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Abstract. Online disease diagnosis, gathering the patients’ symp-
toms and making diagnoses through online dialogue, grows rapidly
worldwide. Manual-based approach, e.g., Haodaifu, employs real-
world doctors, providing high-quality but high-cost medical services.
In contrast, machine-based approach, e.g., 01bot, that utilizes ma-
chine learning models can make automatic diagnosis but lacks re-
liable accuracy. While some work has enabled human-AI collab-
oration in disease diagnosis, their collaboration pattern is simple
and needs to be further improved. Therefore, we aim to introduce
a doctor-enhanced and low-cost human-AI collaboration pattern.
There are two key challenges. 1) How to utilize expert knowledge
in doctor feedback to enhance AI’s capability? 2) How to design a
collaboration workflow to achieve a low-cost doctor workload while
ensuring accuracy? To address the above challenges, we propose the
Human-AI collaboration framework for disease diagnosis via doctor-
enhanced transformer, called HAIformer. Specifically, to enhance
AI’s capability, we propose a machine module that leverages doc-
tors’ medical knowledge through doctor-enhanced attention, using
a graph attention-based matrix; to reduce doctor workload, we pro-
pose an activation module that uses two units in a cascading manner
for human-AI allocation. Experiments on four real-world datasets
show that HAIformer can achieve up to 91.2% accuracy with only
18.9% human effort and one-third of dialogue turns. Further real-
world clinic study highlights its advantages in practical applications.

1 Introduction

Telemedicine refers to health professionals providing medical ser-
vices to patients in different locations through the use of informa-
tion and communication technologies [26]. As the usage on the Web
continues to grow, an increasing number of people are participat-
ing in online disease diagnosis due to its advantages, including free-
dom from location constraints. With the COVID-19 pandemic, online
disease diagnosis services are experiencing significant growth glob-
ally [27, 16]. There are two categories of online disease diagnosis:
manual-based and machine-based. Manual-based disease diagnosis,
such as Haodaifu [3], American Well [2], and Teladoc Health [4],
employs real-world doctors to inquire about symptoms and make the
diagnosis, which provides high-quality medical services but brings
expensive costs. In contrast, machine-based disease diagnosis, such
as Zuoshou Doctor [5] and 01bot [1], employs machine learning
models, which have seen significant development in recent years.

Given the rapid advancement of Artificial Intelligence (AI) in
medical diagnosis [15, 28, 45], AI agents have shown promising
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Do you have palpitations?

Do you experience acid reflux?

I'm not sure.

I don't know.

AI Agent Patient

Yes, I do.

Doctor-Enhanced

Do you have expectoration?

AI-Failed

Doctor

Do you have a�stuffy nose?

Yes, I do.

Figure 1: A medical dialogue case based on human-AI collaboration.
When AI fails to ask about symptoms, the system activates doctors
to conduct inquiries, which enhances AI in turn.

potential in online medical consultation [11, 20]. For the consulta-
tion task involving both inquiry and diagnosis, there are currently
two types of AI agents: Reinforcement Learning (RL)-based and
Transformer-based [31] methods. RL-based models [36, 25, 39, 38,
23, 24, 43, 20, 19, 13, 18] define the dialogue-based diagnostic prob-
lem as a Markov decision process [40], interacting with patients to
maximize long-term rewards. However, RL-based models often ex-
hibit lower accuracy on large datasets due to sparse reward problems.
Transformer-based models [10, 11, 21, 34] redefine the problem as a
sequence generation task, achieving state-of-the-art accuracy. How-
ever, such models often cause many invalid symptom inquiries, and
therefore are not very patient-friendly. More recently, Large Lan-
guage Models (LLMs) have shown potential benefits for diagnos-
tic medicine. However, their ability to accurately diagnose complex
cases is still limited [30]. For instance, the text generated for specific
cases exhibits ambiguity.

To solve this tough problem, we propose to adopt the Human-
Machine Computing (HMC) [41] framework for online medical con-
sultation. The HMC framework has shown its capability to address
complex tasks in the medical domain. For example, the human-AI
collaboration protocols enhance knee lesion detection performance
beyond the capabilities of individual agents [7]; human-LLMs col-
laboration shows promise in enhancing brain MRI’s differential di-
agnosis [22]; the human-AI collaborative navigation system achieves
higher precision and recall in navigating tumour images [17]. Re-
cently, some research has also applied the HMC framework in medi-
cal consultation. For example, the phased diagnosis system [12] uti-
lizes doctors to conduct final diagnoses after machine pre-diagnosis.
The diagnostic team framework [42] involves both humans and AI
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in symptom inquiries. However, existing human-AI collaboration
frameworks can not explicitly learn from doctor feedback to enhance
AI, nor do they define collaborative rules for the entire workflow.

