously evaluate the performance of the 6 deep learning
models, one can generate predictions on the test set made of 5 fully
annotated videos featuring unseen patients (see Figure 5). As men-
tioned earlier, each model is trained with a 5-fold cross-validation
approach, leading to 5 distinct trained versions for each of the 6 deep
learning models. Each of these is used to calculate the frame-by-
frame probability that a given image shows at least one carina. Then,
a single consolidated prediction is computed for each model from
the average of the output probabilities across its 5 folds. Finally, a
threshold of 0.5 is applied to assign the final probability. A probabil-
ity lower than 0.5 corresponds to no carina detected, and a probabil-
ity higher than 0.5 corresponds to a detection of at least one carina.
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Based on this inference, two metrics are assesses for each method
on all the videos contained in the test dataset. Given the imbalance
of the data, the balanced accuracy is used as a first evaluation met-
ric. Indeed, this metric averages the recalls and can therefore show
a potential poor performance on the minority class. Next to that, the
AUC (Area Under The Curve) ROC (Receiver Operating Character-
istics) is a common choice for assessing the quality of models deal-
ing with medical data. In particular, it has the advantage of showing
the impact of moving the classification threshold (from O to 1) on
true positive and false positive predictions. Finally, for each frame of
the test set, the predictions of each model against the ground truths
is qualitatively assessed as a temporal sequence segmentation. This
assessment presents the ability of each model to recognize the tran-
sitions of sequences with and without a carina.

5.2 Results

Table 1 shows the results of each model on the selected performance
metrics for each video individually, as well as the mean computed
over those 5 videos (see test dataset in Section 3). This table shows
no comparison to other methodologies (see Section 2) as there is no
prior similar work. Instead, our work is a first step towards an accu-
rate classification of bronchial carina. For that purpose, we compare
several architectures (described in Section 4) that allow us to draw
conclusion on the relevance of classification, segmentation, and re-
current models. Since the result presented for each video is an av-
erage of the probabilities from the 5-folds, the 95% Confidence In-
terval (CI) is presented next to the average for each video. In many
cases, the width of the CI is very small, even zero sometimes. The
results of the supervised pipeline (top part of the table, methods re-
lated to Section 4.1) show that for models trained on the labeled set,
the ResNet-50 has a higher balanced accuracy than the nnU-Net for
3 out of 5 videos, and performs better on average. In terms of AUC
ROC, the nnU-Net has higher scores for all 5 videos. The results
of the semi-supervised pipeline (bottom part of the table, methods
related to Section 4.2) show that the RNN nnU-Net has a higher bal-
anced accuracy for all the 5 videos. Among the models of this semi-
supervised pipeline, RNN nnU-Net achieves the highest AUC ROC
scores for 3 out of 5 videos. Finally, when comparing the results from
the two pipelines altogether, one notices that RNN nnU-Net has the
highest balanced accuracy for 5 out of 5 videos, while nnUnet has
the highest AUC ROC for 3 out of 5 videos and on average.

Finally, Figure 6 shows a qualitative temporal segmentation for
video 5 where the ground truth (from human annotator) is compared
against the predictions obtained with each model. This video was
selected as it exhibits the greatest number of transitions between
temporal sequences featuring a carina and those without. Regions
in white indicate the absence of a bronchial carina, whereas regions
in gray indicate its presence. Figure 6 shows that all models are quite
capable of dealing with the first half of the video. Between frames
3,250 and 5,000, all models are aligned and do not detect any ca-
rina, which is the expected prediction as shown by the ground truth.
However, it seems that RNN nnU-Net, FC nnU-Net, and FC ResNet-
50 hallucinate by detecting some carinae between frames 5,000 and
6,000, where there was in fact none. Near frame 6,000, only the RNN
nnU-Net and the FC nnU-Net are able to recognize (some) carinae.
No model was able to recognize the sequence near frame 6,500. Fi-
nally, all models deal well with the end of the sequence.
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Figure 5: Process by which all models are evaluated on the test
dataset. The two first models directly use the images (I) whereas
the embeddings (E) are extracted from images (I) in the four other
cases. The nnU-Net extracts a mask (M) before outputing a prob-
ability, where the five other models directly generate aprobability.
Finally, the output ({§}) of each model is quantitatively assessed.

5.3 Discussion

The models of the supervised pipeline perform differently depending
on the considered evaluation metric. On average, the balanced accu-
racy is favorable to the ResNet-50, while the AUC ROC is higher for
nnU-Net (see Table 1). Note that the very narrow confidence inter-
val are most likely due to the unbalanced nature of the data and the
sensitivity of AUC ROC to imbalance data.

The models of the semi-supervised pipeline provide information
on two levels: datasets and temporal context. First, one can see the
impact of a semi-supervised approach by comparing models trained
on the labeled dataset against those trained on the unlabeled dataset
(ResNet-50 with FC ResNet-50, and nnU-Net vs FC nnU-Net). In
terms of balanced accuracy, FC models show higher scores than mod-
els from the supervised pipeline. However, in terms of AUC ROC,
models from the supervised pipeline have higher scores than their
FC version from the semi-supervised pipeline. Second, one can as-
sess the impact of using the temporality of the context by compar-
ing the performance of FC models (FC ResNet-50 and FC nnU-Net
against RNN ResNet-50 and RNN nnU-Net) against recurrent mod-
els. While the RNN nnU-Net shows higher average balanced accu-
racy and AUC ROC than its FC counterpart, the reverse is true for the
RNN ResNet-50. This indicates that the context given by the previ-
ous frames to the RNN nnU-Net help improve its performance while
it is not the case for the ResNet-50.

