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Abstract. Neural style transfer (NST) generates new images by
combining the style of one image with the content of another. How-
ever, unauthorized NST can exploit artwork, raising concerns about
artists’ rights and motivating the development of proactive protection
methods. We propose Locally Adaptive Adversarial Color Attack
(LAACA), empowering artists to protect their artwork from unau-
thorized style transfer by processing before public release. By delv-
ing into the intricacies of human visual perception and the role of
different frequency components, our method strategically introduces
frequency-adaptive perturbations in the image. These perturbations
significantly degrade the generation quality of NST while maintain-
ing an acceptable level of visual change in the original image, ensur-
ing that potential infringers are discouraged from using the protected
artworks, because of its bad NST generation quality. Additionally,
existing metrics often overlook the importance of color fidelity in
evaluating color-mattered tasks, such as the quality of NST-generated
images, which is crucial in the context of artistic works. To compre-
hensively assess the color-mattered tasks, we propose the Aesthetic
Color Distance Metric (ACDM), designed to quantify the color dif-
ference of images pre- and post-manipulations. Experimental results
confirm that attacking NST using LAACA results in visually inferior
style transfer, and the ACDM can efficiently measure color-mattered
tasks. By providing artists with a tool to safeguard their intellectual
property, our work relieves the socio-technical challenges posed by
the misuse of NST in the art community.

1 Introduction

Neural style transfer (NST) [8] is widely adopted in computer vision,
where the distinctive stylistic elements of one image are algorithmi-
cally merged with the content features of another image using neural
networks. While NST opens new avenues in artistic expression and
digital image processing, it poses risks of misuse, particularly in the
unauthorized use of curated artworks uploaded online. This concern
has been raised by the British Broadcasting Corporation (BBC) [37],
reporting that “many artists and photographers say they (a company
named Stability AI) use their work without permission”. Research
efforts have been put into using the neural steganography techniques
for post-violation accountability in post-NST images [7], but, to our
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Figure 1. Role of our proposed method in preventing copyright
infringement raised by unauthorized NST.

knowledge, we witness an absence of proactive approaches that can
protect artworks from unlawful replication and manipulation induced
by NST before any financial and reputational damages occur.

Adversarial attacks [36], a concept primarily explored in machine
learning security, have shown promise in subtly altering input data
to mislead neural networks. Several studies have demonstrated the
effectiveness of adversarial attacks in various domains [11, 24, 43,
45, 47]. Inspired by the disruptive effect of adversarial attacks on
machine learning-based systems, we propose to leverage this tech-
nique for artwork protection in the context of NST. By strategically
embedding specific patterns or "adversarial perturbations" into dig-
ital artworks, we aim to systematically disrupt the unauthorized use
of original artworks by AI models in advance. This approach offers
a more robust and proactive defense mechanism compared to tradi-
tional methods like watermarking, as it directly targets the vulnera-
bilities of neural networks used in NST.

Color plays a crucial role in the perception and aesthetics of vi-
sual art [25, 40]. In the context of NST, color consistency is a fun-
damental aspect of style transfer algorithms [10, 21]. However, most
existing reference-based image quality assessment metrics focus on
image structure [39] or semantics [14, 32, 41], with limited attention
given to color. This oversight leads to a lack of evaluation metrics
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Figure 2. Adversarial examples against 5 NST methods on different style images and content images. For each item, on the far left, we exhibit the
foundational images: the original style image at the top while the post-attack style image below it. Progressing to the right, the sequence is organized into four
distinct groups for analysis. Each group commences with the content image, which provides the subject for the NST. Subsequent columns within each group

depict the results of various NST methods (from left to right, they are Gatys [8], AdaIN [15], OST [26], SANet [31], and EFDM [42]). The top row across these
groups showcases results from the original NST, the bottom row, in contrast, illustrates the post-attack NST outcomes. Specifically, most images displayed
colors that were not visually present in the original style image and post-attack style image. Also, the textures in most images also suffer from disturbance.

specifically designed for color-sensitive tasks like NST. To address
this issue, we propose the Aesthetic Color Distance Metric (ACDM),
a novel metric that quantifies the color changes of images after under-
going certain transformations. By capturing color-related properties,
ACDM provides a more comprehensive evaluation of color changes
between pre- and post-manipulated images, which will also be help-
ful to exhaustively evaluate the proposed artwork protection method.

