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Abstract. Recent years have witnessed the success of recurrent
neural network (RNN) models in time series classification (TSC).
However, neural networks (NNs) are vulnerable to adversarial sam-
ples, which cause real-life adversarial attacks that undermine the ro-
bustness of Al models. To date, most existing attacks target at feed-
forward NNs and image recognition tasks, but they cannot perform
well on RNN-based TSC. This is due to the cyclical computation of
RNN, which prevents direct model differentiation. In addition, the
high visual sensitivity of time series to perturbations also poses chal-
lenges to local objective optimization of adversarial samples. In this
paper, we propose an efficient method called TSFool to craft highly-
imperceptible adversarial time series for RNN-based TSC. The core
idea is a new global optimization objective known as “Camouflage
Coefficient" that captures the imperceptibility of adversarial samples
from the class distribution. Based on this, we reduce the adversarial
attack problem to a multi-objective optimization problem that en-
hances the perturbation quality. Furthermore, to speed up the opti-
mization process, we propose to use a representation model for RNN
to capture deeply embedded vulnerable samples whose features de-
viate from the latent manifold. Experiments on 11 UCR and UEA
datasets showcase that TSFool significantly outperforms six white-
box and three black-box benchmark attacks in terms of effectiveness,
efficiency and imperceptibility from various perspectives including
standard measure, human study and real-world defense.

1 Introduction

NNs are vulnerable to adversarial attacks [38], which means im-
perceptible perturbations added to the input can cause the output
to change significantly [22]. A rich body of adversarial attacks has
been investigated to generate adversarial samples that can enhance
the robustness of the models through adversarial training. For in-
stance, gradient-based attacks [8, 21, 25, 29, 31, 34] have achieved
impressive performance on feed-forward NN classifiers and image
recognition tasks. Nevertheless, those gradient-based adversarial at-
tacks cannot perform well in RNN where the unique time recurrent
structure of RNN prevents differentiation on it [35]. Furthermore, ex-
isting attacks always adopt a local optimization objective to minimize
the perturbation amount for every single sample. However, as shown
in Figure 1, time series are far more visually sensitive to perturba-
tion than image data, undermining the effectiveness of these attacks
in RNN models for time series.
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Figure 1: The figure shows that image and time series data have sig-
nificantly different visual sensitivities to perturbations of the same
level. The upper line is an example of One Pixel Attack [37] against
a pre-trained ResNet-18 [30] on ImageNet [14]. Although the {o
norm of the generated perturbation is up to 37.72%, it is still hard
to be noticed by human eyes. On the contrary, as the lower line, a
similar attack (i.e. also merely perturb one feature by 37.72% under
¢~ norm) against one of our experimental RNN classifiers on UCR-
ECG200 time series dataset [13] is more than visible. This makes it
more difficult to craft imperceptible adversarial time series than im-
ages. Please notice that this is just a toy case to reveal the current
gaps, instead of the illustration of our proposed approach.

Due to these challenges, despite the popularity of TSC and RNN
as its solution [15, 16, 39], to date, there is yet not much effective
study on crafting qualified adversarial samples for RNN-based TSC
[16, 19, 24]. A few works focus on making RNN completely differ-
entiable by cyclical computational graph unfolding [32, 35], which
turns out to be inefficient and hard to stably scale [7, 20, 42]. Black-
box attacks by model querying [1, 6, 9, 37] or adversarial transfer-
ability [33, 36] are either inapplicable to RNN-based TSC or very
limited in effectiveness.

In this paper, we propose an efficient method named TSFool to
craft highly-imperceptible adversarial samples for RNN-based TSC.
With an argument that local optimal perturbation under the conven-
tional objective does not always lead to imperceptible adversarial
samples, we propose a novel global optimization objective named
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Camouflage Coefficient, and add it to reduce the adversarial attack
problem to a multi-objective optimization problem. In this way, we
can take the relative position between adversarial samples and class
clusters into consideration, to measure the imperceptibility of adver-
sarial samples from the perspective of class distribution. Since the
full gradient information of an RNN is not directly available, to ef-
ficiently approximate the optimization solution, we introduce a rep-
resentation model built only upon the classifier’s outputs. It can fit
the manifold hyperplane of a classifier but distinguish samples by
their features like humans, and capture deeply embedded vulnerable
samples whose features deviate from the latent manifold as guidance.
Then we can pick target samples to craft perturbation in the direction
of their interpolation, while imperceptibly crossing the classification
hyperplane.