Overall, through the lenses of the balanced accuracy, the RNN
nnU-Net has the highest performance across all the videos (on aver-
age on the 5-folds). This seems to indicate that the embeddings from
nnU-Net were able to capture meaningful features from the images.
Besides, the addition of the GRU helps in dealing with the temporal-
ity. In the context of detecting bronchial carinae, a wrong prediction
would lead to a wrong indication during navigational bronchoscopy,
regardless of the error type. Indeed, either one misses a carina (false
negative) or one wrongly detects a carina (false positive). There-
fore, both indications would incorrectly lead to a movement in the
3D map of the lungs. In light of these elements, the RNN nnU-Net
could be considered as the best of the proposed models. However, if
one is interested in detecting true positive (detecting all the carinae)
with minimum false positives, the AUC ROC becomes an interest-
ing performance metric. Looking at the AUC ROC, the conclusion
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Figure 6: Temporal sequence testing in the particular case of video 5. Gray vertical bars correspond to frames with at least one carina, while
white vertical bars correspond to frames without any carina. The first horizontal bar plot is the ground truth for each video frame, while others
are the predictions made by specific models. B. Acc. stands for Balanced Accuracy. See Table 1 for a quantitative analysis on 5 videos.

Table 1: Balanced accuracy and AUC ROC for the different models on each video (5-fold average +95% confidence interval) and on average
(higher scores means better performance). The first two lines correspond to methods in the supervised pipeline, while the next four lines

correspond to methods in the semi-supervised pipeline. Highest values for each pipeline are highlighted in bold.

Balanced Accuracy (%) AUC ROC (%)

Video 1 Video 2 Video 3 Video 4 Video5  Avg. Video 1 Video 2 Video 3 Video 4 Video5  Avg.
nnU-Net 69.9+9.4 758 +0.6 71.8£1.7 66.5£1.3 858+2.3 74.0 98.8+0.0 91.3+0.0 93.6+0.0 90.7+0.0 97.7+0.0 94.4
ResNet-50 67.0+£0.5 72.1+1.2 80.1+0.6 69.0+1.6 86.2+0.9 74.9 75.840.0 87.840.0 92.840.0 84.64+0.0 96.6+0.0 87.5
RNN nnU-Net  73.7+1.9 78.6+2.8 84.7+2.2 89.242.7 91.9+£2.0 83.6 84.2+0.0 86.8£0.0 92.5+0.0 92.24+0.0 97.8+£0.0 90.7
FC nnU-Net 71.1£3.1 7544+0.7 83.9+0.9 88.7+1.1 883+1.4 815 80.3£0.0 85.0£0.0 92.1£0.0 93.0+£0.0 96.4+0.0 89.4
RNN Resnet-50 58.8+46.1 73.8+1.6 82.6+£1.7 74.7+£8.3 88.8+2.5 757 69.3+0.1 84.0+0.0 92.3£0.0 83.4£0.1 96.4£0.0 85.1
FC ResNet-50  62.0+1.5 77.8+£0.5 83.6£1.4 80.6£1.3 90.4+0.7 789 7244+0.0 87.0+0.0 92240.0 88240.0 96.3+0.0 87.2

is different. Indeed, the nnU-Net from the supervised pipeline shows
better results, except for videos 4 and 5. On average, the result of
94.4% is roughly 4% better than the second best performing model,
the RNN nnU-Net. These observations show that the nnU-Net either
standalone or combined with a RNN performs better than ResNet-50
models. Finally, one should note that although the 5 selected videos
contain 24,119 frames, the results of the analysis would likely be
different should one use different videos as a test set.

A visual inspection of Figure 6 shows more errors after frame
5,200. An hypothesis to explain this lower performance is that we
may have reached narrower regions where structures are smaller
and harder to distinguish. However, this needs to be evaluated in
full depth because the endoscope is going back and forth in the
bronchial tree. In the current datasets, the depth in the bronchial tree
is not available. With this information, one could gain insights on the
change in accuracy depending on the depth in bronchial tree.

6 Conclusion

This paper exploits three different datasets featuring in vivo images
from endoscopic procedures: the first one has 7,000 labeled im-
ages from 100 videos, the second one has 746,403 unlabeled im-
ages from 147 videos, for which pseudo-labels were generated us-
ing a deep learning model, and the third one has 24,119 images
for which frame-by-frame annotations are available. Six deep learn-
ing models are explored for detecting bronchial carinae during nav-

igational bronchoscopies. These models are assessed on two perfor-
mance metrics, which are the balanced accuracy and the AUC ROC.
The experiments performed in this work show that both the use of
nnU-Net, RNNs and a semi-supervised pipeline seem to be bene-
ficial. More precisely, the standalone nnU-Net trained in a super-
vised pipeline and the RNN nnU-Net trained in the semi-supervised
pipeline achieve the best balanced accuracy and AUC ROC, respec-
tively. One can therefore conclude that those methods should be con-
sidered for navigational bronchoscopy.

In the future, one could spend additional effort in collecting more
labeled data, either in form of mask annotations with polygons or bi-
nary annotations indicating the presence of carinae. Indeed, even if
the pseudo-labels combined with RNNs increased the performance
on some evaluation metrics, using ground truth could lead to an im-
provement in performance of the models. Moreover additional data
augmentation techniques, such as GANs or VAEs could be explored.
Indeed, these have already shown to improve training quality and
help models to better generalize. In the medical field where labeled
data are sparse, they seem like a natural candidate to explore.

This work is the first step towards building a robust navigational
bronchoscopy system. In the future, one should investigate multi-
modal data fusion, such as combining (i) a 6DOF position from an
electromagnetic system, (ii) a 3D map of the lungs that shows the
path to follow to reach pulmonary nodules, and (iii) a bronchial ca-
rina detector that would indicate that a bifurcation was reached, and
that the 3D map should be updated to continue the navigation.
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