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Abstract. Permutation equivariant neural networks are often con-
structed using tensor powers of Rn as their layer spaces. We show
that all of the weight matrices that appear in these neural networks
can be obtained from Schur–Weyl duality between the symmetric
group and the partition algebra. In particular, we adapt Schur–Weyl
duality to derive a simple, diagrammatic method for calculating the
weight matrices themselves.

1 Introduction

Encoding permutation symmetries into neural networks has proven
to be very useful for performing a large number of machine learning
tasks. The use cases range from standard examples such as learning
from sets [46] and graphs [30] through to predicting dynamics of
objects in computer vision [15], modelling composition in natural
language [14], and even designing auctions that maximise expected
revenues in economics [36].

Existing work on permutation equivariant neural networks using
tensor power spaces of Rn as their layers has focused on two main
areas: designing networks that encode permutation symmetries on
sets of data for specific applications, and creating more general per-
mutation equivariant functions for learning from data that lives on
higher-order structures, such as graphs. For the former, Qi et al. [34]
constructed a permutation equivariant neural network to learn from
point cloud data. Zaheer et al. [46] developed a permutation equiv-
ariant neural network to learn from sets of data, and used it for image
tagging and set anomaly detection tasks. Hartford et al. [20] mod-
elled interactions between different sets of objects using a permu-
tation equivariant neural network. For the latter, Hy et al. [21] con-
sidered higher order relations between sets of indices instead, and
showed that a number of operations on the resulting tensor power
spaces of Rn are permutation equivariant. Maron et al. [26] then
studied the problem of classifying all of the linear permutation equiv-
ariant and invariant neural network layer functions on tensor power
spaces of Rn, with their motivation coming from learning relations
between the nodes of graphs. They characterised all of the learnable,
linear, permutation equivariant layer functions from a k-order tensor
of Rn to an l-order tensor of Rn in the practical cases (specifically,
when n ≥ k+ l). Their method used equalities involving Kronecker
products to obtain a number of fixed point equations which they then
solved to find a basis, in tensor form, for the layer functions under
consideration. Pan and Kondor [32] went on to establish a method
for organising the computation of the layer functions that appeared in
Maron et al. [26], and applied it to the task of predicting the efficacy

∗ Corresponding Author. Email: ep1011@ic.ac.uk

of certain drug combinations. Finzi et al. [12] developed a numerical
algorithm to calculate the weight matrices for permutation and other
group equivariant neural networks for small values of n, k and l.

In this paper, we show that an entirely different approach from the
one that appears in Maron et al. [26] can be used to obtain a full char-
acterisation of all of the possible permutation equivariant weight ma-
trices that appear between any two tensor power spaces of Rn. The
starting point for our approach is Schur–Weyl duality, a result that
commonly appears in the algebraic combinatorics and representation
theory literature [4, 5, 6, 18, 22, 27, 28, 29]. We describe Schur–
Weyl duality in more detail in the next section. Duality itself appears
in many areas of mathematics and physics [2] as a concept for under-
standing one object through two different viewpoints. In this paper,
we show that the weight matrices, which have permutation symme-
try — the first viewpoint — can be obtained analytically through a
so-called partition vector space consisting of combinatorial diagrams
that partition sets into disjoint subsets — the second viewpoint.

Schur–Weyl duality has proven to be the cornerstone of many of
the results that have appeared recently in the quantum machine learn-
ing literature [11, 24, 31, 35, 39, 47]. It has only recently appeared in
the “classical" machine learning literature [33] where it was used to
fully characterise the weight matrices that appear between any two
tensor power spaces of Rn for three compact groups. With our contri-
bution, we add to this growing body of work that shows that Schur–
Weyl duality is a powerful principle for constructing group equivari-
ant neural network architectures.

2 Schur–Weyl Duality

Schur–Weyl duality is a result that first appeared in a paper written in
1927 by Issai Schur [41]; however, this result was mostly a reformu-
lation of his own ideas that appeared in his doctoral thesis of 1901
in a different form [40]. In spite of this, Schur–Weyl duality only
became well-known through the work of Hermann Weyl [45]. Schur
wanted to understand all of the irreducible representations of the gen-
eral linear group GLn. He lived at a time where the irreducibles of
the symmetric group had been characterised by Young [10] in the
years preceding his own contribution. Young showed that the irre-
ducibles of the symmetric group Sn correspond bijectively with all
possible integer partitions of n. Schur used this result to establish a
one-to-one correspondence between the irreducibles of the general
linear group GLn and the irreducibles of the symmetric group Sk

that appear in the decomposition of the tensor power space (Rn)⊗k,
namely

(Rn)⊗k ∼=
⊕

λ∈Λ(k,n)

V λ
n ⊗ Sλ

k (1)
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In (1), the irreducibles V λ
n of the general linear group GLn are in-

dexed by the same integer partitions λ of k into at most n parts that
index irreducibles Sλ

k of the symmetric group Sk. It is this result that
became known as Schur–Weyl duality.