With six white-box and three black-box adversarial attacks from
basic to state-of-the-art ones as the benchmarks, we evaluate our ap-
proach on 11 univariate or multivariate time series datasets respec-
tively from the public UCR [13] and UEA [4] archives. The results
demonstrate that TSFool has significant advantages in effectiveness,
efficiency and imperceptibility. In addition, extensive experiments on
different hyper-parameters and settings confirm that our results are
fair and of general significance. Beyond standard measures, we also
conduct two human studies verifying the ability of Camouflage Coef-
ficient to capture the real-world imperceptibility of adversarial sam-
ples, as well as implement four anomaly detection methods showing
the imperceptibility of TSFool under real-world defense. Our main
contributions are summarized as follows:

e By exploring the visual sensitivity of time series data, for the first
time, we point out the bias of the conventional local optimization
objective of adversarial attack;

e We propose a novel optimization objective named “Camouflage
Coefficient" to enhance the global imperceptibility of adversarial
samples, with which we reduce the adversarial attack problem to
a multi-objective optimization problem; and

e We propose a general methodology based on Manifold Hypothesis
to solve the new optimization problem, and accordingly realize
TSFool, the first method to our best knowledge, for RNN-based
TSC, to craft real-world imperceptible adversarial time series.

The rest of this paper is organized as follows. Section 2 reviews the
related studies and explains the current gaps. A general methodology
outlining our ideas is proposed in Section 3, followed by Section 4
to specifically realize the proposed TSFool in detail. Section 5 evalu-
ates the performance of TSFool. Section 6 provides relevant discus-
sions and Section 7 concludes this paper. Section A, B and C in the
Appendix' respectively supplement more details about the approach,
evaluation and discussion.

2 Background and Related Work
2.1 RNN-based Time Series Classification

TSC is an important and challenging problem in modern data mining
[15, 23], with a variety of real-world applications including health
care [28], stock price prediction [40] and food safety inspection
[17]. Time series data consists of sampled data points taken from
a continuous process over time [26]. It can be defined as a sequence
X € RT*P where T is the sequence length, also known as the
number of time steps, and D is the feature dimension of every single

! The Appendix is available at https://arxiv.org/abs/2209.06388.

data point zy € X (¢ € [1,T]), based on which there are two cat-
egories of time series namely univariate series (D = 1) and multi-
variate series (D > 1) [15]. The key difficulty of TSC is to recognize
the complex temporal pattern and characterize the temporal semantic
information encoded in X [15]. With the recurrent structure specifi-
cally designed for learning key temporal patterns, RNN has become
one of the most state-of-the-art models for TSC [39]. Given an RNN
classifier N : X — Y with hidden state h; € R and non-linear
recurrent function hy = N (hi—1, x¢), for any time series data X,
it takes each of the z; € X as the input at time step ¢ in order and
encodes the key information by update h; accordingly. Then the final
state hr characterizes the whole series for classification.

2.2 Adversarial Sample and Adversarial Attack

The concept of adversarial attack is introduced by Szegedy et al. [38],
in which an adversarial sample £* crafted from a legitimate sample
Z is defined by an optimization problem:

F =@+ 06z =7 +min |2 st f@+2) £ F@), (1)

where f : R" — ¢ is the target classifier and dz is the smallest
perturbation according to a norm appropriate for the input domain.
Since exactly solving this problem by an optimization method is
time-consuming [31] and not always possible, especially in NNs with
complex non-convexity and non-linearity [35], the common practice
is to find the approximative solutions to estimate adversarial samples.

The most commonly used adversarial attacks to date are gradient-
based methods under white-box setting [27], which means all the
information of the target classifier is available and the perturbation is
guided by the differentiating functions defined over model structure
and parameters. For instance, the fast gradient sign method (FGSM)
[21] implements the perturbation according to the gradient of cost
function £ with respect to the input Z:

0z = esign(Vz L(f, T, 7)), @

where ¢ denotes the magnitude of the perturbation. The Jacobian-
based saliency map attack (JSMA) [34] further introduces forward
derivative to quantitatively capture how a specific input component
modifies the output. Then DeepFool [31] proposes a greedy idea to
determine the perturbation direction of specific samples according to
their closest classification hyperplane. As one of the state-of-the-art
benchmarks to date [3], the projected gradient descent attack (PGD)
[29] can be viewed as a variant of FGSM. It crafts samples by get-
ting the perturbation as FGSM and projecting it to the e-ball of input
iteratively. To be specific, given 2" as the intermediate input at step
t, PGD updates as:

