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Abstract. Graph augmentation methods play a crucial role in im-
proving the performance and enhancing generalisation capabilities
in Graph Neural Networks (GNNs). Existing graph augmentation
methods mainly perturb the graph structures, and are usually lim-
ited to pairwise node relations. These methods cannot fully address
the complexities of real-world large-scale networks, which often in-
volve higher-order node relations beyond only being pairwise. Mean-
while, real-world graph datasets are predominantly modelled as simple
graphs, due to the scarcity of data that can be used to form higher-
order edges. Therefore, reconfiguring the higher-order edges as an
integration into graph augmentation strategies lights up a promising
research path to address the aforementioned issues. In this paper, we
present Topological Augmentation (TopoAug), a novel graph augmen-
tation method that builds a combinatorial complex from the original
graph by constructing virtual hyperedges directly from the raw data.
TopoAug then produces auxiliary node features by extracting informa-
tion from the combinatorial complex, which are used for enhancing
GNN performances on downstream tasks. We design three diverse vir-
tual hyperedge construction strategies to accompany the construction
of combinatorial complexes: (1) via graph statistics, (2) from multiple
data perspectives, and (3) utilising multi-modality. Furthermore, to
facilitate TopoAug evaluation, we provide 23 novel real-world graph
datasets across various domains including social media, biology, and
e-commerce. Our empirical study shows that TopoAug consistently
and significantly outperforms GNN baselines and other graph augmen-
tation methods, across a variety of application contexts, which clearly
indicates that it can effectively incorporate higher-order node relations
into the graph augmentation for real-world complex networks.

1 Introduction

Graph Neural Networks (GNNs) [3, 13, 20, 33, 41] are power-
ful tools for learning the representation of relationships between
objects, ranging from social networks [25], biology [29] to e-
commerce [16, 24, 26]. Representation learning tasks, such as node
prediction, constitute a major category of tasks for GNNs. However,
limitations in the generalisability of GNNs have obstructed their
broader application in real-world settings [30].

Several graph augmentation techniques have been introduced to
enhance the performance and foster better generalisation for GNNs,
specifically in the context of node prediction tasks involving large
graphs. Current graph augmentation methods include graph structures
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perturbation [6, 28], feature perturbation [9], and label-oriented aug-
mentations [15, 35]. Simple-GNNs – GNNs that operate on simple
graphs with only pairwise relations – normally use perturbation-based
augmentation techniques. However, these augmentation methods do
not adequately grasp the complexities of real-world, large-scale net-
works that frequently display intricate node relationships beyond
having only pairwise connections. While higher-order GNNs, such as
Hypergraph Neural Networks (hyper-GNNs) [7, 34, 39], have been
developed to model higher-order node relations, they encounter a
significant challenge due to the scarcity of explicitly recorded data for
forming high-order edges in many real-world datasets. This scarcity
hampers the direct application of hyper-GNNs, as they rely on com-
prehensive data that capture complex node relations.

Although the scarcity of higher-order edges presents a challenge,
integrating advanced modeling methods into augmentation strate-
gies offers a promising avenue to address this issue. Traditionally,
graph augmentation has focused on first-order connections, primarily
modifying or adding direct links between nodes [6, 28]. However,
this approach overlooks the rich, multi-level interactions captured
in higher-order edges, which encompass indirect connections, such
as patterns of group interactions within the networks. By incorporat-
ing these higher-order relations, graph augmentation can achieve a
more nuanced understanding of network dynamics, revealing hidden
structures and patterns that are not apparent in direct links alone. This
approach is particularly beneficial in real-world complex networks,
where the interplay of various types of connections can provide deeper
insights into the underlying system, across a wide range of domains
including social media, biological ecosystems and e-commerce net-
works. Therefore, the integration of higher-order edge information
into graph augmentation strategies opens up new possibilities for more
sophisticated and accurate network analysis.

In our study, we introduce a suite of graph augmentation techniques
that extend beyond conventional approaches. Our methodology en-
compasses higher-order node relations, and we present a novel graph
augmentation strategy termed Topological Augmentation (TopoAug).
As illustrated in Figure 1, TopoAug employs a two-step augmentation
mechanism. First, TopoAug constructs hyperedges from the original
graph data, thereby forming a combinatorial complex [12]. Second,
TopoAug further processes the combinatorial complex through an
auxiliary function (faux in Figure 1) to produce auxiliary node em-
beddings. These auxiliary embeddings can then be used by GNNs
to improve their robustness and accuracy on downstream tasks. We
present three distinct ways for constructing these hyperedges: (1) via
graph statistics, (2) from multiple data perspectives, and (3) using mul-
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Figure 1: An overview of the TopoAug method showcasing three virtual hyperedge construction strategies: via graph statistics, from multiple
data perspectives, and using multiple data modalities. The process initiates with an original graph G. The virtual hyperedge construction methods
contribute to the construction of an combinatorial complex X , which is then processed through an auxiliary function faux to obtain a set of
auxiliary node features Z′. The auxiliary features Z′ are then combined with the unaugmented node embeddings Z (obtained from the original
graph via the backbone embedding function femb), to produce the final augmented node embeddings Zaug. The final augmented node embeddings
Zaug are then used in downstream tasks to enhance prediction accuracy.

tiple data modalities. Our augmentation schemes showcase notable
flexibility across a variety of datasets, catering to diverse applications
such as social, biological, e-commerce, and knowledge networks. Our
main contributions are as follows:

• We introduce TopoAug, a novel data augmentation method for
GNNs on node prediction tasks. TopoAug allows the network to
integrate high-order edge information. Along with our method,
we also release 23 new datasets, encompassing diverse domains
including social media, biology as well as e-commerce networks.