The process of a dialogue-based disease diagnosis based on
human-AI collaboration consists of three steps. First, patients in-
put their self-reports to describe their medical condition, which can
be summarized as specific symptoms. Second, the system acquires
additional symptoms by dialoguing with patients. As shown in Fig-
ure 1, in each dialogue turn, when AI continuously fails to output
valid symptoms (the symptoms confirmed/denied by the patient), en-
countering a challenge, expert doctors will participate in symptom
inquiry. After the doctors participate, their decisions will enhance
AI’s performance by providing prior knowledge. Third, when suffi-
cient symptom information is obtained, the inquiry is terminated, and
the system diagnoses based on these acquired symptoms.

To achieve doctor-enhanced and low-cost human-AI collaborative
consultations, there are two challenges. First, previous work mainly
focuses on when to invoke humans for assistance, but lacks a study on
how to utilize the expert information contained in human feedback.
So, How to better utilize doctor feedback in order to improve diagno-
sis accuracy? Second, due to the high cost of doctor resources, how
to design a human-AI collaboration workflow that can effectively re-
duce doctor workload? To address the above challenges, we propose
two modules. (i) For the first challenge, we design a doctor-enhanced
machine module that enhances the attention scores of doctor-related
symptoms through a doctor matrix, thereby improving the module’s
performance and further promoting successful diagnosis. Addition-
ally, we construct a unique symptom-graph for each dataset and then
use a graph attention network to build an adaptive doctor matrix. (ii)
For the second challenge, we design an activation module that uti-
lizes two units in a cascaded manner to select either doctors or AI
for further symptom inquiries, optimizing human-AI collaboration.
On the other hand, the activation module alters the input distribution
of machine diagnosis, enabling our framework to utilize only a few
crucial symptoms for high-accuracy diagnosis.

In this paper, we propose a human-AI collaboration framework
for disease diagnosis via doctor-enhanced Transformer. Before each
dialogue turn, the proposed activation module decides whether to ter-
minate the inquiry and give the final diagnosis based on the acquired
symptoms. If the symptoms are insufficient, the activation module
conducts a low-cost human-AI allocation with two units in a cas-
caded manner, calling the machine module or the doctor to inquire.
Additionally, the machine’s capability is enhanced by the expert in-
formation in doctor feedback through the proposed graph attention-
based doctor matrix. Our contributions are as follows:

• Human-AI Collaboration: We propose a novel human-AI col-
laboration framework (HAIformer) for disease diagnosis, which
is, to the best of our knowledge, the first attempt to make the di-
agnosis with high accuracy but limited inquiry turns.

• Enhancement Design: We propose a doctor-enhanced attention,
which leverages doctors’ prior knowledge in consultations to en-
hance AI’s capability in symptom inquiry.

• Allocation Design: We propose a low-cost human-AI collabora-
tion workflow, where doctors handle complex cases unsolvable by
machines, thus reducing the generation of invalid symptoms.

• Experiment Study: The experiments on four real-world
datasets show that HAIformer outperforms state-of-the-art mod-
els by 5.6% in diagnosis accuracy with one-third of inquiry
turns. Additionally, we conduct real clinical experiments, in
which HAIformer outperforms the AI and the manual sys-

tems. For reproducibility, we release the code and data in
https://github.com/mercyzi/HAIformer.git.

2 Related Work

This paper is related to two research areas, namely, dialogue-based
disease diagnosis and human-AI collaboration in medical diagnosis.

2.1 Dialogue-Based Disease Diagnosis

The medical dialogue system is divided into end-to-end and pipeline-
based approaches. For end-to-end systems, during the COVID-19
pandemic, Zhou et al. [44] developed a medical dialogue system and
successfully achieved generating doctor-like responses. Weng et al.
[37] proposed the HoT method to guide LLMs in medical conversa-
tion question-answering, achieving accuracy levels close to those of
real doctors. However, LLMs face many ethical issues in healthcare
[29], such as bias and privacy concerns. For pipeline-based systems,
Wei et al. [36] constructed a disease diagnosis dialogue system, in
which they utilized DQN to gather patient symptoms and employed
a fully connected network for disease classification. He et al. [19]
further proposed a multi-model-fused RL framework to address the
sparse reward problem in large search spaces. Chen et al. [10] pointed
out the inefficiency of RL in decision-making and proposed for the
first time a symptom sequence generation method based on Trans-
former. Wang et al. [35] proposed a multi-expert consultation frame-
work using open-source LLMs, becoming the current state-of-the-art
AI model. However, the additional medical knowledge and ethical
issues introduced by LLMs still require further investigation.