T =T te-sin(Va L(£,E,9), T} Q)

In deep learning, it is sometimes [8] referred to as basic iterative
method (BIM) [25]. Another state-of-the-art benchmark, C&W [8],
no longer uses the constraint to ensure small perturbation but formu-
lates a regularization optimization for it. Given yo as the true label
and f(Z;)y, as the prediction score of label yj, for the candidate in-
put &;, then:

7" =argmin{| 7 — 7/[3 + o max{f @)y, — max f@)y, 0, (4)
Z; Y #Y0

where @ > 0 controls the trade-off between small distortion and
attack success rate. Finally, Auto-Attack [12] forms a parameter-
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free and user-independent ensemble of attacks for frequent pitfalls
in practice like improper tuning of hyper-parameters and gradient
obfuscation or masking.

Nevertheless, model information including the gradient is not al-
ways available in practice [16, 27], so some black-box methods have
been proposed, which can be roughly classified into two categories.
The first one relies on the predictions returned by querying the target
model. For instance, the Boundary Attack [6] and its improvement
HopSkipJump [9] search for adversarial samples along the decision
boundary. While the second one called Transfer Attack [17, 36] trains
a substitute model similar to the target model in performance, then
attacks it instead to generate adversarial samples, and relies on their
adversarial transferability to fool the target model [33].

2.3 Challenges for RNN and Time Series

While existing adversarial attacks achieve great success on feed-
forward NNs and image data, such success has not carried over
to RNN-based TSC. There are two main reasons for this dilemma.
Firstly, as Figure 1, image data can tolerate respectively large real-
world perturbations without being noticed by humans, while time se-
ries are so visually sensitive to perturbations that it is more difficult
to ensure their imperceptibility [39]. This exposes the drawback of
existing methods in the control of perturbation on different data. It is
also surprising that the only specialized measure for imperceptibility
of adversarial time series is the number of time steps perturbed [35],
which is not sufficient.

Secondly, the presence of cyclical computations in RNN architec-
ture prevents direct model differentiation [35], which means most
of the gradient information is no longer directly available through
the chain rule. This problem seriously challenges the effectiveness
of all the gradient-based methods. An intuitive solution is to make
the model differentiable through cyclical computational graph un-
folding to fit the gradient-based methods [32, 35]. However, as the
length of the time series is considerable in most real-world cases,
the practical efficiency and scalability of the unfolding computation
cannot be guaranteed [7, 20, 42]. Another idea is to completely ig-
nore the model knowledge given and view it as a black-box setting,
to avoid the difficulty of specialized design for RNN. Nevertheless, a
majority of the query-based black-box attacks like One Pixel Attack
[37] and Square Attack [1] can only work for image input. Although
Boundary Attack and HopSkipJump are not subject to this limitation,
both of them are extremely time-consuming because of the random-
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Figure 2: An intuitive instance that the minimal perturbation (i.e.
||Z1 — Zo||) is not necessarily the most imperceptible one from the
global perspective. The visual boundary and latent manifold hyper-
plane are different classification boundaries respectively from human
eyes and the learned model.

walking. On the other hand, Transfer Attack tends to achieve rea-
sonable time and small perturbations, but unstable effectiveness. All
in all, the problems brought by the perturbation sensitivity of time
series data and the recurrent structure of RNN model remain to be
further explored.

3 Methodology

In this section, we propose some novel ideas to build a general
methodology for the crafting of highly-imperceptible adversarial
samples. Notice that although these ideas are motivated and inspired
by the problems exposed by RNN-based TSC, their underlying prin-
ciples are not limited to this task. So to facilitate further studies in
a larger range, we organize them here independently before specifi-
cally realizing them by the proposed approach in Section 4.

3.1 Rethinking Imperceptible Adversarial Sample

The sensitivity of time series data prompts us to rethink the imper-
ceptibility of perturbation. Firstly, existing methods always imple-
ment perturbations to all of the test data, while according to the spe-
cific class distribution, there must be individuals among them that
are easier or harder to be perturbed respectively. A previous work
has proven that a natural data point closer to (or farther from) the
class boundary is less (or more) robust [41]. So without taking this
difference into account and picking target samples appropriately, it is
almost impossible for the attack method to stably control the pertur-
bation amount by itself. On the contrary, it has to heavily depend on
the specific dataset.