• We assess various design choices within TopoAug, including dif-
ferent methods for constructing virtual hyperedges and varying
auxiliary functions. Our examination of diverse TopoAug variants
across multiple GNNs and prediction tasks underscores TopoAug’s
versatility for various application contexts.

• Through a comprehensive empirical evaluation on various real-
world datasets and GNN architectures, we demonstrate that Topo-
Aug offers consistent and significant performance improvements
over GNN baselines and existing graph augmentation methods.

2 Related Work

Topological Deep Learning Topological deep learning extends ma-
chine learning models from graph data to data on topological domains,
such as hypergraphs and other higher-order graphs, to facilitate the
exponential growth in both the amount and the complexity of data
for computational analysis. Formally, a (simple) graph G = (V, E)
is a collection of nodes V and edges E ⊆ V × V between pairs of
nodes. This simple graph abstraction assumes that each edge only
connects two nodes. However, as discussed in the previous sections,
many real-world networks have more complex node relations than
just pairwise relations. A hypergraph is also defined as G = (V, E),
but E ⊆ P(V) \ ∅ is now the set of hyperedges, each of which can
connect two or more nodes. However, as real-world datasets are pre-
dominantly recorded as simple graphs, treating both simple edges and
“true” hyperedges (edges that connects strictly more than two nodes)
as hyperedges altogether also limits their flexibility, due to the scarcity
of data that can form true hyperedges. Recently, there emerges a novel
type of topological domain – combinatorial complexes, that enrich the
hypergraphs by separating simple edges and true hyperedges through
the inclusion of hierarchical ranks [12]:

Definition 1 (Combinatorial complex). A combinatorial complex
is a triple (V,X , rk) consisting of a node set V , a node relation set
X ⊆ P(V) \∅, and a rank function rk : X → N, such that

1. ∀v ∈ V. {v} ∈ X ; and
2. the rank function rk is order-preserving, which means that

∀x, y ∈ X . x ⊆ y =⇒ rk(x) ≤ rk(y).

For brevity, X is used as an abbreviated notation for a combinatorial
complex (V,X , rk). Typically, the rank of any singleton node relation
{v} in X is set to zero, to make it naturally aligned with simple graphs
and hypergraphs. The rank function effectively induces a hierarchical
structure on X , which can be used to separate simple edges and true
hyperedges, by assigning them with different ranks.

Graph Neural Networks for Simple Graphs Graph Neural Net-
works (GNNs) on simple graphs encode the nodes through neural
networks, and learn the representations of the nodes through message-
passing within the graph structure. GCN incorporates the convolu-
tion operation in computer vision into GNNs [20]. GAT [33] and
GATv2 [3] are another family of GNN variants that focus on improv-
ing the expressive power of GNNs by using the attention mechanism.
GraphSAGE [13] is a general inductive framework that leverages node
information to efficiently generate node embeddings for previously
unseen data. GraphSAINT [41] underscores the significance of graph
sampling-based inductive learning – it utilises diverse graph sampling
techniques and illustrates how learning on smaller, sampled graphs
can enhance training efficiency, particularly with large graphs. While
these models demonstrate the success on simple graph datasets, they
continue to face challenges in their generalisation to unseen data and
are susceptible to small variations in graph structures [4].

Data Augmentation Methods for GNNs Enhancing the gener-
alisability of GNNs through graph augmentation methods remains
a key area of research interest in recent years. Existing graph aug-
mentation methods introduce perturbations to the graph structure,
enabling GNNs trained on these altered graphs to learn and capture
invariance. This includes adding perturbations to the graphs’ adja-
cency matrices through DropEdge [28], randomly removing nodes
through DropNode [6, 40], and perturbing node edge features through
feature masking. Another line of graph augmentations relies on the
generation of synthetic data, which can be achieved through the inter-
polation of existing data via Mixup [15, 35, 42], or using generative
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models to enrich the training data [21]. However, these existing aug-
mentation strategies do not inherently increase the expressiveness of
GNNs. Standard GNNs typically aggregate information from their
neighbourhoods, a process that shares limitations with the Weisfeiler-
Lehman (1-WL) graph isomorphism test [14, 37, 38]. For instance, as
depicted in Figure 2(a), simple-GNNs fail to distinguish between two
structurally different graphs with the same node degrees due to this
limitation. This research aims to develop augmentation-based meth-
ods that address and overcome these constraints, thereby enhancing
the capabilities of GNNs beyond their current limits.