In light of the practical restrictions of artwork protection, we iden-
tify three main desiderata for image-level alterations tailored for
NST: (a) acceptable perceptibility to the human eye that ensures the
artwork’s visual integrity, (b) effectiveness in disrupting the genera-
tion quality of most NST methods, and (c) a generic solution applica-
ble to broad-spectrum of artworks. To address these requirements, we
propose the Locally Adaptive Adversarial Color Attack (LAACA), a
method that integrates adversarial techniques directly into the digital
artwork creation process. LAACA leverages a frequency domain fil-
ter to divide the image into high-frequency and low-frequency con-
tent zones, and clips the perturbations in the high-frequency zone
during each iteration of the attack. This approach ensures the visual
integrity of the attacked images while effectively disrupting the color
features and local texture details of the post-attacked NST images.
Figure 2 demonstrates the impact of LAACA on NST outputs.

The main contributions of this work are as follows:

• We propose LAACA, a novel artwork protection method that
proactively safeguards digital image copyrights by disrupting the
NST generation through the addition of visually imperceptible
perturbations to the input style image prior to the NST process.

• To address the limitations of existing image quality assessment
metrics in evaluating color-mattered tasks, we introduce ACDM,
a new metric that quantifies the color changes of images after un-
dergoing certain transformations.

2 Related Works

In this section, we review the relevant literature in the fields of neural
style transfer and adversarial attacks. We first discuss the evolution
of NST algorithms, from the seminal work of Gatys et al. [8] to more
recent advancements in Arbitrary Style Transfer. We then delve into
the development of adversarial attacks, highlighting the shift towards
a frequency domain perspective and the progress made in applying
adversarial attacks to domains beyond image classification. Finally,
we identify the research gap in adversarial attacks specifically target-
ing NST and position our work in the context of this gap.

Neural style transfer. Neural Style Transfer (NST) witnessed a
foundational advancement with the work of Gatys et al. [8], which
enabled the transfer of artistic style characteristics from one image
to another through an iterative optimization process using the Gram
Matrix. Building on this seminal work, subsequent research in NST
explored alternatives to the Gram Matrix, offering improved styliza-
tion outcomes [9, 17, 27, 33]. A significant evolution in NST was the
transition to non-iterable forms, known as Arbitrary Style Transfer
(AST). A key development in this area was Adaptive Instance Nor-
malization (AdaIN) [15], which simplified the style transfer process
by training a decoder with fused statistical features of the style and
content images. Furthermore, Lu et al. [26] offered a closed-form so-
lution for NST, further streamlining the style transfer process. Park
and Lee [31] integrated the attention mechanism into NST, enhanc-
ing the effectiveness of style transfer. Notably, Zhang et al. [42] up-
dated the matching function in AdaIN by introducing Exact Feature
Distribution Matching (EFDM), allowing for much better AST. It is
important to highlight that our work does not aim to alter the parame-
ters of NST algorithms; instead, we focus on manipulating the input
style images to disrupt the style transfer process, offering a novel
perspective on adversarial attacks in the context of NST.
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Adversarial attack. The exploration of adversarial attacks against
neural networks was pioneered by Szegedy et al. [36], who under-
scored the susceptibility of classification neural networks to pertur-
bations in the input. Following this groundbreaking work, Goodfel-
low et al. [11] introduced one-shot adversarial perturbations by lever-
aging the gradients of neural networks to deceive classification mod-
els. Carlini and Wagner [1] proposed the first successful targeted at-
tack on classification models trained with ImageNet [2]. Madry et al.
[28] iteratively constrained image perturbations, allowing for more
efficient convergence. Moosavi-Dezfooli et al. [30] proposed Uni-
versal Adversarial Perturbation, which can fool models with a single
perturbation for arbitrary data. By introducing momentum in itera-
tions, Dong et al. [5] further increased the transferability of adversar-
ial samples.

A notable shift in the approach to adversarial attacks has been to-
wards a frequency domain perspective, focusing on the role of fre-
quency composition in the effectiveness and perceptibility of ad-
versarial perturbations. Guo et al. [12] highlighted that solely using
low-frequency noise can reduce computational costs for black-box
attacks. Furthermore, Maiya et al. [29] offered that the frequency
of noise in adversarial attacks is not strictly high or low but is re-
lated to the dataset. Advancing this inquiry, Jia et al. [16] explored
generating perturbations in the frequency domain. Wang et al. [38]
employed a conditional decoder to generate low-frequency pertur-
bations, enabling a fast targeted attack. These developments suggest
that considering adversarial attacks from a frequency domain stand-
point could provide a more refined understanding and potentially en-
hance the effectiveness of attacks. Building upon these seminal ad-
vancements in adversarial attacks, the field has progressed into other
domains of artificial intelligence [3, 4, 13, 44, 46].

