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Abstract. Knowledge tracing (KT) is a prediction task that aims
to predict students’ future performance based on their past learning
data. The rapid progress in attention mechanisms has led to the emer-
gence of various high-performing attention based KT models. How-
ever, in online or personalized education settings, students’ varying
learning paths result in different lengths of student interaction se-
quences, which poses a significant challenge for attention based KT
models as their context window sizes are fixed during both training
and prediction stages. We refer to this as the length extrapolation of
KT model. In this paper, we propose extraKT to facilitate better ex-
trapolation that learn from student interactions with a short context
window and continue to perform well across various longer context
window sizes at prediction stage. Specifically, we negatively bias
attention scores with linearly decreasing penalties that are propor-
tional to query-key distance, which efficiently represents short-term
forgetting characteristics of student knowledge states. We conduct
comprehensive and rigorous experiments on three real-world educa-
tional datasets. The results show that our extraKT model exhibits ro-
bust length extrapolation capability and outperforms state-of-the-art
baseline models in terms of AUC and accuracy. To encourage repro-
ducible research, we merge our data and code to the publicly avail-
able pyKT benchmark at https://github.com/pykt-team/pykt-toolkit.

1 Introduction

Knowledge tracing (KT) is a prediction task that aims to predict stu-
dents’ future performance based on their past learning data, such as
their responses to previous exercises, assessments, and engagement
with educational content. Figure 1 provides an illustrative example
of KT task. Such predictive capabilities can potentially help students
learn better and faster when paired with personalized learning mate-
rials, which is crucial for developing next-generation intelligent and
personalized education [8].

Recently, the rapid progress in attention mechanisms [25] has led
to the emergence of various high-performing attention based KT
models, such as SAKT [12], SAINT [3], AKT [5] and simpleKT
[9]. These KT models effectively extract students’ knowledge states
by utilizing attention mechanisms to capture the intrinsic relation-
ships between questions and corresponding knowledge components
(KCs). The KC is a generalization of everyday terms like concept,
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principle, fact, or skill. Effectively capturing such relationships may
significantly enhance the KT model performance [10, 4].

In online or personalized education settings, students’ varying
learning paths result in different lengths of student interaction se-
quences. KT models are expected to handle interaction sequences
of varying lengths, which is crucial for real-world educational ap-
plications. However, this presents a significant challenge for atten-
tion based KT models as the context window sizes in these models
are fixed during both the training and prediction stages. To address
this problem, we propose enabling the attention based KT models to
train on student interactions with a short context window and con-
tinue to perform well as the size of the context window increases at
the prediction stage. We refer to this as the length extrapolation of
KT model.

Specifically, we present a novel KT model, namely extraKT,
which utilizes an efficient position embedding method to facilitate
better extrapolation. By negatively biasing attention scores with lin-
early decreasing penalties proportional to the distance between the
relevant key and query, our extraKT is able to learn from student in-
teraction sequences with a short context window and perform well
with longer context window sizes at prediction stage. To ensure the
reliability and comparability of our results, we choose to follow a
publicly available standardized KT task evaluation protocol [8]. We
conduct comprehensive and rigorous experiments on three real-world
educational datasets, comparing a wide range of baselines. The re-
sults demonstrate that our extraKT model exhibits robust length ex-
trapolation capability and outperforms state-of-the-art baseline mod-
els in terms of AUC and accuracy.

2 Related Work

2.1 Attention Based KT Models

Attention based KT models capture complex relationships among
students’ historical interactions by using attention mechanisms.
Pandey et al. were the first to utilize attention to predict student
knowledge mastery [12]. Since then, employing attention mecha-
nisms to predict students’ learning performance has become main-
stream. Choi et al. represented students’ interactions by using the
encoder and decoder of the Transformer [3]. Ghosh et al. proposed
a monotonic attention mechanism to model the forgetting behavior
of students by introducing an exponential time-related decay [5]. Liu
et al. used dot-product attention function to capture question-specific
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Figure 1: An illustration of the KT task.

variations of the individual differences among questions and their
associated KCs [9]. Yin et al. designed a temporal and cumulative
attention mechanism to diagnose students’ knowledge proficiency
from each question mastery state and applied contrastive learning
to achieve stable prediction performance [28]. However, in the afore-
mentioned attention based KT models, the context window size has
been fixed during training and prediction stages.