Secondly, we argue that the approximation to the optimal perturba-
tion §z in Equation (1) does not always lead to a highly-imperceptible
adversarial attack, while most of the existing methods view it as the
basic target. This is because when we jump out of a single sample and
consider from the perspective of class distribution, it can be found
that even the minimal perturbation is not necessarily the most imper-
ceptible one. For instance, in Figure 2, the adversarial sample &7 is
generated from &y through a minimal perturbation that crosses the
closest classification hyperplane, while another adversarial sample
T is obviously more dangerous as it is semantically closer to and
even belong to the original class.

These points inspired us to propose a novel definition of the imper-
ceptibility of adversarial samples from the global perspective. Given
a k-class classification task and the label 4, j € {0,1,...,k — 1}, A}
is the set of all the samples belonging to class ¢ in the test set. For
adversarial sample Z* from Z € X;, which is wrongly predicted as
f(@) = 5(5 # 1), we define its Camouflage Coefficient (CC)
C(Z") as:

@ —mallfds
|2 — mizll/d;’

where m; is the center of mass of class 7 which is also built in the
form of a legal sample:

(&) )

1
|| 2

T’ ex;

o
m; =

@, 6

and d; is the average norm distance between m; and all the samples
in X, which is used to eliminate the potential bias from the different
cluster sizes of the two classes:

1 /
di = —— [|Z" — ]| @
w2



Y. Wang et al. / TSFool: Crafting Highly-Imperceptible Adversarial Time Series Through Multi-Objective Attack 1425

As the saying goes, “the best place to hide a leaf is the woods”.
The CC represents the proportion of the relative distance between
adversarial sample Z* and the original class to the relative distance
between Z* and the class to which it is misclassified. As a result,
it can reveal to what extent an adversarial sample can “hide” in the
original class without being noticed. The smaller the value, the higher
the global imperceptibility of the adversarial sample. And if the value
exceeds one, the attack somewhat fails. Because in this case, the mis-
classification of the adversarial sample is no longer surprising as it is
already semantically closer to the samples in that wrong class instead
of the original class. In our approach, we introduce CC as another op-
timization objective along with Equation (1) to craft adversarial sam-
ples considering local and global imperceptibility at the same time.

3.2 Attack through Multi-objective Perturbation

After adding the Camouflage Coefficient, the adversarial attack be-
comes a multi-objective optimization problem. Just as the existing
methods, considering the efficiency, we do not solve it directly, but
find the approximate solution in a logical and practical way. Sepa-
rately speaking, to optimize Equation (5), we can just make & closer
to the 771;, which also means farther away from the 172; in general.
And to approximate the objective in Equation (1), perturbing in the
direction of the closest classification hyperplane is proven to be a
successful approach in DeepFool. So as a compromise to take them
into account together, a reasonable idea is to cross a hyperplane that
is relatively near the target sample Z on an appropriate place that is
relatively close to the 772;.

To realize this idea in practice, we can find a sample Z, from X;
which is misclassified to class j but deeply embedded in class ¢ as a
guide, and accordingly pick a correctly classified sample that is the
closest to &, in class 7 as the target Z. Then when we perturb & in the
direction of Z,, to cross the classification hyperplane between them,
we can not only acquire a considerable value of CC as the T, itself
is a sample embedded closer to 7i; than to 773, but also expect the
hyperplane is relatively a close one to Z as this sample is the closest
to Z, among class 4. In this way, the & is not perturbed to be adver-
sarial along the shortest path, but the more imperceptible one under
the multi-objective definition. We define the Z, and & respectively
as vulnerable negative sample (VNS) and target positive sample
(TPS), with which the perturbation can be denoted as:

0z = /\E”fv - j‘” +fa7 ()

where \.||Z, — Z|| is the maximum interpolation that makes & ap-
proach Z, under a given step size £ without changing its prediction
result, and &, is a micro random noise under the same € added to
cross the classification hyperplane.