To the best of our knowledge, there is only one method that at-
tacks NST by disrupting content images, with no direct exploration
of altering style images. The mentioned content-disruptive method,
Feature Disruptive Attack (FDA) [6], manipulates the intermediate
features of content images mapped by a neural network, resulting
in distorted content in post-NST images while the applied style re-
mains unchanged. However, the visual difference between pre- and
post-attack images by FDA is slightly obvious. In contrast, our work
focuses on adding imperceptible perturbations to style images, which
results in significantly degraded post-NST images, regardless of the
content images used. This content-independent method opens up new
possibilities for adversarial attacks against unauthorized-NST usage,
offers a more flexible and generalizable approach to disrupting NSTs.

3 Methodology

In this section, we first define the problem of artwork protection
against NST in the adversarial attack framework via a simple yet uni-
fied formulation and propose our method. Additionally, we design a
color-based metric named Aesthetic Color Distance Metric (ACDM)
to assess the artistic style difference, which complements the existing
Image Quality Assessment (IQA).

3.1 Problem Definition

We commence with a style image x ∈ R
C×H×W from a set of

style images X , where C, H , and W denote the channels, height,
and width of the image, respectively. Similarly, a content image
y ∈ R

C×H×W is selected from a content image set Y .
The function g = NST(x,y) represents the neural style transfer

process, which amalgamates the style of image x with the content of

Is Is + L+H Is + L Is +H

Figure 3. This figure illustrates various perturbation patterns applied to
various style images, among perturbed images, “Is +H” remains the best

visual integrity. To be specific, Is is the clean style image; L means
low-frequency components of perturbations; H means high-frequency
components of perturbations. Those perturbations are generated by our

method with k = 4, α = 8, ε = 80, and T = 100. We separate the different
frequency components by the kernel in Equation 4 with k = 4.

image y. The output g denotes the resultant style-transferred image.
We introduce x∗ as the protected style image generated from x,

where x∗ = x+ δ, and the difference vector δ = x∗ −x is the per-
turbation designed to disrupt NST. The essence of disrupting NST
lies in creating a protected style image x∗, visually similar to x, yet
significantly altering the NST generation combined with an arbitrary
content image y. To make changes visually imperceptible, the per-
turbation is restricted in an �p norm, denoted as ‖δ‖p ≤ ε, where ε
is the defined budget of perturbations. Thus, the problem is:

argmax
δ

Ey∼PY [D(g, g∗)] s.t. ‖δ‖p ≤ ε , (1)

we assume D is to measure the human perceptual distance; the post-
protection NST output is g∗ = NST(x∗,y); the expectation is taken
with the content images’ population distribution PY .

Previous unauthorized NST prevention methods, like neural
steganography or watermarking, offer post-violation accountability
but rely on detecting infringement after the fact. Conversely, the
adversarial attack method proactively introduces imperceptible per-
turbations that degrade NST output quality, deterring potential in-
fringers by rendering the resulting images unsuitable for their in-
tended purpose. Figure 1 of supplementary material1 illustrates the
difference of those different technique approaches.

3.2 Locally Adaptive Adversarial Color Attack

Building upon the Equation 1, there will be a challenge: considering
the extensive variety of content images y ∈ PY for NST, it becomes
impractical to enumerate and process every content and style image
combinations for each single style image. For example, using the Im-
ageNet [2] as a benchmark, we recognize that a representative con-
tent image subset would include around 1,000 categories, and each
category has a significant in-class variance. We assume that sampling
at least 10 images from each class would slightly cover this in-class

1 https://github.com/ZhongliangGuo/LAACA/blob/main/supp.pdf
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variance, leading to a minimum of 10,000 samples for the subset.
This approach poses a substantial computational challenge, particu-
larly for iterative NST methods where time costs are significant.

To address this challenge, we try to make a paradigm shift to a
method that is only reliant on style image x. In this new frame-
work, we introduce an amortized encoder, denoted as f , coupled
with a surrogate loss function, J . The encoder f is designed to
take an input style image x and output its content-less style repre-
sentation. This representation is a distilled essence of the style im-
age’s characteristics, capturing features that define its unique artis-
tic style. The surrogate loss function J then measures the dispar-
ity between two style representations generated by f . This approach
allows us to approximate the Ey∼PY [D(NST(x,y),NST(x∗,y))]
with J(f(x), f(x∗)), which is content-independent. Therefore, our
task is to maximize the difference between the style representations
of the original and protected style images, while ensuring the pertur-
bation δ is within a pre-defined budget limit ε, resulting acceptable
visual integrity:

argmax
δ

J(f(x), f(x∗)), s.t. ‖δ‖p ≤ ε . (2)