2.2 Length Extrapolation

The capability of length extrapolation enables a KT model to learn
from student interactions with a short context window and con-
tinue to perform well as the size of the context window increases
during the prediction stage. Position embeddings are crucial for
achieving length extrapolation, as demonstrated in various studies
[15, 2, 16, 23]. Sinusoidal position embedding combines input em-
beddings with those from sinusoidal functions, using either fixed or
learnable parameters [25, 7]. Unlike Sinusoidal position embedding,
Rotary position embedding combines embeddings computed by sinu-
soidal functions with queries and keys instead of input embeddings
[22, 13]. T5 position embedding provides positional information by
adding learned biases to attention scores [17]. However, KT mod-
els using these position embeddings experience a performance drop
during the prediction stage when applied to longer context windows.

Different from existing attention based KT models, inspired by
[15, 1], we introduce length extrapolation to make our extraKT
model able to learn from student interactions with a short context
window and continue to perform well with a longer context window
by penalizing attention scores with linear biases.

3 Problem Definition

Given an arbitrary question q∗, a KT model M aims to predict the
probability that a student will correctly answer q∗ based on their pre-
vious interactions. For each student S, we consider a chronologically
ordered sequence of T past interactions, denoted as S = {si}Ti=1.
Each interaction is represented as a 4-tuple s =< q, {c}, r, t >,
where q denotes the specific question, {c} refers to the associated
set of KC, r is the binary response indicating whether the student
answered the question correctly (1 for correct, 0 for incorrect), and
t represents the time step of the response. We would like to estimate
the probability pq∗ that the student will answer the arbitrary question
q∗ correctly.

In this paper, our objective is to develop a KT model M that is
able to efficiently extract student knowledge states from student in-
teractions with a short context window and continue to perform well
across various longer context window sizes at the prediction stage.
We refer to this as the length extrapolation of KT model, which is
defined as follows:

Definition 1 (Length Extrapolation of KT Model). Given a student
interaction dataset D, a KT model M, if for any wp that wp > wt,
there is,

|Ap(M,D)−At(M,D)|
At(M,D)

< ε

then KT model M is considered to have the ability of the length ex-
trapolation, where Ap and At denote the AUC scores on student in-
teractions with context window size wp and wt at prediction and
training stage respectively and ε is a small positive constant.

4 Our Approach

In this section, we present the framework overview of our extraKT
model (as shown in Figure 2), which consists of four components:
(1) interaction representation module that encodes questions and re-
sponses along with KCs; (2) knowledge extraction module that ex-
tracts student knowledge states by capturing relationships between
questions and KCs; (3) length extrapolation module that extends the
context window to a longer size; and (4) prediction module that uses
a two-layer fully connected network to make predictions.

4.1 Interaction Representation Module

In real-world educational scenarios, student interaction sequences
consist of questions and their associated KCs, as well as correspond-
ing responses. Given that questions and their associated KCs can
have intricate relationships and varying levels of difficulty [20, 9], it
is crucial to accurately represent student interactions to enhance the
performance of KT models. We represent student interactions using
a question encoder and response encoder.

4.1.1 Question Encoder

Since questions covering the same set of KCs may vary in difficulty
levels, students often demonstrate significant differences in perfor-
mance. To effectively characterize the factor of question difficulty,
inspired by the classic and interpretable Rasch model in psychomet-
rics [18, 5, 9], we introduce a learnable question-specific difficulty
parameter dqt . Intuitively, learning the difficulty parameter based
on students’ interactions can more effectively and personally model
their learning abilities and behaviors. The details of our question en-
coder are as follows:

xt = dqt � vct ⊕ ect

x̂t = E(xt)

where x̂t denotes the latent representation of question qt and its as-
sociated KC ct at the (t)-th time step, obtained through the encoder
E, which uses xt as the input for queries, keys and values. dqt rep-
resents a learnable question difficulty. vct denotes the KC variation
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Figure 2: The overview of the proposed extraKT framework.

and ect denotes the n-dimensional one-hot embeddings of ct.� and
⊕ represent the element-wise product and addition operators respec-
tively.