3.3 Capturing Vulnerable Sample by Manifold

Now the only problem left is how to capture the VNS. Our idea to
solve it comes from the manifold hypothesis. It is one of the influ-
ential explanations for the effectiveness of NNs, which holds that
many high-dimensional real-world data are actually distributed along
low-dimensional manifolds embedded in the high-dimensional space
[18]. This explains why NNs can find latent key features as complex
functions of a large number of original features in the data. And it
is through learning the manifold of the latent key features of train-
ing data that NNs can realize manifold interpolation between input
samples and generate accurate predictions of unseen samples [11].

So what matters in NN classification is how to distinguish the latent
manifolds instead of the original features of samples with different
labels.

However, due to the limitations of sampling technologies and hu-
man cognition, practical label construction and model evaluation
have to rely on specific high-dimensional data features. Accordingly,
a possible explanation for the existence of adversarial samples is that
the features of input data cannot always visually and semantically re-
flect the latent manifold, which makes it possible for the samples con-
sidered to be similar in features to have dramatically different latent
manifolds. As a consequence, even a small perturbation in human
eyes added to a correctly predicted sample may completely change
the perception of NN to its latent manifold, and result in a signifi-
cantly different prediction.

So if there is a representation model that can imitate the mecha-
nism of a specific NN classifier to predict input data, but distinguish
different inputs by their features in the original high-dimensional
space just like a human, then it can be introduced to capture deeply
embedded vulnerable samples whose features deviate from the latent
manifold. Specifically, when the prediction of representation model
is correct while that of NN classifier is wrong, it means that com-
pared with other samples that are similar in features and belong to
the same class in fact, the current sample is perceived by NN at a
different manifold cluster, and as a result, wrongly predicted. Such a
sample well-meets the definition of VNS.

4 Proposed Approach

Based on the ideas and methodology above, we propose an efficient
approach named TSFool to craft highly-imperceptible adversarial
time series for RNN-based TSC. The roadmap of TSFool is shown
in Figure 3.
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Figure 3: With the representation model i-WFA extracted from the
target RNN classifier, the vulnerable samples with features deviat-
ing from the latent manifold can be captured according to their pre-
dictions. Then the target samples are specifically matched and then
perturbed through two steps namely the interpolation sampling and
adding random masking noise.

4.1 Extraction of Representation Model

To model the special recurrent computation of RNN, we introduce
weighted finite automaton (WFA) [43] that can imitate the execution
of RNN based on its hidden state updated at each time step. Neverthe-
less, WFA also relies on existing clustering methods like k-means
to abstract input data, while an important requirement of the repre-
sentation model is to distinguish different inputs directly by original
features as a human. So we improve WFA by changing its input from
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data clusters to domain intervals. Specifically, to determine the inter-
val size, for each of the input samples, we calculate the average ¢
distance between its features in adjacent time steps, and then reduce
the result by an order of magnitude as an “imperceptible distance”.
In this way, when the size of the input interval is smaller than this
distance, it is almost impossible for features that belong to different
input clusters in the original WFA to be assigned to the same inter-
val, so as to ensure that the domain interval is a reasonable substitute
of the input cluster. Accordingly, we propose an ideal representation
model as below.

An Intervalized Weighted Finite Automaton (i-WFA) extracted
from a k-class RNN classifier A is defined as a tuple A =
(Z,58,Z,(E¢)cez, T), where Z is a finite set of intervals that cov-
ers the whole input domain, .S is a finite set of states abstracted from
the hidden states of A/, Z is the initial state vector of dimension |5/,
and 7 is the probabilistic output matrix with size |\S| x k. For each
interval ¢ € Z, the corresponding probabilistic transfer matrix E¢
with size |\S| x |S] is built according to the hidden transfer of all the
samples having features that fall into this interval. In the execution
of i-WFA, the 7 is iteratively updated to represent the current state
with the transfer under different inputs imitated by the corresponding
E; at each time step, followed by the 7 to imitate the computation
of probabilistic predictions finally. The detailed algorithm of i-WFA
establishment and an instance of i-WFA are respectively provided in
Section A.1 and Section A.2 of the Appendix.'

4.2 Craft Imperceptible Adversarial Time Series

Capturing Vulnerable Negative Sample Building an i-WFA as
the representation model of the target RNN classifier, we make a
comparison between them to capture the VNS. As shown in Algo-
rithm 1, we get the prediction results in the test set respectively from
the RNN classifier and i-WFA (lines 3-4), followed by the compari-
son between them in function CaptureVNS (line 5).