However, a number of other Schur–Weyl dualities have appeared
since Schur’s discovery [7, 19, 22, 27, 28, 29]. The Schur–Weyl du-
ality that is the focus of this paper is the one that exists between the
symmetric group Sn and the partition algebra P k

k (n) that was simul-
taneously found by Martin [27, 28, 29] and Jones [22].

Before stating what this Schur–Weyl duality is, we need to define
the partition algebra. To do this, we require the following two defi-
nitions. We write [n] to represent the set {1, . . . , n} throughout this
paper.

Definition 1. A set partition π of [2k] is a partition of the set [2k]
into a number of disjoint subsets. We call the subsets of π blocks.

Definition 2. We define a diagram dπ from each set partition π of
[2k] that has two rows of vertices and edges between vertices such
that there are

1. k black vertices on the top row, labelled by 1, . . . , k
2. k black vertices on the bottom row, labelled by k+1, . . . , 2k, and
3. the edges between the vertices correspond to the connected com-

ponents of the set partition π that indexes the diagram.

Consequently, we have that

Definition 3. The partition algebra P k
k (n) is the R-linear span of

the set of diagrams dπ indexed by all of the set partitions π of [2k]
(together with an algebra product that we omit for brevity).

Similar to Schur’s 1927 version, Schur–Weyl duality between the
symmetric group Sn and the partition algebra P k

k (n) describes a one-
to-one correspondence between the irreducibles of the symmetric
group Sn and the irreducibles of the partition algebra P k

k (n) that ap-
pear in the decomposition of the tensor power space (Rn)⊗k, namely

(Rn)⊗k ∼=
⊕

λ∈Λ(n)

Sλ
n ⊗ Zλ

k,n (2)

Here, Λ(n) is the set of all integer partitions of n, Sλ
n is an irreducible

of the symmetric group Sn and Zλ
k,n is an irreducible of the partition

algebra P k
k (n).

This Schur–Weyl duality was obtained by Jones [22] through a sur-
jective map from the partition algebra P k

k (n) onto EndSn((R
n)⊗k).

We describe this map in what follows as we adapt it, and hence
Schur–Weyl duality, to characterise all of the possible weight matri-
ces that can appear in permutation equivariant neural networks where
the layers are some tensor power of Rn.

3 Characterisation of Permutation Equivariant
Linear Layer Functions

Many permutation equivariant neural networks are constructed by al-
ternately composing linear and non-linear equivariant functions be-
tween layer spaces that are a tensor power of Rn [25]. These layer
spaces are representations of the symmetric group Sn in the follow-
ing sense.

Recall that Rn is a representation of Sn, called the permutation
representation, via its action on the standard basis {ea | a ∈ [n]}
which is extended linearly. Specifically, the action is given by

σ · ea = eσ(a) for all σ ∈ Sn and a ∈ [n] (3)

Consequently, for any positive integer k, the k-tensor power of the
permutation representation, (Rn)⊗k, is a representation of Sn since
the elements

eI := ei1 ⊗ ei2 ⊗ · · · ⊗ eik (4)

for all I := (i1, i2, . . . , ik) ∈ [n]k form the standard basis of
(Rn)⊗k, and the action of Sn that maps a basis element of (Rn)⊗k

of the form (4) to

eσ(I) := eσ(i1) ⊗ eσ(i2) ⊗ · · · ⊗ eσ(ik) (5)

can be extended linearly. We denote the representation itself by ρk.
Moreover, a permutation equivariant function between two tensor

power spaces is defined as follows.

Definition 4. A map φ : (Rn)⊗k → (Rn)⊗l is said to be permuta-
tion equivariant if, for all σ ∈ Sn and v ∈ (Rn)⊗k,

φ(ρk(σ)[v]) = ρl(σ)[φ(v)] (6)

We denote the set of all linear permutation equivariant maps between
(Rn)⊗k and (Rn)⊗l by

HomSn((R
n)⊗k, (Rn)⊗l) (7)

It can be shown that (7) is a vector space over R. See Segal [42] for
more details. Note that (7) is a subspace of Hom((Rn)⊗k, (Rn)⊗l),
the vector space of all linear maps from (Rn)⊗k to (Rn)⊗l.