Representation Learning on Hypergraphs Hypergraphs are de-
signed to capture more complex node relations, where an edge can
connect two or more nodes. In general, GNNs for hypergraphs op-
timise the node representation through a two-step process. Initially,
the node embeddings within each hyperedge are aggregated to form a
hidden embedding of each hyperedge. Subsequently, the hidden em-
beddings of hyperedges with common nodes are aggregated to update
the representations of their common nodes. Both HGNN [10] and
HyperConv [1] precisely follow this process. The expressiveness of hy-
pergraph GNNs could be enhanced by modifying this procedure. For
instance, HyperGCN [39] refines the node aggregation within hyper-
edges using mediators [5]. HyperAtten [1] uses attention to measure
the degree to which a node belongs to a hyperedge. HNHN [7] applies
nonlinear functions to both node and edge aggregation processes. ED-
HNN [34] approximates continuous equivariant hypergraph diffusion
operators on hypergraphs by feeding node representations into the
message from hyperedges to nodes. GNNs designed for hypergraphs
are effective in modelling complex networks. However, real-world
datasets are predominantly recorded as simple graphs, which has
limited the application of hyper-GNNs due to the scarcity of data
that can form hyperedges. In this study, we propose TopoAug that
derives hyperedges directly from the raw data, thereby extending the
applicability of hyper-GNNs to cases where only conventional simple
graph data are available. By utilising higher-order GNNs on virtually
established hyperedges to produce auxiliary features, TopoAug effec-
tively broadens the potential of hyperedges to scenarios previously
confined to simple graph data.

3 Method

3.1 Combinatorial Complex Construction

Inspired by the combinatorial complex modelling, TopoAug attempts
to capture complex relations in real-world large networks by construct-
ing a combinatorial complex from the original network. Specifically,
TopoAug augments a simple graph by constructing a set of hyper-
edges Eh ⊆ P(V) \ ∅ from the original graph, via a hyperedge
extraction function h : G× R

|V|×dv × R
|E|×de → P(P(V)), where

G denotes the input graph space, R|V|×dv denotes the dv-dimensional
node feature space, R|E|×de denotes the de-dimensional edge feature
space, and P(P(V)) represents the set of all possible collections of
hyperedges, which defines the output hyperedge space:

Eh = h(G,X,E) (1)

where X ∈ R
|V|×dv denotes the node feature matrix of the graph,

with each row xv ∈ R
dv being the dv-dimensional features of node v,

and E ∈ R
|E|×de denotes the edge feature matrix of the graph, with

each row ee ∈ R
de being the de-dimensional features of edge e.

Each hyperedge eh ∈ Eh is a subset of V containing at least three
nodes, thereby capturing complex multi-node relations. TopoAug then
constructs the combinatorial complex (V,X , rk) from the original

(a) Without TopoAug

(b) With TopoAug

Figure 2: Graph statistics-based TopoAug can help GNNs surpass the
limitations posed by the 1-WL test. (a) Without TopoAug, GNNs are
unable to distinguish the two example non-isomorphic graphs that
have the same node degrees; (b) Since TopoAug identifies that the
right graph contains two cliques, while the left graph contains none,
GNNs can now successfully distinguish those graphs.

graph G = (V, E) and extracted hyperedges Eh, abbreviated as X ,
according to the following rules:

V remains unchanged from the original graph (2)

X = {{v} | v ∈ V} ∪ {{u, v} | (u, v) ∈ E} ∪ Eh (3)

∀x ∈ X . rk(x) =

⎧
⎪⎨

⎪⎩

0 for x = {v} where v ∈ V
1 for x = {u, v} where (u, v) ∈ E
2 otherwise (i.e., for x ∈ Eh)

(4)

Depending on the nature of the original graph, the virtual hyper-
edges can be constructed in one of the following three ways:

From the Graph Statistics For graphs that can reveal valuable
information from their local clusters and cliques, such as the social
networks, TopoAug constructs hyperedges by computing from graph
statistics, such as maximal cliques. TopoAug then groups those nodes
within the same maximal cliques. This augmentation acts as a com-
plement to the simple edges in the original graph by calculating the
local node-wise clustering relationships. TopoAug then enables GNNs
seeking to utilise local clustering information to rapidly access that in-
formation without needing to explicitly precompute it. In addition, by
separating out the local clusters and cliques from the simple edge adja-
cency of the original graph, TopoAug can prevent GNNs from mixing
up those information, thereby potentially enhancing its training perfor-
mance. Another crucial advantage for this type of augmentation is that
it enables GNNs to overcome the expressiveness limitations posed
by the 1-WL test [14, 37, 38]: it is able to help GNNs distinguish
non-isomorphic graphs with identical node degrees, by specifying
their distinct maximal cliques, as illustrated in Figure 2.

From a different Data Perspective Many graphs carry information
from different data perspectives. Stacking various types of informa-
tion from different data perspectives, whether as the graph’s node
features or edges, can potentially make the learning challenging, since
the underlying GNN would then have to learn from these manually
mixed information. Real-world examples of such graphs include the
biological networks, where both entity-entity interactions and geo-
metrical information are critical to the prediction tasks. For example,
gene regulatory interactions might be represented as an adjacency
matrix, while the spatial positioning of genes can be used to establish
higher-order relationships. The data inherently offer multiple ways
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for connecting entities within a graph. In this scenario, TopoAug
constructs hyperedges by extracting information, preferably featur-
ing multi-node relations, from a different data perspective than the
node embeddings and edges. These hyperedges can then be processed
separately from the node embeddings and edge adjacency, which are
derived from a different data perspective, making them ultimately
serve as auxiliary node embeddings for the prediction tasks. This type
of virtual hyperedge augmentation serves not only as a complement
to the simple edges, but also as an enhancement to the overall infor-
mation obtained – it takes additional information from a different data
source that contain high-order node relations.