Interpolation Sampling As argued in Section 3, different from the
existing methods that attack all the test samples, TSFool picks spe-
cific TPS according to the VNS captured. Given that a pair of VNS
and TPS are similar in features and with the same label, while they
are predicted differently by the classifier, there must be a hyperplane
to be discovered between them that divides the latent manifold of
the two classes. So we can approximate that hyperplane by the in-
terpolation of their features as the first part of the perturbation (i.e.
Ae||Zo — &|)). In Algorithm 1, we pick TPS for each of the VNS
by the function PickTPS (lines 6-7). Then with the function Update-
SamplingRange which updates the sampling range each turn by the
two currently sampled adjacent examples with different prediction
results respectively the same as VNS and TPS (lines 10-11), we do
average sampling (line 9) to approximate the maximum feature in-
terpolation iteratively until the step size of sampling is smaller than
a given limitation of noise (lines 12-13).

Adding Random Masking Noise Since the first part of perturba-
tion already approaches the hyperplane of the latent manifold at a
given step size, a micro noise Z. of the same size can be added to
easily cross the hyperplane. In other words, the adversarial property
of the perturbed samples is guaranteed by the first part of perturba-
tion, and the only requirement for Z. is that it must be micro enough
that the semantical consistency between VNS and TPS can also be
inherited by the perturbed sample. We implement random masking
to generate T, in batches, and add it to finish the attack (line 16).
Specifically, we first build a complete noise vector in the direction of

Algorithm 1 Craft Imperceptible Adversarial Time Series
Imput: RNN N = (X,Y,H,f,g), -WFA A = (Z,8,Z,
(E¢)cez,T), Test Set X, Test Labels ), Hyper-parameters €, n and

p
Output: Adversarial Time Series Set X4,

Initialize Xoqo + ]

1:

2: € « ImperceptibleNoise (&)

3: Vv < N(X)

4: Ya +— A(X)

5: Xy < CaptureVNS(X, Y, Ynr,Ya)

6: while z,.,, € X, do

7: Zpos — PickTPS(X, Tneg)

8: while x,,, not exist do

9: X < InterpolationSampling (T peg, Tpos)
10: Y, + N(X5)
11: Tneg, Tpos <— UpdateSamplingRange(Xs, YS)
12: if || Zpos — Tneg|| < € then
13: Tm, < Tpos
14: end if
15: end while
16: Xaav + AddRandomMaskingNoise(zy,, €, 1, p)

17: Xuav-append(Xqdv)
18: end while
19: return X,

e |__tabel *

N A

A

Latent Manifold
Hyperplane

°
k! A
\
:
L ] Bounda Y a
[ ] ® \

Figure 4: An intuitive illustration for the crafting of highly-
imperceptible adversarial time series. The (D) and (@) correspond
to the two parts of perturbation, respectively from the interpolation
sampling and random masking noise.

interpolation, with the specific noise amount ¢ calculated by Imper-
ceptibleNoise under the constraint mentioned before. Then we ran-
domly mask elements at some time steps of the noise vector (i.e., set
value 0) according to a given probability p. For each pair of VNS
and TPS, this process is run n times to craft a batch of adversarial
samples, also with size n.

5 Evaluation

In this section, with 10 univariate and one multivariate time series
datasets respectively derived from the public UCR [13] and UEA
[4] time series archives, we evaluate the effectiveness, efficiency and
imperceptibility of TSFool. To illustrate its advantages, there are six
white-box attacks and three black-box attacks from basic to state-of-
the-art that serve as the benchmarks. The detailed experimental setup
can be found in Section B.1. Besides, the Python code of TSFool,
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Method Attack Generation ) Average Pertqrbation Camouf.lage

Success Rate Number Time Cost (s) Ratio (p*) Coefficient
FGSM 72.12% 0.0018 37.13% 1.0804
JSMA 83.53% 1.0287 15.06% 0.9476
DeepFool 81.58% 0.0276 21.45% 1.0107
PGD (BIM) 76.84% 30075 0.1327 22.71% 0.9938
C&W 69.90% : 3.2016 5.16% 0.9372
Auto-Attack 80.11% 0.1824 22.55% 0.9745
Boundary Attack 79.01% 9.0399 3.04% 0.8788
HopSkipJump 83.17% 12.3068 3.86% 0.8872
Transfer Attack 19.54% 250 - 7.68% 1.2010
TSFool 87.76 % 305 0.0230 4.63% 0.8147