Our goal is to calculate all of the weight matrices that can ap-
pear between any two layers of the permutation equivariant neu-
ral networks in question. It is enough to construct a basis of ma-
trices for HomSn((R

n)⊗k, (Rn)⊗l), by viewing it as a subspace of
Hom((Rn)⊗k, (Rn)⊗l) and choosing the standard basis of Rn, since
any weight matrix will be a weighted linear combination of these ba-
sis matrices.

To construct such a basis, we begin by introducing the following
vector spaces that are adapted from the definition of the partition
algebra that appeared in Section 2.

3.1 The Partition Vector Space, P l
k(n)

Instead of considering the set [2k], we now look at the set [l+ k]. As
before, we can create a set partition of [l + k] by partitioning it into
a number of disjoint subsets, which we also call blocks. Let Πl+k be
the set of all set partitions of [l+k]. It will also be useful to define the
set Πl+k,n, which is the subset of Πl+k consisting of all set partitions
of [l + k] having at most n blocks.

As the number of set partitions in Πl+k having exactly t blocks
is the Stirling number

{
l+k
t

}
of the second kind, we see that the

number of elements in Πl+k is equal to B(l + k), the (l + k)th Bell
number, and that the number of elements in Πl+k,n is therefore equal
to

n∑
t=1

{
l + k
t

}
= B(l + k, n) (8)

the n-restricted (l + k)th Bell number.

Example 5. If l = 4 and k = 5, then

π := {1, 2, 5, 7 | 3, 4, 8 | 6 | 9} (9)

is a set partition in Π4+5 with 4 blocks. Hence π ∈ Π4+5,n for all
n ≥ 4.
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Similar to the partition algebra, we can form a vector space from
the R-linear span of a set of diagrams dπ , except this time they are
indexed by the elements π of Πl+k. Each diagram dπ in the set has
two rows of vertices and edges between vertices, except now there
are

1. l black vertices on the top row, labelled by 1, . . . , l
2. k black vertices on the bottom row, labelled by l + 1, . . . , l + k,

and
3. the edges between the vertices correspond to the connected com-

ponents of the set partition π that indexes the diagram.

As a result, dπ represents the equivalence class of all diagrams with
connected components equal to the blocks of π. We call this vector
space the partition vector space, and denote it by P l

k(n). By con-
struction, it has dimension B(l+k). We call the basis described here
the diagram basis.

Example 6. Continuing on from Example 5, we see that the diagram
dπ corresponding to the set partition π given in (9) is

1 2 3 4

5 6 7 8 9

(10)

Remark 7. It is clear that if we set l = k, then we obtain the partition
algebra P k

k (n) that was given in Definition 3.

3.2 The Orbit Basis of P l
k(n)

We can construct another basis of P l
k(n) that we will use in what fol-

lows to obtain the basis of matrices for HomSn((R
n)⊗k, (Rn)⊗l).

First, we define a partial ordering on the set partitions in Πl+k,
denoted by �, which states that, for all π1, π2 ∈ Πl+k, π1 � π2 if
every block of π1 is contained in a block of π2.

Then we can define a set of elements in P l
k(n) indexed by the set

partitions of Πl+k, BO := {xπ | π ∈ Πl+k}, with respect to the
diagram basis as

dπ =
∑
π�θ

xθ (11)

To see why the set BO forms a basis of P l
k(n), first, we form an or-

dered set of set partitions of Πl+k by ordering the set partitions by
the number of blocks that they have from smallest to largest, with
any arbitrary ordering allowed for a pair of set partitions that have
the same number of blocks. Call this set Sl+k. Then, because the
square matrix that maps elements of the diagram basis to linear com-
binations of the set BO — whose rows and columns are indexed (in
order) by the ordered set Sl+k — is unitriangular by (11), it is there-
fore invertible, and so we get that BO forms a basis of P l

k(n). We
call BO the orbit basis of P l

k(n).
For each set partition π ∈ Πl+k, we represent its corresponding

orbit basis element xπ as a diagram in the same way as dπ , except
we use white vertices in each row of the diagram instead.

Example 8. The orbit basis of P 1
1 (n) consists of the two elements

= =xπ2xπ1

2 2

1 1

(12)

Hence, any element of P 1
1 (n) can be expressed as

1

2

+ λ2λ1

1

2

(13)

for scalars λ1, λ2 ∈ R.

For more details on the orbit basis, specifically for how to express
an orbit basis element as a linear combination of diagram basis ele-
ments, see Benkart and Halverson [4, 5].