2.2 Human-AI Collaboration in Medical Diagnosis

The researchs [6, 33] show that human-AI collaboration has broader
applicability in high-risk medical decision-making. For example,
Fogliato et al. [14] studied the design details of human-AI collab-
oration in radiology diagnosis and found that radiologists’ diagnoses
are more consistent with AI suggestions when AI inferences are dis-
played immediately. Calisto et al. [8, 9] constructed a real-world clin-
ical doctor-AI workflow for breast cancer image classification. The
research findings indicate an improvement in clinical doctors’ accu-
racy, and the clinical field is accepting human-AI systems for breast
cancer diagnosis. Online disease diagnosis has also recently started
using human-AI collaboration. For example, Chen et al. [12] pro-
posed a human-machine collaborative diagnosis system that ensures
diagnosis accuracy. In the inquiry phase, AI employs a DQN-based
method to inquire about symptoms; in the diagnosis phase, doctors
examine AI’s preliminary diagnosis and provide the final diagnosis.
Zhao et al. [42] proposed a human-AI diagnostic team framework
where doctors and AI collaborate in symptom inquiries through RL-
based allocation strategies. This framework ensures high diagnostic
accuracy while minimizing the workload for doctors. However, most
frameworks involve only humans and AI collaborating on individual
problems, such as classification problems, where AI provides advice
for humans in the decision-making process. In this situation, AI does
not fully utilize the additional knowledge from human feedback to
enhance itself. In addition, it lacks a human-AI collaboration rule
that runs through the entire complex workflow.

3 System Overview

In this section, we formulate the problem in human-AI collaboration
and give a brief introduction to the proposed framework.
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Figure 2: Human-AI Collaboration Framework for Online Disease Diagnosis via Doctor-Enhanced Transformer. The patient initiates an online
consultation (left), then interacts with the inquiry layer and the diagnosis layer (central body), and finally, the system provides the diagnosis
result (right). The dashed arrow (termination) indicates that if the known symptom information is sufficient, the dialogue is terminated.

3.1 Problem Formulation

The user goal for each sample consists of three parts: explicit symp-
toms Sex, implicit symptoms Sim, and a disease label Dis. The on-
line diagnosis based on human-AI collaboration typically involves
two stages: the inquiry stage and the diagnosis stage. In the inquiry
stage, the Human doctor and AI ask the patient for additional symp-
toms Sadd ⊂ Sim based on patient’s self-reported symptoms, i.e.,
Sex, aiming to gather more implicit symptoms and thereby facil-
itate disease diagnosis. Formally, the additional symptoms is de-
noted as Sadd = SH

add ∪ SAI
add, where SH

add =
{
sH1 , . . . , sHM

}
de-

notes the M symptoms inquired by the Human doctor, and SAI
add ={

sAI
1 , . . . , sAI

N

}
are inquired by AI. We formulate the problem in the

inquiry stage as a sequence generation task, with Sim serving as the
target generated sequence. It is worth noting that, due to the involve-
ment of doctors, the process of AI generating symptoms is partially
autoregressive. Our system aims to maximize the objective function:

∏
Sadd⊂Sim

P
(
Sim − Sadd | Sex, S

H
add, S

AI
add

)
, (1)

with a limited consumption of human effort, i.e., the number |SH
add|

of implicit symptoms obtained by Human doctor.
In the diagnosis stage, AI conducts disease diagnosis based on the

known symptoms (explicit symptoms and additional symptoms) of
the patient. Essentially, disease diagnosis is a classification problem
in machine learning, with the objective of maximizing the likelihood:

P (Dis | Sex, Sadd) , (2)

We note that there is a relationship between inquiry and diagnosis:
inquiry serves as the foundation for diagnosis, while diagnosis is the
ultimate goal of inquiry. Therefore, our framework aims to generate
effective symptom sequences with limited human effort and only a
few dialogue turns, and further accurately predicts diseases.

3.2 Human-AI Collaboration Framework for Online
Disease Diagnosis

The framework of HAIformer is shown in Figure 2, which consists
of an inquiry layer for interacting with patients and a diagnosis layer
for disease classification of patients. The specific roles of these two
layers in our framework are described as follows.