Table 1: The average performance of experimental methods on the 10 UCR univariate time series datasets, including the ASR, the number of
samples generated, the time cost and the two measures p* and C for imperceptibility. TSFool realizes state-of-the-art performance in ASR and
the proposed CC. For local perturbation, TSFool is slightly behind Boundary Attack and HopSkipJump, while they are two to three orders
slower than TSFool. TSFool also outperforms all the benchmarks in efficiency except FGSM, which is not surprising because FGSM is a simple
single-step method without satisfying results under other measures. The standard deviations of five runs are omitted as they are typically small
(i.e. < 0.5% compared with the mean values). Table 2 in our Appendix' further illustrates the details for every single dataset, respectively.

the pre-trained RNN classifiers, and the raw data of our experiments
including the crafted adversarial sets are publicly available in our
GitHub repository.?*

5.1 Adopted Measures

There are mainly four measures adopted for the evaluation. Firstly,
we report the original accuracy of the target classifiers and the Attack
Success Rate (ASR) to evaluate the effectiveness of attacks. Sec-
ondly, we record the average time for crafting a single adversarial
sample as the measure of efficiency. Finally, the imperceptibility is
considered from two perspectives namely the global Camouflage Co-
efficient Equation (5) and the local perturbation. The commonly used
measure for the latter is the perturbation ratio:

_ 1Io=|l

p= ol ©)
||

We propose a variant p* named Domain Perturbation Ratio replac-
ing the original denominator by the specific input domain. This is be-
cause typical time series usually have features with large values but
narrow distribution ranges, so the input domain can be a better de-
nominator than the absolute value. Given that X'*) denotes the set of
feature values at time step 4 of all the samples in X, the p™* is defined

as:
. 3¢
S maz(X©) — min(X )]

which always provides similar information as p but reflects the rela-
tive size of perturbation better for time series data.

p (10)

5.2 Overview of Experimental Results

The average performances (i.e. modified mean [2]) of TSFool and the
benchmark methods on 10 UCR univariate time series datasets are
shown in Table 1. For effectiveness, the average ASR of TSFool is
significantly higher than the benchmarks, with their gaps from 4.23%
to 68.22%. The efficiency of TSFool and DeepFool are at the same
level, behind FGSM but better than the other seven benchmarks by

2 For univariate time series: https:/github.com/FlaAl/TSFool.
3 For multivariate time series: https:/github.com/FlaAT/Multi- TSFool.

one to three orders of magnitude. As FGSM is a basic method not
outstanding in other measures, we can state that TSFool is efficient
enough. For imperceptibility, TSFool not only performs the best un-
der the proposed CC, but also beats seven in nine benchmarks under
the conventional local perturbation, with the rest two to three orders
slower. This confirms the imperceptibility of TSFool is impressive
from the global perspective, and also considerable from local. An in-
tuitive example of attack results by TSFool and the benchmarks is
given in Figure 5.

Due to the limited space, this section is just a brief overview of
our experimental results, and we leave the detailed analysis in Sec-
tion B.2 of our Appendix.! There are also a number of additional
experiments that support our points and strengthen the confidence of
the above results, including I) implementing TSFool on a multivari-
ate time series dataset from the UEA archive in Section B.3, where
it achieves similar performance to the univariate cases; II) explor-
ing the impact of hyper-parameters for all the experimental methods
in Section B.4, to confirm the above results are of general signifi-
cance; III) additionally evaluating the benchmarks on TPSs in Sec-
tion B.5, to dispel a possible concern about the consistency of the
final compared data and further confirm the fairness of our experi-
ments; IV) conducting subjective human studies with 65 volunteers
in Section B.6, to illustrate the benefit of using Camouflage Coeffi-
cient in representing real-world imperceptibility of adversarial sam-
ples; and V) evaluating TSFool by four common anomaly detection
methods in Section B.7, to show its advantages beyond existing at-
tacks in imperceptibility under the challenge of real-world defense.