4.1.2 Response Encoder

Based on the question encoder, we extend KC to KC-response pair
with a question-specific difficulty parameter to further represent in-
teraction. The details of our response encoder are as following:

yt = dqt � v(ct,rt) ⊕ e(ct,rt)

ŷt = E(yt)

where ŷt denotes the augmented representation of question qt by
considering response rt, obtained through the encoder E, which uses
yt as the input for queries, keys and values. dqt represents the ques-
tion difficulty. e(ct,rt) denotes the embeddings of ct and rt. v(ct,rt)

denotes the KC-response variation of qt covering this KC ct with re-
sponse rt. � and ⊕ represent the element-wise product and addition
operators respectively.

4.2 Knowledge Extraction Module

To efficiently explore and extract student knowledge states for bet-
ter estimation of student knowledge mastery, we choose to use the
multi-head attention mechanism with dot-product attention, which
differs from many existing KT methods based on sequential neural
networks. The dot-product attention can extract the time-aware and
contextual information embedded in the student interactions and the
multi-head attention mechanism can capture more intricate features.
Specifically, the extracted knowledge state ht+1 at the (t+1)-th time
step is calculated as follows:

Q = x̂t+1;K = {x̂1, · · · , x̂t};V = {ŷ1, · · · , ŷt}

Head = Softmax(
QKT

√
d

) ·V

ht+1 = Concat(Head1,Head2, · · · ,Headn)

where KT denotes the transpose of K and d is the dimension of K.
Headn is the (n)-th head of multi-head attention.

4.3 Length Extrapolation Module

To facilitate better extrapolation of our extraKT model, inspired by
[15], we choose to utilize an efficient position embedding method
that biases attention scores with proportional penalties based on the
distance between queries and keys. Specifically, the linear biases en-
able the model to adapt to various context window sizes by providing

relative position information of student interactions. Furthermore, we
propose that attention scores with linear biases are able to efficiently
represent short-term forgetting characteristics of student knowledge
states. By introducing length extrapolation, the extracted knowledge
state ht+1 can be reformulated as follows:

˜Head = Softmax(
QKT

√
d

+B) ·V

h̃t+1 = Concat( ˜Head1, ˜Head2, · · · , ˜Headi)

where h̃t+1 denotes the extracted knowledge states with length ex-
trapolation and B represents the matrix of linear biases. Specifically,
each element of B is calculated by:

B =

⎡
⎢⎢⎢⎣

b11 b12 · · · b1j
b21 b22 · · · b2j

...
...

. . .
...

bi1 bi2 · · · bij

⎤
⎥⎥⎥⎦

bij = −β · |i− j|
where bij denotes the element at the (i)-th row and the (j)-th column
of B. β is the slope coefficient that adjusts the attention scores for
the (n)-th attention head out of H attention heads. In here, we set β
to 2−8 n

H .

4.4 Prediction Module

In this section, we utilize a two-layer fully connected neural network
to predict student responses. To optimize the prediction function,
we minimize the binary cross-entropy loss between the student’s
ground-truth response rt+1 and the predicted response r̂t+1 [29, 24].
This approach ensures that our model learns to accurately estimate
the probability of a student answering correctly, thereby improving
its predictive performance.

r̂t+1 = σ(ReLU(W2 · ReLU(W1 · [h̃t+1; x̂t+1] + k1) + k2))

L = −
∑
t

(rt+1 · log r̂t+1 + (1− rt+1) · log(1− r̂t+1))

where σ denotes Sigmoid function. k1, k2, W1, W2 are trainable
parameters and L represents the binary cross-entropy loss function.

5 Experiments

5.1 Datasets

We select three widely used benchmark datasets to evaluate the ef-
fectiveness of our model as follows:
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Table 1: Data statistics of three widely used datasets.
# of interactions # of students # of questions # of KCs Avg. interactions per student Percentage of length � 200

AL2005 607,021 574 173,113 112 1,057.5 81.71%
BD2006 1,817,458 1,145 129,263 493 1,587.3 92.75%
NIPS34 1,382,678 4,918 948 57 281.1 58.72%

• Algebra 2005-2006 (AL2005): This dataset originates from KDD
Cup 2010 EDM Challenge which includes 13-14 year-old stu-
dents’ interactions with Algebra questions. It has detailed step-
level student responses to the mathematical problems [21]. In our
experiment, we use the concatenation of the problem name and
step name as a unique question.