A) Inquiry Layer. The inquiry layer has a loop structure that takes
explicit symptoms Sex and additional symptoms S

1:(k-1)
add in k-th

turn as input, where S
1:(k-1)
add = ∪k-1

i=1S
i
add represents the symp-

toms queried from 1-th turn to k-1-th turn. Firstly, the symptom
input goes through the activation module, which is responsible for
selecting either the machine module or the doctor to inquire about
symptoms from the patient. Then, the selected machine/doctor
outputs an additional symptom Sk

add to be asked in the k-th turn,
while updating the next input S1:k

add after the patient’s answer. For
the doctor, in experiments conducted on real datasets, we simulate
expert doctors based on ground truth. In real-world experiments,
we invite real doctors to evaluate our framework.

1) Machine Module. It utilizes the doctor-enhanced Transformer
to generate symptom sequences and incorporates the Symptom-
Graph. It will be detailed in Section 4.1.1 & 4.1.2.

2) Activation Module. It uses two units (Invalid Unit and Thresh-
old Unit) in a serial form to determine which one to activate. It
will be detailed in Section 4.1.3.

B) Diagnosis Layer. The diagnosis module in the diagnosis layer
also plays a role in the loop structure of multi-turn dialogues: it
assesses the existing symptoms before each turn of medical dia-
logue. If there is sufficient symptom information, the dialogue is
terminated directly; otherwise, the loop continues. At the end of
the conversation, the diagnosis module informs the diagnosis re-
sult, including known symptoms and the predicted disease.

1) Diagnosis Module. It utilizes the Transformer to predict dis-
eases and employs a stop criterion to determine whether to ter-
minate the dialogue. It will be detailed in Section 4.2.

4 Methodology

In this section, we describe the implementation methodology of the
inquiry layer and diagnosis layer in HAIformer.

4.1 Implementation of Inquiry Layer

In this subsection, we first illustrate the implementation of the ma-
chine module with doctor-enhanced Transformer. Then, we intro-
duce the doctor matrix with graph learning, which is used to enhance
doctor-related symptoms. Finally, we describe the activation module.
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Figure 3: The implementation details of the machine module.

4.1.1 Machine Module with Doctor-Enhanced Transformer

Figure 3 shows the overview of our proposed machine module. The
backbone is a stack of Transformer blocks with N layers. The known
symptoms and their attributes are encoded using an embedding layer
to create contextual representations. Subsequently, these represen-
tations are continuously updated through multiple layers of Trans-
former blocks, and finally, a symptom action is generated as output
via the decision layer. The symptom action taken by the machine
module will fill the "symptom" slot, generating templated natural
language for dialogue with the patient, for example, "Do you have
[runny nose]?" where "runny nose" is the symptom. For each symp-
tom inquiry, the patient will respond True or False as attributes of
positive/negative symptoms, and if the symptom does not belong to
the implicit symptoms Sim, the response will be UNK. After the pa-
tient’s response, the new additional symptom and its attribute will be
added to the input for the next turn.

The input embedding X0 of known symptoms is the sum of these
symptom embeddings and attribute embeddings:

X0 = Embedding (Sex, Sadd) + Embedding (Aex, Aadd) , (3)

where Aex and Aadd represent the attributes of explicit symptoms
and additional symptoms, respectively. There are three symptom at-
tributes: True, False, and UNK, reflecting the relationship between
the symptom and the patient. The embedding layer maps the symp-
tom and the attribute input sequences to vectors with the same
dimension, thereby obtaining the initial contextual representation
X0 ∈ R

l×d, where l denotes the sequence length, and d represents
the dimensionality of token embedding vectors. We then use doctor-
enhanced Transformer layers to generate contextual representations:

Xn = Transformerdoctor−enhanced (Xn−1) , (4)

where n ∈ [1, N ] indicates that the variables X are at the n-th
layer. Each Transformer layer applies doctor-enhanced multi-head
self-attention operation, followed by a fully connected feed-forward
network. Multi-head attention enables the model to jointly attend to
information across different dimensions, thereby enhancing its gen-
eralization capability:

Multihead (Q,K, V ) = Concat (head1, . . . headh)W
O, (5)

where h represents the number of heads, WO ∈ R
d×d is the param-

eter matrix to be learned.
Specifically, the self-attention operation first applies linear trans-

formations W q
i , W k

i , and W v
i ∈ R

d×dh on the contextual represen-
tation to obtain a triplet consisting of the query Qi, the key Ki, and

Figure 4: The process of generating a doctor matrix, where "Sym3" is
the symptom inquired by the doctor. The doctor matrix is filled with
green or orange elements from sparse and diagonal matrices.

the value Vi ∈ R
l×dh for each head, where dh is the dimensionality

of each head. Then, the global attention score Sglb
i and the doctor-

enhanced attention score Sdoc
i are calculated as follows:

Sglb
i = softmax

(
QiK

T
i√

dh

)
, (6)

Sdoc
i = softmax

(
QiKi

T√
dh

+Mdoc

)
, (7)

where Mdoc ∈ R
l×l is an attention matrix that emphasizes the symp-

toms asked by doctors, which will be introduced later. Finally, we in-
tegrate global and doctor-enhanced attentions to calculate each head:

headi =
(
γSdoc

i + (1− γ)Sglb
i

)
Vi, (8)

where i denotes the i-th head of the multi-head operation and γ ∈
[0, 1] is a hyper-parameter used to adjust the weight of the doctor-
enhanced attention score Sdoc

i . A larger γ value indicates a greater
emphasis on symptoms asked by the doctor.

After obtaining a unique token vector from the N -th layer, we
further utilize the decision layer to output symptom actions by the
linear transformation WA ∈ R

d×ns , where ns represents the num-
ber of symptom categories. The machine module’s training objec-
tive is multi-label (i.e., Sim − Sadd), so we can use RL terminol-
ogy to describe the learning process, similar to Chen et al. [11].
When the machine module outputs a symptom, if the symptom is
valid (True/False) and the pre-diagnosis is correct, the reward is
Rpos = 5.0; otherwise, the reward is Rneg = - 0.2. Therefore, we
train the machine module by minimizing the loss function L(θ):

L(θ) = −
N∑
i=1

RiPθ(s
AI
i ), (9)

where N represents the total number of symptoms queried by the
machine module, θ denotes the trainable model parameters, Pθ(s

AI
i )

signifies the conditional probability of the machine module with pa-
rameters θ taking the i-th symptom action sAI

i , and Ri represents
the reward returned by the i-th symptom action. Before training the
machine module, we initialize the model parameters θ through self-
supervised learning with maximum likelihood objectives.

4.1.2 Doctor Matrix with Graph Learning

As illustrated in Figure 4, we learn a doctor matrix Mdoc to incor-
porate doctors’ prior knowledge into the Transformer, enabling the
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machine module to generate symptoms more relevant to doctors. The
motivation is to enhance the attention scores for doctor-related symp-
toms, allowing attention heads to focus on more valuable features.

To learn this matrix Mdoc, we first construct a unique symptom-
graph for each dataset and pretrain it by neighbors masking. Then,
we query the node feature g ∈ R

d of the doctor symptom sH from
the symptom-graph, perform scaled dot-product with the context rep-
resentation X , and then fill the resulting diagonal vector V dia ∈ R

l

into a diagonal matrix Mdia ∈ R
l×l:

V dia = softmax

(
gW gXT

√
d

)
, (10)

Mdia
ij =

{
V dia
i , if i = j
0, otherwise

, (11)

where W g ∈ R
d×d is the trainable parameter matrix. Additionally,

since the self-attention operation requires normalization of row vec-
tors through the softmax function, to enhance the weight of doctor
symptoms, we also construct a sparse matrix Mspa ∈ R

l×l:

Mspa
ij =

{
1, if sj ∈ sH

0, otherwise
, (12)

where sj represents the j-th symptom in the symptom input se-
quence. By combining Mdia

ij and Mspa
ij , we obtain the doctor matrix

Mdoc to enhance symptoms related to doctors:

Mdoc
ij =

{
Mspa

ij , if sj ∈ sH

Mspa
ij +Mdia

ij , otherwise
, (13)

For each directed symptom-graph corresponding to the dataset,
each node corresponds to a symptom in the dataset, and edges repre-
sent the relational information between symptoms. We utilize GAT
[32] to aggregate the relationship information among symptoms, ex-
tracting the structural feature gi for each node i:

gi = σ
(∑

j∈Ni
αijW 1hj

)
, (14)

αij =
exp(LeakyReLU(W 2[hi;hj ]))

∑
k∈Ni

exp(LeakyReLU(W 2[hi;hk]))
, (15)

where W1 and W2 are the trainable parameters. hj is the representa-
tion of symptom j, Ni represents the neighbors of symptom i, and σ
is the sigmoid function. αij is the attention coefficient computed by
the attention mechanism applying the LeakyReLU activation.