3.3 P l
k(n) and a Basis of HomSn((R

n)⊗k, (Rn)⊗l)

In this section, we show how the weight matrices that appear in the
permutation equivariant neural networks in question are related to
the partition vector space P l

k(n), namely by establishing a bijective
correspondence between a basis of matrices for the vector space of
Sn-equivariant linear maps from (Rn)⊗k to (Rn)⊗l, expressed in
the standard basis of Rn, and certain orbit basis diagrams that appear
in P l

k(n).
We begin by establishing the following bijective correspondence.

Proposition 9. The basis elements of HomSn((R
n)⊗k, (Rn)⊗l) are

in bijective correspondence with the orbits coming from the action of
Sn on the (l + k)−fold Cartesian product set [n]l+k.

Proof. As a result of choosing the standard basis for each copy of
Rn that appears in the vector space of all linear maps from (Rn)⊗k

to (Rn)⊗l, this vector space has a standard basis of matrix units

{EI,J}I∈[n]l,J∈[n]k (14)

where EI,J has a 1 in the (I, J) position and is 0 elsewhere.
Hence, for any standard basis element eP ∈ (Rn)⊗k, we see that

EI,JeP = δJ,P eI (15)

and so, for any linear map f : (Rn)⊗k → (Rn)⊗l, expressing f in
the basis of matrix units as

f =
∑

I∈[n]l

∑
J∈[n]k

fI,JEI,J (16)

we get that
f(eP ) =

∑
I∈[n]l

fI,P eI (17)

Consequently, given that HomSn((R
n)⊗k, (Rn)⊗l) is a subspace of

Hom((Rn)⊗k, (Rn)⊗l), we have that f is an Sn-equivariant linear
map if and only if, for all σ ∈ Sn and standard basis vectors eJ ∈
(Rn)⊗k,

f(ρk(σ)[eJ ]) = ρl(σ)[f(eJ)] (18)

(18) holds if and only if∑
I∈[n]l

fI,σ(J)eI =
∑

I∈[n]l

fI,Jeσ(I) (19)

which is true if and only if

fσ(I),σ(J) = fI,J (20)
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Procedure 1: How to Calculate the Weight Matrix of an Sn-Equivariant Linear Layer Function from (Rn)⊗k to (Rn)⊗l.

Perform the following steps:

1. Calculate all of the set partitions π of {1, . . . , l + k} that have at most n blocks.
2. Express each set partition π as an orbit basis diagram xπ in P l

k(n).
3. Apply the function Φl

k,n to each orbit basis diagram xπ to obtain its associated basis matrix Xπ .
4. Attach a weight λπ ∈ R to each matrix Xπ .
5. Finally, calculate

∑
λπXπ to give the overall weight matrix.

Consequently, all of the orbit basis diagrams in P l
k(n) having at most n blocks determine the weight matrix of an Sn-equivariant

linear layer function from (Rn)⊗k to (Rn)⊗l.

for all σ ∈ Sn, I ∈ [n]l and J ∈ [n]k.
Therefore, concatenating the pair I ∈ [n]l, J ∈ [n]k into a sin-

gle element (I, J) ∈ [n]l+k, (20) tells us that the basis elements of
HomSn((R

n)⊗k, (Rn)⊗l) are in bijective correspondence with the
orbits coming from the action of Sn on [n]l+k, where σ ∈ Sn acts
on the pair (I, J) by

σ(I, J) := (σ(I), σ(J)) (21)

However, since Sn acts on [n] transitively, we get that the action of
Sn on [n]l+k gives a set of orbits that completely partition the set
[n]l+k.

We now show how the orbits relate to the partition vector space
P l
k(n).

Proposition 10. The orbits that come from the action of Sn on
[n]l+k are in bijective correspondence with the orbit basis diagrams
xπ of P l

k(n) that have at most n blocks.

Proof. Consider an orbit coming from the action of Sn on [n]l+k.
We can define the bijection in question on a class representative
(I, J) of the orbit as follows.

Replacing momentarily the elements of J by il+p := jp for all
p ∈ [k], so that

(I, J) = (i1, i2, . . . , il, j1, j2, . . . , jk) (22)

= (i1, i2, . . . , il, il+1, il+2, . . . il+k) (23)

then, for indices x, y ∈ [l + k], we define the bijection by

ix = iy ⇐⇒ x, y are in the same block of π (24)

We see that the LHS of (24) is checking for an equality on the ele-
ments of [n], whereas the RHS is separating the elements of [l + k]
into blocks, hence there must be at most n such blocks.