From a different Data Modality For graphs that incorporate in-
formation from various data modalities, such as product networks
containing both textual and image data, effectively integrating the
information from different data modalities can be challenging for
a GNN. Similar to the previous scenario, TopoAug addresses this
by constructing hyperedges using information from one of the data
modalities, preferably exhibiting multi-node relations, which are dis-
tinct from the other data modalities used by node embeddings and
edges. With this approach, information from different data modalities
can be processed independently, and the data from the additional
modality essentially serve as an augmentation. Note that this differs
from simply incorporating an additional data source into the node em-
bedding, as the alternative data modality may only convey ‘grouping’
information, which is more suitably represented as higher-order graph
relations, such as hyperedges. As the hyperedges are constructed from
a different modality, this type of hyperedge augmentation provides
both a complement to the simple edges of the original graph, and an
enhancement to the overall information.

In topological deep learning, while the simple edges of the graph
can be represented as an adjacency matrix A ∈ {0, 1}|V|×|V|, where
Auv = 1 if (u, v) ∈ E and 0 otherwise, the hyperedges, as well
as the final augmented combinatorial complex, can be represented
as incidence matrices H ∈ {0, 1}|V|×|Eh| and H ∈ {0, 1}|V|×|X|

respectively, with each entry Hveh (Hvx) = 1 if v ∈ eh (x) and 0
otherwise. The combinatorial complex X is then further processed to
produce the final auxiliary features for the original graph’s nodes.

3.2 Utilising the Hyperedge Information

In order to thoroughly and appropriately utilise the additional infor-
mation from TopoAug’s combinatorial complex, we introduce a node
feature augmentation pipeline consisting of:

1. A combinatorial complex construction function fCC : G → X
mapping from the graph space G to the combinatorial complex
space X. fCC also encapsulates a hyperedge construction function
h (defined in Section 3.1); followed by

2. A node embedding function femb : G × R
|V|×dv × R

|E|×de →
R

|V|×dz that operates on the original graph, together with its unaug-
mented node and edge features, to compute the dz-dimensional
original node embeddings; and

3. An auxiliary function faux : X× R
|V|×dv × R

|E|×de → R
|V|×dz′

that operates on the constructed combinatorial complex, together
with the original graph’s unaugmented node and edge features to
produce the dz′ -dimensional auxiliary node features.

The pipeline outputs the final, dzaug -dimensional augmented node
embeddings as defined in the following equations:

TopoAug(G,X,E) = (femb(G,X,E) ‖ faux(fCC(G),X,E))W
(5)

where W ∈ R
(dz+dz′ )×dzaug denotes the weight matrix of the output

layer, and ‖ denotes column-wise concatenation. The final augmented
node embeddings are then used for the downstream prediction tasks.
The complete TopoAug pipeline is illustrated in Figure 1. While this
flexible TopoAug pipeline allows other mechanisms to integrate the
auxiliary features into the original graph than a simple concatenation
followed by an output layer, it is worth pointing out that this work
primarily focuses on exploring the potential of leveraging GNN per-
formance through incorporating higher-order node relations into the
original graphs. Designing fine-grained feature integration mecha-
nisms is not the main focus of this research.

4 Experiments

4.1 Datasets

To the best of our knowledge, there is a deficiency in the quantity
and variety of widely-accepted graph datasets that support data aug-
mentation beyond simple graphs. This is largely attributable to the
scarcity of explicitly labelled higher-order node relationships. In order
to thoroughly evaluate the effectiveness of TopoAug across varied
domains, we build 23 novel graph datasets derived from real-world
networks across varied domains, including social media, biology, and
e-commerce. Care has been taken to ensure that the datasets do not
contain any personally identifiable information. The 23 datasets can
be split into three groups according to the intended virtual hyperedge
construction process for TopoAug:

MUSAE We build eight social networks derived from the Face-
book pages, GitHub developers and Twitch gamers, plus three En-
glish Wikipedia page-page networks on specific topics (chameleons,
crocodiles and squirrels) based on MUSAE [29]. Nodes represent
users or articles, and edges are mutual followers relationships be-
tween the users, or mutual links between the articles. These datasets
are intended to assess TopoAug’s effectiveness in constructing virtual
hyperedges from the graph statistics: on these datasets, TopoAug con-
structs the virtual hyperedges to be mutually connected sub-groups
that contain at least three nodes (i.e., maximal cliques with sizes of
at least 3). The tasks for the Facebook, GitHub, and Twitch datasets
involve multi-class classification to predict the categories of users or
pages, while the task for the Wiki dataset is a regression task that
predicts the average monthly traffic of a web page.

GRAND We select and build ten gene regulatory networks in dif-
ferent tissues and diseases from GRAND [2], a public database for
gene regulation. Nodes represent gene regulatory elements [23] with
three distinct types: protein-encoding gene, lncRNA gene [22], and
other regulatory elements. Edges are regulatory effects between genes.
We train a CNN [8] and use it to take the gene sequence as input and
create a 4,651-dimensional embedding for each node. These datasets
are intended to assess TopoAug’s effectiveness in constructing vir-
tual hyperedges from a different data perspective: on these datasets,
TopoAug constructs the virtual hyperedges by grouping geometri-
cally nearby genomic elements on the chromosomes, i.e., the genomic
elements within 200k base pair distance. The task is a multi-class
classification of gene regulatory elements.