• Bridge to Algebra 2006-2007 (BD2006): The BD2006 dataset
consists of mathematical problems extracted from logs of stu-
dents’ interactions with intelligent tutoring systems [21]. The
unique question construction in BD2006 follows a format simi-
lar to AL2005.

• NeurIPS2020 Education Challenge (NIPS34): This dataset is pro-
vided by NeurlPS 2020 Education Challenge. We use the dataset
of Task 3 & Task 4 to evaluate our models [26]. It includes stu-
dents’ responses to mathematics questions from Eedi, a platform
with millions of daily student interactions worldwide. We opt to
use the leaf nodes from the subject tree as its KCs.

Please note that there are many datesets available in knowledge
tracing, such as AL2005, BD2006, NIPS34, Statics2011, AS2009,
AS2015 and POJ [9]. However, for datasets to better reflect real-
world educational scenarios, they need to include both questions
and their associated KCs. Among the aforementioned datasets, only
AL2005, BD2006, NIPS34, and AS2009 fulfill this criterion. In or-
der to study the impact of long content window in attention based KT
models, it is important to have a sufficient amount of long-sequence
data, where sequences exceeding a length of 200 account for over
50%. This requirement is only satisfied by AL2005, BD2006, and
NIPS34. Therefore, we have chosen these three datasets for our re-
search. To ensure reproducibility in our experiments, we rigorously
follow the data pre-processing steps suggested in [8]. Data statistics
are summarized in Table 1.

5.2 Baselines

We compare our extraKT model with the following state-of-the-art
KT models to evaluate the effectiveness of our approach:

• DKT [14]: It is the first model to incorporate deep learning into the
KT task. Specifically, it uses recurrent neural networks (RNNs)
to model student learning processes and to estimate the student
mastery of questions and corresponding KCs.

• DKT+ [27]: This method aims to address two key challenges en-
countered in DKT. First, DKT struggles with accurately recon-
structing the observed input. Second, there is inconsistency in the
performance of KCs across different time steps. It employs both
L1-norm and L2-norm to quantify the disparity between two ad-
jacent prediction results.

• DKVMN [30]: This memory-augmented neural network utilizes
a key matrix to capture the relationships among underlying KCs
and employs a value matrix to denote the student’s proficiency
level for each KC at every time step.

• GKT [11]: Inspired by the graph-like structure in educational
coursework, it represents the knowledge hierarchy as a graph and

transforms the KT task into a time-series node-level classification
challenge within graph neural networks (GNNs). Additionally, the
authors introduce several strategies to address the absence of ex-
plicit graph structures in numerous datasets.

• LPKT [19]: It estimates students’ knowledge states through di-
rectly modeling their learning processes. Specifically, it uses
a learning gate to distinguish students’ absorptive capacity of
knowledge and forgetting gate to model the decline of students’
knowledge over time.

• SAKT [12]: To address the generalization issues associated with
sparse data encountered in other models, this approach leverages
a self-attention mechanism to capture the relationships between
questions and KCs. It employs question embeddings as queries
and utilizes interaction embeddings as both keys and values for
the attention mechanism.

• SAINT [3]: It employs a Transformer based architecture for KT
task, where the encoder utilizes self-attention to process the se-
quence of student interactions, while the decoder employs self-
attention and masked encoder-decoder attention to handle the se-
quence of student responses.

• AKT [5]: It is an attention based model that integrates a novel
monotonic attention mechanism to link students’ future perfor-
mance with their past responses. Additionally, it employs a Rasch
model to regularize the questions and KCs embeddings.

• ATKT [6]: This model, with an attention-LSTM backbone, uses
adversarial perturbations to enhance the generalization of KT
models and mitigate the overfitting issue commonly encountered
in deep neural network (DNN) based KT models. Adversarial per-
turbations, in combination with the original interaction embed-
dings, contribute to predicting students’ performance.

• simpleKT [9]: It uses scaled dot-product attention mechanism to
capture complex relationships between questions and correspond-
ing KCs. To capture the individual differences among questions
on the same KC, it defines a question-specific difficulty vector.

• DTransformer [28]: This approach utilizes a Transformer based
model within a two-level framework to achieve knowledge state
estimation while ensuring stability through contrastive learning.