Moreover, the bijection given in (24) is independent of the choice
of class representative, since

ix = iy ⇐⇒ σ(ix) = σ(iy) for all σ ∈ Sn (25)

This gives us the desired result.

Combining Propositions 9 and 10, we obtain the following key
result.

Theorem 11. For all non-negative integers l, k and positive integers
n, the basis elements of HomSn((R

n)⊗k, (Rn)⊗l) are in bijective
correspondence with the orbit basis diagrams xπ in P l

k(n) having at
most n blocks, and so

dimHomSn((R
n)⊗k, (Rn)⊗l) = B(l + k, n) (26)

where B(l + k, n) is the n-restricted (l + k)th Bell number.

Example 12. Suppose that l = k = 1, and let n = 4. It is clear
from (21) that the action of S4 on [4]1+1 partitions the set into pre-
cisely two orbits. From (25), it is sufficient to choose (1, 1) to be
the class representative of the first orbit and (1, 2) to be the class
representative of the second orbit. (24) tells us that the set partition
corresponding to the first orbit must be π1 := {1, 2} whereas the set
partition corresponding to the second orbit must be π2 := {1 | 2}.
The orbit basis diagrams that correspond to π1 and π2 first appeared
in Example 8. By Theorem 11, the basis matrices for the space of S4-
equivariant linear maps from R4 to R4 correspond bijectively with
these orbit basis diagrams, hence there are two of them. We show
how to calculate the basis matrices in Example 20.

3.4 Permutation Equivariant Weight Matrices

We can go further than Theorem 11 and obtain the basis matrices of
HomSn((R

n)⊗k, (Rn)⊗l) themselves from the orbit basis diagrams
in P l

k(n) having at most n blocks. In doing so, we show how to
construct all of the weight matrices that can appear between any two
tensor power layers of the permutation equivariant neural networks
in question.

To obtain the basis matrices, we first need to define a procedure
for labelling the blocks of an orbit basis diagram xπ in P l

k(n) having
at most n blocks.

Definition 13. Let xπ be an orbit basis diagram in P l
k(n) having at

most n blocks. Denote the number of blocks in xπ by t.
We obtain a block labelling for xπ by letting B1 be the block that

contains the number 1 ∈ [l + k], and iteratively letting Bj , for 1 <
j ≤ t, be the block that contains the smallest number in [l + k] that
is not in B1 ∪B2 ∪ · · · ∪Bj−1.

We can represent the block labelling for xπ in two equivalent
forms. The first form is an (l + k)−length tuple (Iπ, Jπ) with ele-
ments in [n], where the length of Iπ is l, the length of Jπ is k, and the
pth entry is the label of the block that contains vertex p. The second
form is a diagram which is obtained by relabelling each vertex in the
orbit basis diagram xπ with the label of the block containing that
vertex. We will see that this particular form is very useful in what
follows as it highlights the structure of the blocks and their labels in
the block labelling for xπ .

Example 14. Suppose that we have the orbit basis diagram xπ

2

3 4 5 6 7 8

1

(27)
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Procedure 2: How to Calculate the (I, J)-entry of each Permutation Equivariant Basis Matrix Xπ from (Rn)⊗k to (Rn)⊗l.

We assume that xπ is an orbit basis diagram in P l
k(n) having at most n blocks. We perform the following steps:

1. Place the indices I on the top row of xπ and the indices J on the bottom row of xπ .
2. If all of the vertices in each block in xπ have been overlaid with the same number, and no two blocks have had their vertices

overlaid with the same number, then the (I, J) entry of Xπ is 1, otherwise it is 0.

corresponding to the set partition

π = {1, 3 | 2, 4 | 5 | 7 | 6, 8} (28)

Here, l = 2 and k = 6. Suppose that n = 5. Then the blocks of xπ

are labelled, in left-to-right order, as B1, B2, B3, B5, B4. Hence, the
block labelling for xπ is

(Iπ, Jπ) = (1, 2, 1, 2, 3, 4, 5, 4) (29)

an element of [5]2+6, or, in diagram form,

1 2

1 2 3 4 5 4

(30)

We see how the blocks and their labels have been made clear by using
the diagram form of the block labelling for xπ .

The diagram form of the block labelling is very nice for
another reason: we can easily construct a matrix unit in
Hom((Rn)⊗k, (Rn)⊗l) from it. This matrix unit is simply EIπ,Jπ ,
where Iπ is the top row of the diagram form of the block labelling
and Jπ is the bottom row of the diagram form of the block labelling.