Amazon Following existing works on graph representation learning
on e-commerce networks [31, 41], we faithfully reconstruct a subset of
the OGB [17] ogbn-products dataset, and build two product co-
purchase/co-review networks based on the Amazon Product Reviews
dataset [16, 24, 26]. Nodes represent products, and an edge between
two products is established if a user buys or writes reviews for both
products. Node features are extracted based on the textual description
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Table 1: Aggregated statistics of the datasets used for TopoAug evaluation.

Name
Hyperedge
Construction
Mechanism

#Datasets Avg.
#Nodes

Avg.
#Edges

Avg.
#Hyperedges

Avg.
Node

Degree

Avg.
Hyperedge

Degree
#Classes

MUSAE-GitHub Graph Statistics 1 37,700 578,006 223,672 30.7 4.6 4
MUSAE-Facebook Graph Statistics 1 22,470 342,004 236,663 30.4 9.9 4
MUSAE-Twitch Graph Statistics 6 5,686 143,038 110,142 50.6 6.0 2
MUSAE-Wiki Graph Statistics 3 6,370 266,998 118,920 88.8 14.4 Regression

GRAND-Tissues Multi-Perspective 6 5,931 5,926 11,472 2.0 1.3 3
GRAND-Diseases Multi-Perspective 4 4,596 6,252 7,743 2.7 1.3 3
Cora Multi-Perspective 2 2,708 5,429 1,326 4.0 3.5 7
Pubmed Multi-Perspective 1 19,717 44,338 7,963 4.5 4.3 3

Amazon-Computers Multi-Modality 1 10,226 55,324 10,226 10.8 4.0 10
Amazon-Photos Multi-Modality 1 6,777 45,306 6,777 13.4 4.8 10

of the products. These datasets are intended to assess TopoAug’s
effectiveness in constructing virtual hyperedges from a different data
modality: on these datasets, TopoAug introduces the image modality
into the construction of virtual hyperedges. To be specific, the raw
images of the products are fed into a CLIP [27] classifier, and a 512-
dimensional feature embedding for each image is returned to assist
the clustering. TopoAug then constructs the virtual hyperedges by
grouping products whose image embeddings have pairwise distances
within a certain threshold. The task is to predict the sub-category of a
product in a multi-class classification setup.

In addition to the 23 novel datasets, we also adopt three commonly
used citation datasets: Cora-CoCitation, Cora-CoAuthorship, and
Pubmed-CoCitation, to match TopoAug’s performance with the com-
munity standard. We use these three datasets to also assess TopoAug’s
effectiveness in constructing virtual hyperedges from a different data
perspective: the edges of the original graph and the virtual hyper-
edges constructed by TopoAug are co-citation links and co-authorship
groups respectively, or vice versa (i.e., co-authorship links and co-
citation groups). Table 1 reports the key graph statistics for each
dataset group, and more details of the datasets are described in [43].
We make our source code and full datasets publicly available at
https://github.com/VictorZXY/TopoAug.

4.2 Experimental Setup

Training Details We run all the experiments on NVIDIA A100 and
V100 GPUs, with up to 40GB memory. Adam [19] is used as the
optimiser, and CosineAnnealingLR [11] is used as the learning rate
scheduler for all training. For each experiment, the nodes of the graph
dataset are randomly split into training, validation, and test sets with
a split ratio of 6:2:2. All models are trained for 500 epochs. For node
classification tasks, the negative log likelihood loss (NLLLoss) is used
as the loss function. For node regression tasks, the mean square error
(MSELoss) is used as the loss function. Each experiment typically
takes less than 5 minutes to train, when ED-HNN is not incorporated
in the model. Due to the significantly larger architecture of ED-HNN,
experiments involving it can take up to 2 hours.

Hyperparameter Settings We perform a hyperparameter search for
the learning rate and dropout rate, while keeping the hidden dimen-
sion of the layers fixed as 64. To ensure fair comparison, all evaluated
GNNs (GCN, GAT, GraphSAGE, HyperConv, and ED-HNN) share
the same hyperparameter combinations. After hyperparameter search-
ing, we adopt the following hyperparameter selections: learning rate
= 0.001, and dropout rate = 0.5. For the additional hyperparameters of
ED-HNN, we closely adhere to the hyperparameter settings specified
in the original ED-HNN paper [34], and set the number of all inner
multi-layer perceptrons (MLPs) within ED-HNN to 2.

4.3 Designing TopoAug

As described in Section 3.2, the TopoAug pipeline consists of a com-
binatorial complex construction function fCC that constructs a com-
binatorial complex from the original graph, followed by a backbone
node embedding function femb that operates on the original graph to
produce the unaugmented node embeddings, and an auxiliary func-
tion femb that operates on the constructed combinatorial complex to
produce the auxiliary node features. This opens up the following
questions regarding the practical design of TopoAug:

• At what point should the auxiliary node features be integrated with
the original node information – directly at the input side, or within
the middle-layer embeddings?

• What is the appropriate type, and consequently, the optimal choice
of the auxiliary function?

We investigate these design choices and analyse the optimal usage
of TopoAug through a series of ablation studies.

4.3.1 Appropriate Phase for Applying TopoAug

The auxiliary features generated by TopoAug provide significant
flexibility regarding the stage of integration, including simultaneous
injection with the input node features or blending with the original
GNN’s activations. To thoroughly identify the appropriate place for
inserting TopoAug’s auxiliary features, we compare the performance
of TopoAug with the following settings:

1. concatenate TopoAug’s auxiliary features directly with the input
node features, then proceed the concatenated features with a lin-
ear layer, before feeding into the embedding GNN (denoted as
TopoAug(faux, input), where faux is the auxiliary function);

2. concatenate TopoAug’s auxiliary features with the GNN activa-
tions, followed by a linear layer (denoted as TopoAug(faux, emb.)).