5.3 Experimental Setting

We train all models on student interactions with a fixed context win-
dow size of 200 and evaluate them on sequences with context win-
dow sizes of 200, 400, 600, 800 and 1000, respectively. For each
combination of models and datasets, we perform standard 5-fold
cross-validation. We exclude interactions that lack a student ID or
any required information from our 4-tuple interaction representation
and filter out students with fewer than three interactions. For the test
set, we randomly withhold 20% of students and their interaction se-
quences. The remaining 80% of students are randomly and evenly
split into 5 folds, with 4 folds used for training and 1 fold for vali-
dation. We implement early stopping if there is no improvement in
performance after 10 epochs. The Adam optimizer is used to train the
models for up to 200 epochs for each hyperparameter combination,
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Table 2: AUC and accuracy performance comparisons on AL2005 dataset.
AUC Accuracy

Model Size of Context Window Size of Context Window

200 400 600 800 1000 200 400 600 800 1000

DKT 0.8149±0.0011 0.8150±0.0011 0.8150±0.0011 0.8149±0.0011 0.8149±0.0011 0.8097±0.0005 0.8098±0.0005 0.8098±0.0006 0.8098±0.0006 0.8098±0.0006
DKT+ 0.8156±0.0011 0.8156±0.0010 0.8156±0.0010 0.8156±0.0010 0.8156±0.0010 0.8097±0.0007 0.8098±0.0006 0.8098±0.0006 0.8097±0.0006 0.8097±0.0006

DKVMN 0.8054±0.0011 0.8039±0.0014 0.8030±0.0016 0.8025±0.0017 0.8023±0.0018 0.8027±0.0007 0.8025±0.0008 0.8023±0.0008 0.8022±0.0008 0.8022±0.0009
GKT 0.8110±0.0009 0.8111±0.0009 0.8111±0.0009 0.8111±0.0009 0.8111±0.0009 0.8088±0.0008 0.8087±0.0010 0.8088±0.0010 0.8088±0.0010 0.8088±0.0010
LPKT 0.8268±0.0004 0.8216±0.0019 0.8107±0.0104 0.7990±0.0181 0.7891±0.0197 0.8154±0.0008 0.8123±0.0017 0.7970±0.0217 0.7746±0.0543 0.7613±0.0694
SAKT 0.7899±0.0036 0.6743±0.0023 0.6691±0.0030 0.6677±0.0024 0.6666±0.0018 0.7965±0.0019 0.7478±0.0016 0.7468±0.0026 0.7445±0.0017 0.7435±0.0020
SAINT 0.7715±0.0018 0.6691±0.0110 0.6589±0.0021 0.6539±0.0017 0.6551±0.0016 0.7755±0.0012 0.7355±0.0118 0.7424±0.0050 0.7291±0.0092 0.7324±0.0108
AKT 0.8306±0.0013 0.8277±0.0030 0.8258±0.0038 0.8241±0.0045 0.8227±0.0051 0.8124±0.0011 0.8117±0.0011 0.8108±0.0013 0.8100±0.0018 0.8094±0.0023

ATKT 0.7995±0.0023 0.7816±0.0025 0.7641±0.0039 0.7523±0.0047 0.7446±0.0050 0.7998±0.0019 0.7935±0.0026 0.7854±0.0049 0.7779±0.0072 0.7731±0.0090
simpleKT 0.8210±0.0014 0.7808±0.0078 0.7763±0.0055 0.7535±0.0263 0.7655±0.0169 0.8067±0.0011 0.7921±0.0026 0.7899±0.0031 0.7820±0.0042 0.7877±0.0032

DTransformer 0.8188±0.0025 0.8156±0.0025 0.8137±0.0028 0.8123±0.0030 0.8112±0.0033 0.8043±0.0021 0.8032±0.0021 0.8023±0.0023 0.8018±0.0023 0.8013±0.0026

extraKT 0.8317±0.0021 0.8317±0.0020 0.8317±0.0019 0.8317±0.0019 0.8317±0.0019 0.8110±0.0009 0.8109±0.0010 0.8108±0.0011 0.8108±0.0010 0.8109±0.0011

Table 3: AUC and accuracy performance comparisons on BD2006 dataset.
AUC Accuracy