Moreover, by acting on the block labelling (Iπ, Jπ) with Sn, we
obtain an orbit for the Sn action on [n]l+k with (Iπ, Jπ) as the class
representative. Denote this orbit by O((Iπ, Jπ)). The beauty of the
diagram form for the block labelling is that it shows explicitly how
all of the elements (I, J) in this orbit are precisely all of the possible
labellings of the blocks of xπ! Hence, we have that

Proposition 15. O((Iπ, Jπ)) is equal to{
(I, J) ∈ [n]l+k

∣∣∣∣ ix = iy if and only if x, y
are in the same block of π

}
(31)

Example 16. Continuing on from Example 14, the matrix unit that
we obtain from (30) is E(1,2|1,2,3,4,5,4). Moreover, we see that

2 1

2 1 4 5 3 5

(32)

is in the orbit of (30) as a result of relabelling the blocks of (27),
or, more formally, by applying the permutation (12)(345) in S5

to the block labels of (30). In particular, we obtain the matrix unit
E(2,1|2,1,4,5,3,5) from (32), which is a linear map from (R5)⊗6 to
(R5)⊗2.

The reason for defining the block labelling of an orbit basis dia-
gram xπ having at most n blocks in P l

k(n) is that we can use it to
construct a basis element of HomSn((R

n)⊗k, (Rn)⊗l) as follows:

obtaining all of the elements (I, J) that appear in O((Iπ, Jπ)), and
noting that we can form the matrix unit EI,J from each element, we
can define Xπ to be

Xπ :=
∑

(I,J)∈O((Iπ,Jπ))

EI,J (33)

We see that Xπ is a basis element of HomSn((R
n)⊗k, (Rn)⊗l) by

(20).
Put simply, to obtain a basis element Xπ of

HomSn((R
n)⊗k, (Rn)⊗l), we have added together the matrix

units that come from all of the possible labellings of the blocks of
xπ .

Consequently, we can define the following linear map to make
clear the connection between the partition vector space P l

k(n) and
all of the weight matrices that can appear in a permutation equivari-
ant neural network between the layers (Rn)⊗k and (Rn)⊗l.

Definition 17. For all non-negative integers l, k and positive inte-
gers n, we can define a surjective map

Φl
k,n : P l

k(n) → HomSn((R
n)⊗k, (Rn)⊗l) (34)

on the orbit basis of P l
k(n) as follows, and extend linearly:

Φl
k,n(xπ) :=

{
Xπ if π has n or fewer blocks
0 if π has more than n blocks

(35)

In the case where k = l, (34) is the map that Jones [22] used to
obtain Schur–Weyl duality between the symmetric group and the par-
tition algebra. Hence we have adapted Schur–Weyl duality to charac-
terise the weight matrices that appear in any permutation equivariant
neural network where the layers are some tensor power of Rn.

We summarise our results with the following two theorems.

Theorem 18. For all non-negative integers l, k and positive integers
n, we have that

{Xπ | π ∈ Πl+k,n} (36)

is a basis of HomSn((R
n)⊗k, (Rn)⊗l).

Theorem 19 (Permutation Equivariant Weight Matrices). For all
non-negative integers l, k and positive integers n, the weight ma-
trix W that appears in an Sn-equivariant linear layer function from
(Rn)⊗k to (Rn)⊗l must be of the form

W =
∑

π∈Πl+k,n

λπXπ (37)

for B(l + k, n) many weights λπ ∈ R.

3.5 A Note on the Relationship between n, k and l

In classifying the weight matrices that can appear in permutation
equivariant neural networks, it is important to note that there is a
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1

1

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

1

1

2

4

2

4

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

1 0 1 1 1

2 1 0 1 1

3 1 1 0 1

4 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Figure 1. We obtain the two basis matrices whose weighted linear combination gives all of the possible weight matrices that can appear in an S4-equivariant
neural network from R4 to R4. We obtain these matrices from the orbit basis diagrams in P 1

1 (4) that have at most 4 blocks. For each orbit basis diagram, to
calculate the (I, J)-entry of its associated basis matrix, we place the I-tuple on the top row of the diagram and the J-tuple on the bottom row of the diagram

and see if they consistently label the diagram’s blocks such that no two blocks have the same label. If the labelling is consistent, then we put a 1 in the
(I, J)-entry of the matrix, otherwise 0.

relationship between n, k and l. In particular, the number of weights
in the weight matrix can depend on n.

If n ≥ l + k, we see that the map Φl
k,n is an isomorphism of

vector spaces. This is because an orbit basis diagram in P l
k(n) can

have at most l + k blocks, and so, in this case, there are no orbit
basis diagrams with more than n blocks. Consequently, the number
of weights in the weight matrix does not depend on n.