We then conducted experiments on the MUSAE-GitHub, GRAND-
Brain and Amazon-Computers datasets, each featuring a distinct vir-
tual hyperedge construction strategy, to evaluate these two settings.
The augmentations are applied to a GCN [20]. HyperConv [1] and
ED-HNN [34] are selected as the auxiliary functions for TopoAug,
since HyperConv is one of the most popular hyper-GNN baselines,
and ED-HNN represents the current state-of-the-art in hyper-GNNs.

Table 2 summarises the results for this set of ablation studies. The
results show a consistent and significant increase in accuracy for GCN
with TopoAug(faux, emb.) compared to the vanilla GCN and also GCN
with TopoAug(faux, input). This result suggests that inserting TopoAug’s
auxiliary features at the output embedding phase is the more appro-
priate choice. Intuitively, this is because concatenating the auxiliary
features with the node features at the input phase can potentially mix
up different types of input information, and confuse the GNN.
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Table 2: Evaluating different phases for applying TopoAug
(TopoAug(faux, input), TopoAug(faux, emb.)): accuracy (%) of the TopoAug
variants using GCN as the backbone embedding function femb,
whose auxiliary features are integrated at different stages, com-
pared with the vanilla GCN without any augmentation. GCN with
TopoAug(faux, emb.) variants show a consistent and much more signif-
icant accuracy enhancement compared with vanilla GCN and GCN
with TopoAug(faux, input) variants.

Method GitHub Brain Computers

GCN baseline 87.2 ± 0.0 62.5 ± 0.0 75.6 ± 4.1

TopoAug(HyperConv, input) 86.9 ± 0.3 63.6 ± 1.3 96.0 ± 0.5
TopoAug(ED-HNN, input) 87.1 ± 0.5 63.6 ± 1.3 95.8 ± 0.4

TopoAug(HyperConv, emb.) 87.2 ± 0.0 63.7 ± 0.2 96.8 ± 0.5
TopoAug(ED-HNN, emb.) 87.4 ± 0.3 66.7 ± 2.6 98.1 ± 0.7

Table 3: Evaluating different types for the auxiliary function faux: accu-
racy (%) of TopoAug with various simple-GNNs and hyper-GNNs as
auxiliary functions, using GCN as the backbone embedding function
femb, compared with the vanilla GCN without any augmentation. The
TopoAug variants with hyper-GNNs as auxiliary functions clearly
outperform TopoAug with simple-GNNs.

Method GitHub Brain Computers

GCN baseline 87.2 ± 0.0 62.5 ± 0.0 75.6 ± 4.1

TopoAug(GAT) 86.7 ± 0.1 62.5 ± 0.3 91.3 ± 0.1
TopoAug(GraphSAGE) 87.0 ± 0.4 65.3 ± 0.9 93.0 ± 0.0

TopoAug(HyperConv) 87.2 ± 0.0 63.7 ± 0.2 96.8 ± 0.5
TopoAug(ED-HNN) 87.4 ± 0.3 66.7 ± 2.6 98.1 ± 0.7

4.3.2 Choice of the Auxiliary Function Type

It is intuitive to use hyper-GNNs as auxiliary functions (faux) in
TopoAug, so that hyperedge information can be fully captured. How-
ever, it is still worth verifying that hyper-GNNs indeed outperform
simple-GNNs as auxiliary functions in TopoAug, in order to prove
the efficacy of TopoAug. Therefore, we compare the performance of
TopoAug with different classes of GNNs as the auxiliary function,
denoted as TopoAug(faux): (1) hyper-GNNs, namely HyperConv and
ED-HNN; (2) simple-GNNs, namely GAT [33] and GraphSAGE [13].
These ablation experiments are again conducted on the MUSAE-
GitHub, GRAND-Brain and Amazon-Computers datasets, and GCN
remains as the GNN for applying TopoAug. Starting from this stage,
all experiments apply TopoAug’s auxiliary features at the output em-
bedding phase. Table 3 reports the results for this set of ablation stud-
ies, which clearly show that TopoAug with hyper-GNNs as auxiliary
functions outperform TopoAug with simple-GNNs, thereby justifying
that TopoAug indeed utilises the virtual hyperedges it constructs.

4.3.3 Identifying the Best Auxiliary Function

Now that the efficacy of TopoAug has been affirmed through the
aforementioned ablation studies, we conduct extensive experiments
to identify the optimal auxiliary function for TopoAug, denoted as
femb+TopoAug(faux). We use GCN, GAT and GraphSAGE as the em-
bedding GNNs femb for applying TopoAug, and test the performance
of TopoAug with either HyperConv or ED-HNN as the auxiliary func-
tion faux, on all 23 node classification datasets we build (details of the
datasets are described in Section 4.1).

For clarity, we present in Table 4 the average rankings of those six
TopoAug applications, together with the three vanilla GNNs without
TopoAug. The results clearly show that all TopoAug applications sur-
pass the performance of the vanilla GNNs, which further validate the

Table 4: Evaluating the optimal auxiliary function faux for TopoAug:
average accuracy rankings of three vanilla GNNs and TopoAug with
various auxiliary functions on different GNNs, across 23 node classi-
fication datasets. GraphSAGE with TopoAug using HyperConv as the
auxiliary function proves to be the best-performing model.