Model Size of Context Window Size of Context Window

200 400 600 800 1000 200 400 600 800 1000

DKT 0.8015±0.0008 0.8015±0.0008 0.8015±0.0008 0.8015±0.0008 0.8015±0.0008 0.8553±0.0002 0.8553±0.0002 0.8552±0.0002 0.8552±0.0002 0.8552±0.0002
DKT+ 0.8020±0.0004 0.8021±0.0004 0.8021±0.0004 0.8021±0.0004 0.8021±0.0004 0.8553±0.0003 0.8553±0.0003 0.8553±0.0003 0.8553±0.0003 0.8553±0.0003

DKVMN 0.7983±0.0009 0.7956±0.0009 0.7936±0.0010 0.7925±0.0012 0.7919±0.0014 0.8545±0.0002 0.8540±0.0003 0.8537±0.0002 0.8535±0.0001 0.8534±0.0001
GKT 0.8046±0.0008 0.8047±0.0009 0.8047±0.0009 0.8047±0.0010 0.8047±0.0010 0.8511±0.0004 0.8555±0.0002 0.8556±0.0002 0.8556±0.0002 0.8556±0.0002
LPKT 0.8056±0.0008 0.8014±0.0021 0.7965±0.0029 0.7939±0.0031 0.7923±0.0031 0.8547±0.0005 0.8539±0.0004 0.8524±0.0009 0.8507±0.0021 0.8495±0.0032
SAKT 0.7739±0.0015 0.7097±0.0056 0.7000±0.0042 0.6987±0.0035 0.6962±0.0044 0.8460±0.0004 0.8190±0.0030 0.8208±0.0030 0.8240±0.0008 0.8239±0.0009
SAINT 0.7791±0.0018 0.6847±0.0035 0.6816±0.0027 0.6692±0.0037 0.6697±0.0024 0.8445±0.0013 0.8396±0.0006 0.8373±0.0014 0.8396±0.0006 0.8396±0.0006
AKT 0.8208±0.0007 0.8187±0.0008 0.8168±0.0010 0.8155±0.0012 0.8144±0.0014 0.8587±0.0005 0.8581±0.0004 0.8575±0.0005 0.8571±0.0004 0.8567±0.0005

ATKT 0.7889±0.0008 0.7641±0.0028 0.7370±0.0041 0.7142±0.0042 0.6963±0.0040 0.8555±0.0002 0.8432±0.0020 0.8334±0.0033 0.8241±0.0043 0.8156±0.0058
simpleKT 0.8151±0.0006 0.7897±0.0046 0.7764±0.0124 0.7726±0.0090 0.7724±0.0088 0.8567±0.0010 0.8506±0.0011 0.8444±0.0059 0.8484±0.0024 0.8434±0.0049

DTransformer 0.8093±0.0009 0.8052±0.0020 0.8023±0.0029 0.8002±0.0035 0.7985±0.0039 0.8555±0.0007 0.8544±0.0007 0.8539±0.0010 0.8532±0.0010 0.8529±0.0010

extraKT 0.8247±0.0006 0.8246±0.0005 0.8246±0.0005 0.8245±0.0005 0.8245±0.0005 0.8605±0.0012 0.8605±0.0011 0.8605±0.0011 0.8605±0.0011 0.8605±0.0011

Table 4: AUC and accuracy performance comparisons on NIPS34 dataset.
AUC Accuracy

Model Size of Context Window Size of Context Window

200 400 600 800 1000 200 400 600 800 1000

DKT 0.7689±0.0002 0.7689±0.0002 0.7689±0.0002 0.7689±0.0002 0.7689±0.0002 0.7032±0.0004 0.7032±0.0004 0.7032±0.0004 0.7032±0.0004 0.7032±0.0004
DKT+ 0.7696±0.0002 0.7697±0.0002 0.7697±0.0002 0.7697±0.0002 0.7697±0.0002 0.7039±0.0004 0.7039±0.0004 0.7039±0.0004 0.7039±0.0004 0.7039±0.0004