4.1.3 Activation Module

In online medical consultations, doctors possess superior capabilities
to machines regarding symptom accuracy. To better utilize limited
medical resources and minimize ineffective queries by AI, we design
the following human-AI collaboration workflow: when the machine
module struggles to generate relevant symptoms effectively, the acti-
vation module prompts doctors to query the symptoms. Specifically,
based on the machine module’s output, the activation module decides
whether to involve doctors in the next turn using two units: 1) Invalid
Unit: During each turn, if the machine module consecutively gen-
erates NIS = 2 invalid symptoms, it transitions to the next unit for
assessment; otherwise, the machine module continues its inquiry. 2)
Threshold Unit: At the beginning of a new turn, if the confidence
level of newly generated symptoms by the machine module falls be-
low the threshold δs, it prompts the activation module to engage doc-
tors; otherwise, the machine module continues its inquiry.

Algorithm 1 Training process mechanism of HAIformer

1: Construct a symptom-graph for each dataset
2: Pretrain symptom-graph by neighbors masking
3: Pretrain machine module θm by self-supervised learning
4: Pretrain diagnosis module θd using the original sample
5: for i = 1, 2, . . . , N1 do

6: Machine module takes symptom actions sa

7: Environment generates reward feedback R
8: Update θm by minimizing L(θ) = −∑N

i=1 RiPθ(s
AI
i )

9: for n = 1, 2, . . . , N2 do

10: Get additional symptoms via inquires
11: Fine-tuning θd by optimizing cross-entropy loss
12: end for

13: θd ← Pretrained diagnosis module θd
14: end for

Furthermore, we stipulate that each time a doctor is activated, they
only handle one symptom inquiry task. To prevent long intervals be-
tween multiple calls to doctors, we set a limit that doctors will not
be called after the turn λd. Additionally, the inquiry layer also has
a maximum dialogue turn limit λmax; if the dialogue turn exceeds
λmax, the dialogue ends and the diagnosis result is informed.

4.2 Implementation of Diagnosis Layer

The backbone of the diagnosis module is also composed of stacked
encoder layers of the Transformer. After obtaining the sequence rep-
resentation from the N -th layer, we aggregate it into a single repre-
sentation using an average pooling operation.

AvgPooling(x) =
1

l

l∑
i=1

xi (16)

where l represents the length of the symptom sequence, and xi de-
notes the i-th symptom vector in the symptom sequence. Then, the
single representation is mapped to the output space required for
the disease classification task using a fully connected layer W d ∈
R

d×nd , where nd represents the number of disease categories. The
training loss of the diagnosis module is calculated based on the cross-
entropy loss between the predicted probabilities and the true labels.

In a multi-turn dialogue system, we need to balance the number
of dialogue turns and the accuracy of disease diagnosis. Specifically,
the diagnosis module makes a preliminary diagnosis based on the
known symptoms. If the probability of disease prediction exceeds
the threshold δd, the diagnosis module terminates the dialogue and
informs the diagnosis result to the patient; otherwise, the dialogue
continues. In summary, the training process of our proposed frame-
work is presented in Algorithm 1.

5 Experiments

5.1 Settings

Datasets. To validate the applicability of our proposed framework
in real-world scenarios, we conduct experiments on four publicly
available real datasets instead of using the synthetic dataset [43]. The
four datasets, MZ-4 [36], Dxy [39], MZ-10 [11], and MDD [21], all
contain explicit symptoms, implicit symptoms, and a disease label,
covering 4, 5, 10, and 12 disease types, respectively. The MZ-4, Dxy,
and MDD datasets are medical diagnosis dialogue datasets, while the
MZ-10 dataset is a corpus with multi-level fine-grained annotations.
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Table 1: Experimental results on four real-world datasets.

Model MZ-4 dataset Dxy dataset MZ-10 dataset MDD dataset

Acc Turn HE Acc Turn HE Acc Turn HE Acc Turn HE

PPO [24] 73.2 6.3 − 74.6 3.3 − − − − − − −
Diaformer [10] 74.2 15.3 − 82.9 13.1 − 59.5 14.5 − 86.0 18.9 −
DxFormer [11] 73.2 20.0 − 83.7 20.0 − 66.6 20.0 − 86.2 20.0 −
CoAD [34] 75.0 13.4 − 85.0 10.5 − 62.0 19.9 − 84.9 18.3 −
MTDiag [21] 75.9 17.9 − 85.4 12.5 − − − − 89.1 13.8 −
Doctor 78.5 3.2 3.19 88.5 1.8 1.76 70.3 5.4 5.35 91.2 2.6 2.64
Doctor-SC 78.5 0.8 0.80 88.5 0.7 0.68 70.3 3.1 3.09 91.2 0.5 0.53

HAIformer 78.5 1.4 0.14 88.5 2.3 0.23 70.3 6.6 0.86 91.2 0.8 0.10
w/o δs 78.5 1.4 0.19 88.5 2.3 0.24 70.3 6.6 0.94 91.1 0.8 0.11
w/o δd 78.5 9.3 1.37 88.5 9.3 0.79 70.3 12.0 1.84 91.2 8.2 0.70
w/o Mdoc 77.9 1.4 0.14 87.9 2.3 0.23 69.8 6.6 0.86 90.8 0.8 0.10

(a) Effect of Weight γ on Acc (b) Effect of Max Turn λmax on Acc (left) and IvI (right)

Figure 5: Impact of two hyperparameters.