Method Average Ranking

GCN 6.96
GAT 7.91
GraphSAGE 7.09

GCN+TopoAug(HyperConv) 5.26
GCN+TopoAug(ED-HNN) 3.09

GAT+TopoAug(HyperConv) 5.22
GAT+TopoAug(ED-HNN) 3.04

GraphSAGE+TopoAug(HyperConv) 2.26

GraphSAGE+TopoAug(ED-HNN) 2.74

superior efficacy of TopoAug. Among those TopoAug variants, Graph-
SAGE with TopoAug(HyperConv) demonstrates to be the most effective
combination. In addition, for both GCN and GAT, TopoAug(ED-HNN)

outperforms TopoAug(HyperConv), indicating a positive correlation be-
tween the expressiveness of the auxiliary hyper-GNN and the perfor-
mance gain provided by TopoAug. This is likely due to the enhanced
ability of more expressive hyper-GNNs to extract hyperedge informa-
tion, leading to more informative auxiliary features.

4.4 Main Results

We thoroughly evaluate the performance of TopoAug against three
simple-GNN baselines: GCN, GAT and GraphSAGE, and two hyper-
GNN baselines: HyperConv and ED-HNN, on all 23 node classifi-
cation datasets we build. We include the two hyper-GNNs as base-
lines since the augmented combinatorial complexes constructed by
TopoAug also make use of the hyperedge information.

Moreover, we also compare the performance of TopoAug with
four different existing graph augmentation methods: DropNode [40],
DropEdge [28], Mixup [42] and NodeFeatureMasking [9]. We eval-
uate those graph augmentation methods on seven selected datasets:
MUSAE-GitHub and MUSAE-TwitchDE (featuring virtual hyperedge
construction from graph statistics); Cora-CoCitation, GRAND-Brain,
and GRAND-LungCancer (featuring virtual hyperedge construction
from different data perspectives); as well as Amazon-Computers and
Amazon-Photos (featuring virtual hyperedge construction from dif-
ferent data modalities). Each of dataset chosen in this comparison is
among the largest graphs in their corresponding dataset subgroups.
GCN and GraphSAGE are used as the GNNs for the evaluation with
the graph augmentation methods. Details about the experimental set-
tings and the full results are provided in [43].

Table 5 summarises the results of the experiments. The results un-
equivocally demonstrate that TopoAug consistently outperforms the
vanilla GNN baselines and other graph augmentation methods, across
all three types of virtual hyperedge construction strategies. This again
highlights the superiority of TopoAug, as well as the idea of incorpo-
rating higher-order node relations into graph augmentation methods
for real-world complex networks. Besides, TopoAug also outperforms
both hyper-GNN baselines, thereby indicating that integrating the
original graph with the auxiliary features as augmentations is prefer-
able over only learning from the virtual hyperedges and auxiliary
features alone. Among the two backbone embedding GNNs on which
TopoAug is applied, GraphSAGE with TopoAug performs better than
GCN with TopoAug in general, which is likely due to the more ex-
pressive nature of GraphSAGE on those tasks, compared with GCN.
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Table 5: Accuracy (%) of TopoAug and corresponding baselines and existing graph augmentation methods on selected node classification datasets.
*The results for GCN and GAT on the Cora-CoCitation dataset are directly taken from the GAT paper [33]. **The results for HyperConv and
ED-HNN on the Cora-CoCitation dataset are directly taken from the ED-HNN paper [34]. The results clearly show superior performance of
TopoAug compared to the baseline GNNs and existing graph augmentation methods.

Method Graph Statistics Multi-Perspective Multi-Modality

GitHub TwitchDE Cora-
CoCitation Brain Lung

Cancer Computers Photos

RandomGuess 25.0 50.0 14.3 33.3 33.3 10.0 10.0

GCN 87.2 ± 0.0 65.5 ± 0.2 81.4 ± 0.5* 62.5 ± 0.0 59.6 ± 0.1 75.6 ± 4.1 29.5 ± 1.7
GAT 86.4 ± 0.1 64.5 ± 0.4 83.0 ± 0.7* 62.5 ± 0.1 59.6 ± 0.0 74.2 ± 4.3 43.4 ± 7.4
GraphSAGE 87.1 ± 0.2 65.7 ± 0.1 83.2 ± 0.1 61.8 ± 0.2 61.5 ± 1.5 75.0 ± 1.9 36.6 ± 6.1
HyperConv 80.8 ± 0.1 65.4 ± 0.2 79.1 ± 1.0** 62.5 ± 0.0 59.3 ± 0.3 84.2 ± 2.0 33.7 ± 5.9
ED-HNN 86.2 ± 0.1 68.1 ± 0.6 80.3 ± 1.4** 66.3 ± 1.3 60.2 ± 1.4 97.3 ± 0.2 78.6 ± 1.2