DKVMN 0.7673±0.0004 0.7673±0.0004 0.7673±0.0004 0.7672±0.0004 0.7672±0.0004 0.7016±0.0005 0.7015±0.0005 0.7015±0.0005 0.7015±0.0005 0.7015±0.0005
GKT 0.7689±0.0024 0.7689±0.0025 0.7689±0.0025 0.7689±0.0025 0.7689±0.0025 0.7014±0.0028 0.7013±0.0029 0.7013±0.0029 0.7013±0.0029 0.7013±0.0029
LPKT 0.8004±0.0003 0.7997±0.0005 0.7993±0.0006 0.7992±0.0007 0.7992±0.0006 0.7309±0.0006 0.7303±0.0012 0.7298±0.0015 0.7297±0.0016 0.7297±0.0015
SAKT 0.7525±0.0009 0.7331±0.0013 0.7329±0.0011 0.7330±0.0011 0.7330±0.0011 0.6884±0.0009 0.6741±0.0012 0.6739±0.0009 0.6740±0.0010 0.6740±0.0010
SAINT 0.7895±0.0009 0.7708±0.0009 0.7703±0.0012 0.7700±0.0012 0.7700±0.0012 0.7204±0.0009 0.7029±0.0012 0.7024±0.0012 0.7021±0.0012 0.7021±0.0012
AKT 0.8033±0.0003 0.8030±0.0004 0.8028±0.0004 0.8028±0.0004 0.8028±0.0004 0.7323±0.0005 0.7319±0.0006 0.7318±0.0005 0.7318±0.0005 0.7318±0.0005

ATKT 0.7665±0.0001 0.7630±0.0005 0.7620±0.0006 0.7619±0.0006 0.7619±0.0006 0.7013±0.0002 0.6988±0.0005 0.6980±0.0008 0.6980±0.0007 0.6980±0.0007
simpleKT 0.8035±0.0000 0.7952±0.0017 0.7961±0.0012 0.7960±0.0012 0.7960±0.0012 0.7328±0.0001 0.7251±0.0016 0.7260±0.0013 0.7259±0.0013 0.7259±0.0013

DTransformer 0.7994±0.0003 0.7988±0.0003 0.7985±0.0003 0.7985±0.0003 0.7985±0.0003 0.7295±0.0007 0.7289±0.0006 0.7286±0.0007 0.7286±0.0007 0.7286±0.0007

extraKT 0.8045±0.0003 0.8047±0.0003 0.8047±0.0003 0.8047±0.0003 0.8047±0.0003 0.7340±0.0004 0.7342±0.0004 0.7342±0.0004 0.7342±0.0004 0.7342±0.0004

and we employ Bayesian search to identify the optimal hyperparam-
eters for each fold. We set the embedding dimension, hidden state
dimension, and prediction layer dimension to [64, 128, 256]. The
learning rate, dropout rate, and random seed are set to [1e-3, 1e-4,
1e-5], [0.05, 0.1, 0.3, 0.5] and [42, 3407], respectively. Consistent
with previous studies [14, 5, 8], we report the average AUC and ac-
curacy, as well as the standard deviations across 5 folds to evaluate
the KT prediction performance.

5.4 Results

5.4.1 Overall Performance

Tables 2 - 4 show the overall performance. The best AUC and
accuracy are in bold and the second-best AUC and accuracy are
underlined. From these tables, we have the following observations:
(1) Our extraKT model outperforms almost all state-of-the-art mod-
els (except LPKT in terms of the accuracy performance metric at the
context window sizes of 200 and 400 on the AL2005 dataset) and
maintains stable performance as the context window size increases

on all three datasets. This suggests that we effectively extend the
context window of our model by length extrapolation, enabling it to
better and consistently extract the knowledge states of students even
as the context window size varies. (2) On NIPS34 dataset (in Table
4), compared to the other two datasets, some attention based mod-
els (such as SAKT, SAINT and AKT etc.) do not exhibit significant
drops in performance at context window sizes of 600, 800 and 1000
in terms of AUC and accuracy. This is because the average number of
interactions per student in NIPS34 dataset is only 281.1 (as shown in
Table 1), compared to the other two datasets, AL2005 and BD2006,
which have averages of 1,057.5 and 1,587.3 respectively. When the
number of student interactions is less than context window, extending
context window size has little impact on the prediction performance.
(3) Some models (such as DKT, DKT+ and GKT etc.) do not ex-
perience notable drops in performance as the context window size
increases on all three datasets. Since these models do not rely on at-
tention mechanisms, they typically do not face length extrapolation
challenges. However, these models exhibit significantly lower per-
formance, compared to our attention based KT model, extraKT. For
example, compared to DKT, our extraKT has a large improvement of
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Figure 3: Analysis with different position embeddings in AUC performance.

Figure 4: Analysis with different position embeddings in accuracy performance.