However, if n < l + k, then the map Φl
k,n is not an isomorphism

of vector spaces. Indeed, in this case, the kernel of this map is non-
trivial, of dimension B(l + k)− B(l + k, n), since it is the R-linear
span of the orbit basis diagrams in P l

k(n) having more than n blocks.
Consequently, the number of weights in the weight matrix does de-
pend on n.

This improves upon the result that appears in Maron et al. [26].
Although this relationship was first mentioned in the Appendix of
Finzi et al. [12], we wish to highlight this point in the main text of our
paper because a number of papers that we have read in the machine
learning literature on this topic assume that the number of weights in
the weight matrix is independent of n in all cases. This becomes more
important when l, k are large and n is small, since the dimension
of the kernel becomes very large relative to the actual number of
weights in the weight matrix. For more information on the kernel of
Φl

k,n, see Benkart and Halverson [4].

3.6 General Procedure and Examples

In Procedure 1, we provide an algorithm for how to calculate the
weight matrix that appears in a permutation equivariant neural net-
work from the layer space (Rn)⊗k to the layer space (Rn)⊗l so that
our results will be accessible to the general machine learning practi-
tioner. In Procedure 2, we describe how to calculate the (I, J)-entry
of each basis matrix that appears in the overall weight matrix. This
method is powerful because each (I, J)-entry of Xπ can be calcu-
lated simply by placing the I indices on the top row of the orbit basis
diagram xπ and the J indices on the bottom row of xπ and seeing
whether the blocks of the diagram are consistently and distinctly la-
belled.

We give a number of examples that display the simplicity and
power of our method for calculating any permutation equivariant
weight matrix between tensor power spaces of Rn.

Example 20. Suppose that we would like to find the weight matrix
for an S4-equivariant linear layer function from R4 to R4. Note that
l = k = 1 and n = 4.

To calculate this weight matrix, we follow Procedure 1. First, we

need to calculate all of the set partitions of [1 + 1] having at most 4
blocks. These are π1 = {1, 2} and π2 = {1 | 2}. Next, we express
each of these set partitions as an orbit basis diagram in P 1

1 (4). These
diagrams appeared in Example 8. Now we apply the map Φ1

1,4 to
each of these orbit basis diagrams to obtain the basis matrices Xπ1

and Xπ2 . Figure 1 shows how to calculate all of the (I, J)-entries
for both of these matrices using Procedure 2. In particular, we see,
for example, that the (1, 1)-entry of Xπ1 is 1, since the only block in
xπ1 is consistently labelled (by 1), whereas the (2, 4)-entry of Xπ1

is 0, since the only block in xπ1 is inconsistently labelled (2 �= 4).
The procedure is the same for Xπ2 . We see that only the diagonal
entries of Xπ2 are zero since the two blocks in xπ2 must be distinctly
labelled.

Finally, we multiply each matrix by a weight, namely λ1 and
λ2, respectively, and then add the two matrices together to obtain
the overall weight matrix. Hence, the weight matrix for an S4-
equivariant linear layer function from R4 to R4 is of the form

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

1 λ1 λ2 λ2 λ2

2 λ2 λ1 λ2 λ2

3 λ2 λ2 λ1 λ2

4 λ2 λ2 λ2 λ1

⎤
⎥⎥⎥⎥⎥⎥⎦

(38)

for weights λ1, λ2 ∈ R.
It is not hard to see that the weight matrix for an Sn-equivariant

linear layer function from Rn to Rn is an n × n matrix, with the
diagonal entries given by the weight λ1 and the off-diagonal entries
given by the weight λ2.

Example 21. Continuing on from Example 14, we see that the (1, 2 |
1, 2, 3, 4, 5, 4)-entry of the weight matrix for an S5-equivariant linear
layer function from (R5)⊗6 to (R5)⊗2 will be λπ , a parameter that
corresponds to the set partition π given in (28).

This is because the diagram given in (30), where the orbit basis
diagram corresponding to π has had the top row overlaid with the
indices of I = (1, 2) and the bottom row with J = (1, 2, 3, 4, 5, 4),
satisfies condition 2 of Procedure 2, namely that the indices consis-
tently and distinctly label the blocks of xπ .