Baselines. We compare our framework with several baseline mod-
els, including the models involving only machines and the mod-
els involving only doctors. DQN [36], PPO [24], Diaformer [10],
DxFormer [11], CoAD [34], and MTDiag [21] are state-of-the-art
models involving only machines. Doctor and Doctor-SC are two
models involving only doctors. The former ends the conversation
when all implicit symptoms have been asked, while the latter ends
the conversation based on the stop criterion.

Metrics. Our experiments mainly utilize three metrics: Diagnosis
Accuracy (Acc), Dialogue Turn (Turn), and Human Effort (HE). Acc

is the accuracy of disease diagnosis. Turn is the average number of
dialogue turns. HE is specifically used to assess human resource cost,
which equals the number of doctor inquiries. Additionally, to assess
the system’s user-friendliness for patients, we use the Invalid Inquiry
(IvI) metric, which equals the number of invalid inquiries.

5.2 Overall Performance

In Table 1, we report the performance of HAIformer and baseline
models on four real-world datasets. Our framework achieves higher
accuracy on four datasets than the best model involving only ma-
chines by 3.4%, 3.6%, 5.6%, and 2.4%, respectively, indicating that
HAIformer can provide higher-quality healthcare services. Addition-
ally, our framework reduces dialogue turns by 92.2%, 81.6%, 67.0%,
and 94.2%, significantly reducing the number of interactions with
patients and avoiding unnecessary inquiries. Our framework is the
same accurate with models involving only doctors, and the reduction
in human effort is 82.5%, 66.2%, 72.2%, and 81.1%, demonstrat-
ing that HAIformer optimizes human-machine collaboration rather
than overusing doctor inquiries. It is worth noting that Doctor-SC’s
dialogue turns are fewer than HAIformer’s because the doctors’ per-
formance is superior to the machines.

5.3 Ablation Study

To validate the effectiveness of each component in HAIformer, we
conduct some ablation experiments to analyze the impact of δs, δd,
and Mdoc. The role of the confidence threshold δs in the activation
module is to optimize human-machine resource allocation. In Table
1, we observe that δs reduced human effort by 26.3%, 4.2%, 8.5%,
and 9.1% on the MZ-4, Dxy, MZ-10, and MDD datasets, respec-
tively. The stop criterion in the diagnosis module is used to end the
dialogue, and δd can timely detect whether the symptom informa-
tion is sufficient, significantly reducing dialogue turns and human ef-
fort. The doctor matrix Mdoc is used to enhance the symptom atten-
tion scores of doctors, improving disease diagnosis accuracy because
doctors with medical knowledge can compensate for AI’s instability.

5.4 Impact of two hyperparameters

Effect of Weight γ. While computing attention heads, we use
the weight γ to control the proportion of doctor-enhanced attention
scores. As shown in Figure 5(a), we explore the impact of different
γ values (ranging from 0.9 to 0.1) on the accuracy of our framework
on the Dxy and MDD datasets. We observe that on the MDD dataset,
Acc first increases and then decreases, reaching its maximum at γ =
0.7. In contrast, on the Dxy dataset, Acc first decreases and then in-
creases, reaching its maximum at γ = 0.9. Additionally, adopting an
appropriate weight γ can enable HAIformer to achieve the same ac-
curacy as Doctor, indicating that proper emphasis on doctor-related
symptoms can enhance the performance of the machine module.

Effect of Max Turn λmax. As shown in Figure 5(b), we con-
duct experiments on the Dxy dataset with different max turns
(i.e., 5/10/15/20). HAIformer’s Acc at different λmax outperform
Transformer-based models (CoAD, MTDiag) and RL-based models
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Table 2: Real-world experimen-
tal results under the conditions
of four testing systems.