AUC by 1.68%, 2.32% and 3.56% at the context window size of 200
on the three datasets.

Please note that although the modest AUC increase in Tables 2 -
4 is less than 1% compared to the best baseline at the context win-
dow size of 200, this improvement is significant. Recent benchmark
research reveals that many reported performance gains are unreli-
able due to the reckless evaluation process and there has been only a
3.5% enhancement in overall KT prediction performance since 2015.
In our study, we strictly follow the evaluation process proposed by
Liu et al. [8] and conduct comprehensive hyperparameter search for
every baseline. We have made all details of our approach available
at https://github.com/pykt-team/pykt-toolkit to ensure our results are
reliable and reproducible.

5.4.2 Impact on Different Position Embeddings

To further explore the impact on different position embeddings, we
conduct experiments on extraKT model with Sinusoidal, T5, Rotary
and our length extrapolation module respectively. Figures 3 - 4 show
the results. From these figures, we have the following observations:
(1) Different position embeddings significantly influence the length
extrapolation of KT model. On AL2005 and BD2006 datasets, both
Sinusoidal and Rotary exhibit notable decreases in terms of AUC
and accuracy as the context window size increases, while our length
extrapolation module maintains more stable performance. However,
when evaluating on the NIPS34 dataset, Rotary outperforms T5, yet
our length extrapolation module consistently maintains stable per-

formance. This indicates that Rotary is better suited for scenarios
with fewer interactions per student compared to T5. In contrast, our
length extrapolation module effectively accommodating both shorter
and longer sequences per student. (2) Different position embeddings
affect prediction performance of KT model. Our length extrapolation
module performs the best, followed by T5 or Rotary, while the Sinu-
soidal performs the worst on the three datasets. This is because, com-
pared to other position embeddings, our length extrapolation module
provides position information by linear biases in a computationally
friendly way, which prevents the model overfit on position informa-
tion of student interaction sequences and efficiently represent short-
term forgetting characteristics of student knowledge states.

5.4.3 Ablation Study

We conduct ablation experiments to show how length extrapolation
module in our extraKT model affects the performances in Figures
5 - 6. The LE represents the length extrapolation module and the
w/o means excluding such module from extraKT. From these figures,
we observe that the extraKT model exhibits a notable performance
drop without length extrapolation module on all three datasets. This
suggests that we effectively extend context window of our extraKT
via length extrapolation.

5.4.4 Visualization

To visualize the impact of length extrapolation on attention, we com-
pare the original attention scores with those enhanced by length ex-
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Figure 5: Component analysis of extraKT on three datasets in AUC performance.

Figure 6: Component analysis of extraKT on three datasets in accuracy performance.

trapolation, as shown in Figure 7. From Figure 7, we observe that
original attention with length extrapolation can efficiently represent
student short-term forgetting characteristics, while original attention
tends to overfit on position information of student interaction se-
quences. Specifically, when calculating similarities between ques-
tions, the original attention mostly focuses on question index 1, while
original attention with length extrapolation gradually shifts towards
allocating attention to recent questions over time. This indicates that
our length extrapolation module is well-designed for modeling stu-
dents’ short-term forgetting behaviors.

Figure 7: Visualization of length extrapolation (LE) impact on atten-
tion.

6 Conclusion and Future Work

In this paper, we propose extraKT model, designed to facilitate better
extrapolation. This model learns from student interactions with short

context window and continue to perform well as the size of con-
text window increases at prediction stage. Compared with existing
KT models, our extraKT model effectively represents student short-
term forgetting characteristics of knowledge states. Experimental re-
sults on three real-world educational datasets demonstrate that our
extraKT model exhibits robust length extrapolation capability and
outperforms state-of-the-art baseline models in terms of AUC and
accuracy.

In the future, there are some points that we need further discuss
and study: (1) When considering lifelong learning, the length of stu-
dent interaction sequences continuously grows. However, on exist-
ing real-world educational datasets, such as the AL2005 and BD2006
datasets, the average sequence length per student is only slightly over
one thousand. How to bridge the gap between real-world scenarios
and datasets when evaluating length extrapolation capability of KT
models remains a challenge. (2) The length extrapolation problem
also arises in other educational scenarios, such as adaptive testing
systems, student writing analysis, and so on, which require models
to handle continuously growing data effectively. Our method has the
potential to be adapted and applied to these tasks.
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