6 Discussion

While the surprising results in Section 5 are revealed by RNN-based
TSC specifically, they are enough to reflect the fact that general con-
sideration beyond image data and feed-forward models is still lack-
ing in the existing knowledge. As a consequence, we believe the cur-
rent theory of adversarial attack is incomplete and needs to be further
refined. Another problem to be noticed is that imperceptibility should
have been one of the most important measures of an adversarial sam-
ple as this is part of its definition [38], without which it should not
be believed really “adversarial”. However, imperceptibility has not
received sufficient attention to date, at least not at the same level
as ASR. So constructing widely recognized measures for the imper-
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Figure 5: The figures show an instance of adversarial attacks through the nine benchmark methods and TSFool on the UCR-ECG200 dataset.
The results of FGSM, PGD and Auto-Attack are unsatisfying with obvious distortion. While JSMA and DeepFool perform better in this case,
their average performances in Table 1 are just mediocre. On the contrary, Boundary Attack and HopSkipJump are shown more successful in
local perturbation control, but this instance reveals that sometimes they can be unstable, not to mention their worst efficiency. Only C&W,
Transfer Attack and TSFool basically realize imperceptible perturbation here, while it should be remembered that on average, C&W is around
two orders slower than TSFool and Transfer Attack achieves the worst ASR among all the experimental methods.

ceptibility of adversarial samples is still an important and promis-
ing direction. We hope some preliminary ideas regarding these two
problems in this paper could raise the community’s attention and be
instructive for future research.

There are a few related works making preliminary explorations
in these directions. For instance, Belkhouja et al. [5] provide the-
oretical and empirical evidence to demonstrate the effectiveness of
dynamic time warping (DTW) over the standard Euclidean distance
metric regarding the robustness of NNs for time series domain, which
also emphasizes the significance of new measures in this field. We
provide further discussion in Section C.1 and showcase that, by us-
ing DTW as a measure of distortion, TSFool still outperforms PGD.
Zhang et al. [41] argue that considering the distance to class bound-
ary, adversarial samples should have unequal importance and should
be assigned with different weights, which also lays a solid founda-
tion for our idea to pick TPS in Section 3.1. But still, we understand
someone may view this as a weakness of TSFool as this violates the
conventional setting in the evaluation of attack methods to exactly
generate an adversarial sample for every single benign one. Fortu-
nately, picking TPS is vital but not indispensable for TSFool. We
further discuss the details in Section C.3, and provide an extended
version of TSFool without the above weakness. Additional experi-
ments there confirm that the extended TSFool is still the most com-
petitive choice compared with the benchmarks.

Although as aforementioned, our contribution is not limited to
proposing the TSFool approach, someone may still doubt whether
it is indeed motivated enough to specifically design for RNN-based
TSC, as more state-of-the-art solutions for TSC tasks are based on
convolutional NNs or transformers [10]. Nevertheless, the fact is that
to date RNN-based TSC applications are still popular in real-world
practice [15, 16, 39], without an effective approach to measuring
their robustness [16, 19], which leaves potential threats to the pub-
lic. TSFool can be viewed as a “gray-box” method. In short, consid-
ering the impact of specific modes of RNN running to i-WFA ex-
traction in different applications, TSFool may either be implemented
in a black-box way, or rely on a part of white-box information. We
leave a more detailed explanation in Section A.3. Please notice that

this is just about the property of TSFool, instead of the background
setting of this paper. Another point to be noticed is that as TSFool
relies on existing vulnerable samples wrongly predicted by the target
RNN classifier, a natural requirement is that such samples must exist.
Generally, this should not be a serious concern, as they can be any
real-world sample at inference time instead of just from the super-
vised dataset. In practice, TSFool provides several hyper-parameters
for fine-tuning as shown in Section B.4 and supports both targeted
and untargeted attacks, which makes it widely applicable. We also
showcase its potential for adversarial training in Section C.2.

7 Conclusion

In this paper, given the lack of research and applicable approach in
the field of adversarial samples for RNN-based TSC, we propose the
TSFool attack, significantly outperforming existing methods in effec-
tiveness, efficiency and imperceptibility. What’s important, the novel
global optimization objective "Camouflage Coefficient" proposed to
refine the adversarial attack as a multi-objective optimization prob-
lem may be instructive for the improvement of the current theory,
and the methodology proposed based on latent manifold to heuristi-
cally approximate the solution of such a new optimization problem
can also be easily transferred to other types of models and data, pro-
viding a new feasible way to craft imperceptible adversarial samples.
For future works, further exploring the newly defined multi-objective
optimization problem to find better approximation solutions is an in-
teresting topic, and the attempt to realize our methodology in other
kinds of real-world tasks is in progress at present.
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