Model Acc Turn HE

CoAD 77.5 10.0 −
HAIformer 82.5 2.0 0.4
RealDoc 91.3 3.9 3.9
HAI-Doc 91.3 4.2 2.6

Table 3: Summary of doctors’ questionnaire. For Q6, 7=Very strongly prefer HAIformer over RealDoc

ID Question HAIformer RealDoc

Q1 Is the interface of this system easy to operate? 5.0(sd=1.0) 4.5(sd=0.5)
Q2 How do you feel about the mental pressure when handling tasks? 2.0(sd=1.0) 3.5(sd=1.5)
Q3 Can the system reduce doctor’s workload? 5.0(sd=1.0) N/A
Q4 Can the system help you screen patients’ symptoms? 6.0(sd=0.0) N/A
Q5 Would you like to use the system in the future? 6.5(sd=0.5) N/A
Q6 Overall Preference 6.5(sd=0.5)

(a) CoAD (AI) (b) RealDoc (Human) (c) HAIformer

Figure 6: Interface for online consultation system. The experiments
on the system 4 (HAI-Doc) are conducted on the HAIformer system.

(PPO, DQN), especially at λmax of 5. This indicates that HAIformer
can maintain high accuracy even with fewer max turns. Overall, as
λmax increases, each model’s Invalid Inquiry (IvI) also increases.
We observe that HAIformer’s IvI is significantly better than that of
Transformer-based models and RL-based models. Further analysis
reveals that HAIformer can achieve high diagnosis accuracy at the
cost of fewer invalid inquiries, which is patient-friendly.

5.5 Clinical Evaluation

We recruit two experienced clinical doctors and forty volunteer pa-
tients who have experienced bronchitis, dyspepsia, diarrhea, or upper
respiratory infection. As shown in the figure 6, we design four testing
systems to support clinical evaluation:

• CoAD: the system involving only machines;
• RealDoc: the system involving only real-world doctors;
• HAIformer: the system using our human-AI framework;
• HAI-Doc: the system involving real-world doctors conducting fi-

nal consultations after the diagnosis made by HAIformer;

Each doctor participates in two studies: the first doctor sequentially
uses RealDoc and HAI-Doc to provide consultation services to pa-
tients, while the second doctor sequentially uses HAI-Doc and Re-
alDoc. The average duration of each study is approximately 65 min-
utes. Patients also use CoAD for additional testing. During the eval-
uation process, we record three metrics (Acc, Turn, HE) for four
systems (HAIformer results based on HAI-Doc before the final doc-
tor consultation). Finally, doctors provide feedback by completing a
questionnaire of six seven-scaled Likert questions. In order to avoid
bias, we refer to CoAD, RealDoc, and HAIformer as "System 1",
"System 2", and "System 3".

Table 2 presents the experimental results of four systems. Com-
pared to CoAD, HAIformer only requires 20% of Turn and HE of
0.4, leading to a 6.5% improvement in Acc. This demonstrates that
HAIformer is more suitable for clinical settings compared to models
involving only AI. When compared to RealDoc, HAI-Doc only uses
67% of HE. This implies that our framework has the potential to be
integrated into the actual process of doctor consultations, as it saves
human resources without compromising accuracy.

As shown in Table 3, compared to RealDoc, HAIformer signifi-
cantly reduces the mental pressure on doctors during consultations
while also being more accessible to operation. Additionally, doctors
indicate that HAIformer has partially alleviated their workload and
helped them screen symptoms. Finally, doctors express a higher like-
lihood of using HAIformer in the future. Overall, doctors prefer our
proposed human-AI collaboration system over manual systems.

6 Conclusion

In this paper, we collaborate AI with expert doctors to inquire about
symptoms, combining doctors’ prior knowledge to enhance AI for
online disease diagnosis tasks. We introduce a human-AI collabo-
ration framework called HAIformer, which utilizes doctor feedback
to improve diagnosis accuracy with a limited doctor workload. Af-
ter conducting experiments on four public real-world datasets, our
results show that our framework has higher accuracy than AI mod-
els and significantly reduces the number of dialogue turns required
during diagnosis. More importantly, our human subject experiments
show that, doctors prefer our framework compared to manual meth-
ods and think that HAIformer reduces their mental pressure, high-
lighting its advantages in practical applications.

6.1 Ethical Statement

All information related to patient privacy in this dataset has been
meticulously eliminated. Furthermore, the datasets have undergone a
comprehensive manual review to confirm that they contain no iden-
tifiable or offensive pieces of information. In our real-world exper-
iments, volunteer patients were informed of the simulated environ-
ment, and both patient and doctor identities were anonymized dur-
ing the online system interactions. The real-world deployment of AI
in medical diagnosis indeed raises ethical concerns. Although our
framework achieves promising results, the AI errors caused by inad-
equate data may bring potential harm to patients when directly ap-
plying the method as a diagnostic system.
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