GCN+DropNode 86.2 ± 0.1 67.9 ± 0.7 85.5 ± 1.0 63.3 ± 0.2 58.2 ± 1.3 91.8 ± 2.1 71.1 ± 0.5
GCN+DropEdge 86.6 ± 0.2 67.7 ± 1.0 86.3 ± 0.4 63.2 ± 0.4 60.7 ± 0.3 92.2 ± 0.7 78.6 ± 0.6
GCN+Mixup 85.8 ± 0.3 67.6 ± 0.8 85.6 ± 1.4 65.0 ± 1.0 59.0 ± 0.6 87.7 ± 2.9 78.0 ± 0.1
GCN+NodeFeatureMasking 85.9 ± 0.0 67.8 ± 0.2 85.2 ± 0.9 64.0 ± 1.2 59.2 ± 0.8 91.7 ± 0.3 80.7 ± 0.6

GraphSAGE+DropNode 86.2 ± 0.1 68.3 ± 0.6 86.4 ± 0.0 63.3 ± 0.1 64.5 ± 0.8 95.9 ± 0.2 69.8 ± 0.5
GraphSAGE+DropEdge 86.8 ± 0.1 67.8 ± 1.3 87.1 ± 0.1 64.2 ± 0.2 64.7 ± 0.7 95.9 ± 0.3 80.5 ± 0.6
GraphSAGE+Mixup 85.9 ± 0.3 67.1 ± 0.2 87.2 ± 1.3 64.2 ± 1.5 63.4 ± 0.1 92.2 ± 0.0 71.5 ± 0.3
GraphSAGE+NodeFeatureMasking 86.1 ± 0.0 68.1 ± 0.7 87.1 ± 0.5 64.4 ± 0.4 64.9 ± 2.3 95.7 ± 0.2 79.3 ± 0.8

GCN+TopoAug 87.4 ± 0.3 67.9 ± 0.9 86.6 ± 1.4 66.7 ± 2.6 63.7 ± 0.9 98.1 ± 0.7 80.9 ± 0.3

GraphSAGE+TopoAug 87.3 ± 0.2 68.3 ± 0.3 87.2 ± 1.8 66.6 ± 1.6 66.4 ± 0.2 98.2 ± 0.7 80.9 ± 0.7

Table 6: MSE (↓) of TopoAug and three vanilla GNNs on the node
regression datasets (MUSAE-Wiki). The results clearly show superior
performacne of TopoAug compared to the vanilla GNN baselines.

Method Squirrel Crocodile Chameleon

GCN 7.319 ± 0.000 8.761 ± 0.001 6.779 ± 0.005
GAT 7.313 ± 0.007 8.093 ± 0.054 6.249 ± 0.261
HyperConv 7.230 ± 0.002 8.706 ± 0.000 6.712 ± 0.001

GCN+TopoAug 6.557 ± 0.154 4.851 ± 0.014 5.515 ± 0.008
GAT+TopoAug 6.049 ± 0.204 4.875 ± 0.031 4.665 ± 0.050

It is noted that on the MUSAE-TwitchDE and Cora-CoCitation
datasets, although TopoAug is still the best performing method, its
performance improvements compared to other graph augmentation
methods are not as significant as on other datasets. This can be at-
tributed to the following specific characteristics of the two datasets:

• The MUSAE-TwitchDE and Cora-CoCitation datasets are com-
paratively small containing a few thousands of nodes, and most
appropriate graph augmentation methods can help the GNNs satu-
rate in extracting their information.

• The virtual hyperedges for the MUSAE-TwitchDE dataset are con-
structed by computing from the original graph’s statistics, which
does not introduce new information to the graph, thus also limiting
TopoAug’s effectiveness in leveraging GNNs’ performance.

• The virtual hyperedges for the Cora-CoCitation dataset are con-
structed by grouping papers with co-authors, which are not diverse
to the co-citation links and may contain redundant information,
compared with the GRAND (gene regulations vs. geometrical in-
formation) and Amazon (text vs. image modality) datasets.

These findings provide valuable guidance for employing TopoAug in
real-world applications, in order to fully unleash its potential.

In addition, we also perform supplementary evaluation of TopoAug
on the three node regression datasets: MUSAE-Wiki-Chameleon,
MUSAE-Wiki-Crocodile and MUSAE-Wiki-Squirrel, against the
GCN, GAT and HyperConv baselines, and report their MSEs in Ta-
ble 6. The results also show consistently and significantly lower MSEs
when TopoAug is applied, which further validate the superiority of

TopoAug. On those node regression datasets, GAT with TopoAug
generally outperforms GCN with TopoAug, since GAT is more ex-
pressive than GCN on those tasks. This observation also aligns well
with the results on the node classification datasets, which suggests
that TopoAug is stable across various types of tasks.

5 Conclusion

This work introduces Topological Augmentation (TopoAug), a novel
graph augmentation method designed to improve the performance
of GNNs in node prediction tasks across diverse real-world large-
scale graph datasets. TopoAug enhances the capability of GNNs by
constructing combinatorial complexes from the original graphs using
virtual hyperedges, and then generating auxiliary features for each
node. This improvement allows even basic GNN models to surpass the
limitations of the 1-WL test. Empirical results confirm that TopoAug
outperforms traditional graph augmentation methods in terms of node
prediction across various data domains.

For future work, there are several potential methods that could be
explored to further utilise the auxiliary information. These include
applying a cross-attention mechanism, as detailed in works [32, 36],
to effectively integrate the auxiliary and original features. Another
unexplored avenue is the concurrent optimisation of the auxiliary
and original features using contrastive loss, a technique discussed in
ViLT [18]. Employing these methods has the potential to optimise the
integration and utility of the auxiliary features within GNNs, thereby
further increasing their overall performance.
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