Moreover, referring back to Example 16, we see that the (2, 1 |
2, 1, 4, 5, 3, 5)-entry of the same weight matrix will also be λπ , since
this is related to (1, 2 | 1, 2, 3, 4, 5, 4) by the permutation (12)(345)
in S5.
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Figure 2. We show the eight orbit basis diagrams in P 2
2 (2) that have at most 2 blocks. They are needed to calculate the weight matrix for an S2-equivariant

linear layer function (R2)⊗2 → (R2)⊗2. As the number of orbit basis diagrams in P 2
2 (2) is B(4) = 15, this example highlights that the number of weights

that appear in a permutation equivariant weight matrix depends on the relationship between the degree n of the symmetric group Sn and the sum of the tensor
power orders l + k that define the layers of the permutation equivariant neural network.

Example 22. We now give an example where the number of weights
in a permutation equivariant weight matrix is not the full Bell number
B(l + k). Suppose that we would like to find the weight matrix for
an S2-equivariant linear layer function from (R2)⊗2 to (R2)⊗2. In
this case, l = k = 2 and n = 2.

To calculate this weight matrix, we again follow Procedure 1. We
first need to calculate all of the set partitions of [2 + 2] having at
most 2 blocks. There are B(4, 2) = 8 of them, and they are shown
in Figure 2. Note, in particular, that there are not B(4) = 15 of
them, which implies that the map Φ2

2,2 has a kernel. This is what we
expected, since n � l + k.

Next, we apply the map Φ2
2,2 to each of the eight orbit basis di-

agrams to obtain eight basis matrices Xπ1 , . . . , Xπ8 , multiply each
matrix Xπi by a weight λi, and then finally add them all together.

Hence, the weight matrix for an S2-equivariant linear layer func-
tion from (R2)⊗2 to (R2)⊗2 is of the form

⎡
⎢⎢⎢⎢⎢⎢⎣

1,1 1,2 2,1 2,2

1,1 λ1 λ3 λ2 λ6

1,2 λ5 λ8 λ7 λ4

2,1 λ4 λ7 λ8 λ5

2,2 λ6 λ2 λ3 λ1

⎤
⎥⎥⎥⎥⎥⎥⎦

(39)

for weights λ1, λ2, . . . , λ8 ∈ R.

3.7 Adding Features and Biases

Adding features and biases was first considered by Maron et al. [26];
in the Supplementary Material [1] we show how the basis matrices
with features and biases can be found in terms of orbit basis diagrams
by adapting the results that appear in Section 3.4.

3.8 Equivariance to Local Symmetries

We can extend our results to linear layer functions that are equiv-
ariant to a direct product of symmetric groups Sn1 × · · · × Snm .
These functions model local symmetries in data since each symmet-
ric group Snr in the direct product captures only the symmetries in
its associated subset of nr objects. We can use our method to recover
the result of Hartford et al. [20] and give an explanation in the lan-
guage of the partition algebras as to why their result holds. These
extensions are discussed in the Supplementary Material [1].

3.9 Limitations and Discussion

It is important to acknowledge that given the current limitations of
hardware, there will be some challenges when implementing the neu-

ral networks that are discussed in this paper. In particular, signifi-
cant engineering efforts will be needed to achieve the required scale
because storing high-order tensors in memory is not a straightfor-
ward task. This was demonstrated by Kondor et al. [23], who had
to develop custom CUDA kernels in order to implement their tensor
product based neural networks. Nevertheless, we anticipate that with
the increasing availability of computing power, higher-order group
equivariant neural networks will become more prevalent in practical
applications. Notably, while the dimension of tensor power spaces
increases exponentially with their order, the dimension of the space
of equivariant maps between such tensor power spaces is often much
smaller, and the corresponding matrices are typically sparse. There-
fore, while storing these matrices may present some technical diffi-
culties, it should be feasible with the current computing power that
is available.

3.10 Code

Together with Procedures 1 and 2, we have provided a PyTorch im-
plementation of the permutation equivariant weight matrices for any
symmetric group Sn and for all possible tensor power spaces of Rn

in the Supplementary Material [1]. This will make it possible for the
general machine learning practitioner to use the layers that we have
characterised in their experiments.

4 Conclusion

We are the first to show that Schur–Weyl duality between the sym-
metric group and the partition algebra can be used to fully charac-
terise the permutation equivariant weight matrices that appear be-
tween neural network layers that are tensor power spaces of Rn. We
showed that the weight matrices can be obtained by constructing a
basis of matrices from a vector space of diagrams that is adapted from
the partition algebra. In particular, we proved that each basis matrix
can be found from its associated orbit basis diagram by adding to-
gether all of the matrix units that are indexed by all of the possible
labellings of the blocks in the diagram. In doing so, we have added
weight to the idea that Schur–Weyl duality is a useful tool for con-
structing group equivariant neural network architectures.
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