Inspired by previous works [20, 38], we restrict the perturbation
δ to be frequency-adaptive such that the visual effect is better pre-
served. This is motivated by the observation that the high corre-
lation between different frequency components and visual effects.
This finding guides us to embed adversarial perturbations within the
high-frequency areas of the style image. This idea is demonstrated in
Figure 3, where restricting perturbations to the high-frequency zone
maintains higher visual integrity compared to other patterns. More
formally, denote the pixel set of high-frequency components of an
image x as M(x) ⊆ {(i, j) | i = 1, . . . , H, j = 1, . . . ,W}, and
its complement ¬M(x) becomes the corresponding low-frequency
pixel set. Thus, the problem is formulated as:

argmax
δ

J(f(x), f(x∗)),

s.t. ‖δ‖p ≤ ε and δ[i, j] = 0, for (i, j) ∈ ¬M(x).
(3)

Frequency separator. We employ a low-pass Gaussian filter to
separate different frequency components from an image:

Gk (i, j) =
1

2πk2
e
− i2+j2

2k2 , (4)

where Gk(i, j) denotes the value of the Gaussian kernel at position
(i, j). The standard deviation of the kernel, σ, is determined by k.
The kernel size is (4k + 1) × (4k + 1). The output vector from
this kernel is the low-frequency components of the image. By using
the above frequency separator, the high-frequency components of the
style image x become:

M(x) = {(h,w)|x−Gk(h,w) > 0;

h,w ∈ N; 1 < h ≤ H, 0 < w ≤ W}, (5)

where N represents the set of natural number. The pixels in an image
x belonging to M(x) are denoted as high-frequency zone, and pixels
belonging to ¬M(x) is denoted as low-frequency zone.

Encoder. For the amortized encoder f , we utilize a pre-trained
VGG [35], using its several layer outputs as feature extraction en-
coders. This choice is inspired by established arbitrary style transfer
methods that effectively extract images’ style representation from in-
termediate network layers. Each layer of the network is denoted as l,
collectively denoted as a set L, f l(x) indicates the mapped result of
intermediate layer l of the style image x.

Algorithm 1 Locally Adaptive Adversarial Color Attack (LAACA)
Input: A style transfer encoder f with style loss function J ; a real
style image x; a Gaussian kernel Gk with kernel size k
Parameter: The attack step size α ; �∞-norm perturbation radius ε;
iterations T
Output: Attacked style image x∗

1: clampnm restricts a value to be within the range [m,n]
2: randomly generate δ0 in [0, 2] to avoid the gradient is 0 in loops
3: x∗

0 = clamp2550 [x+M(δ0)]
4: for t = 0 to T − 1 do

5: x∗
t requires gradient

6: Input x∗
t and x to f and obtain the gradient

∇xJ (f (x∗
t ) , f (x))

7: Update x∗
t by accumulating the signed gradient

x∗
t = x∗

t + α · sign [∇xJ (f (x∗
t ) , f (x))]

8: Get the perturbation and apply the mask on it
clampε−εδt [¬M(x)] = 0

9: Update x∗
t+1 by the masked perturbation

x∗
t+1 = clamp2550 [x+ δt]

10: end for

11: return x∗
t

Color disruptive loss function. As for the surrogate loss function
J , our goal is to measure aspects of the neural network’s intermediate
layer mappings that represent color. This leads us to consider the
mean μ and standard deviation σ, which are important in the neural
network feature representation in terms of NST. Evidenced by Zhang
et al. [42], who tested the influence of μ and σ, when only matching
the μ of content representations with μ of style representations, the
color of the post-NST image will be the same as that of its style
counterpart; in contrast, when only matching σ, the texture will be
similar. That is, μ represents the color, while the σ represents the
contrast and texture variations, both of which significantly contribute
to an image’s style. Therefore, we design the surrogate loss function
targeting those two statistics:

J
(
f(x), f(x∗)

)
=

∑
l∈L

((
μ(f l(x))− μ(f l(x∗))

)2

+
(
σ(f l(x))− σ(f l(x∗))

)2)
,

(6)

where μ is a function to get the mean of feature in each channel, and
σ is a function to get the standard deviation of feature in each chan-
nel. By focusing on these aspects, function J can effectively guide
our method in disrupting the generation of the neural style transfer.

Generation of perturbation. Algorithm 1 outlines the protection
method transforming x to x∗.2 We employ an iterative approach with
an �∞ norm constraint, denoted as ‖x − x∗‖∞ ≤ ε. before the for
loop, we randomly generate a small noise δ0 to avoid the gradient is
0 in loops. For each iteration, the gradient of the loss function with
respect to the input is computed, and the perturbations are updated
in the direction maximizing the loss value, with a step size of α. The
perturbations are then clipped to maintain the �∞ constraint.

3.3 Aesthetic Color Distance Metric

At present, there is no image distance metric specifically designed
for distinguishing image differences affected by style from color per-
spective, i.e., the color consistency is often overlooked in existing re-
search; the commonly used generic metrics are not well-suited for

2 Our code is available at https://github.com/ZhongliangGuo/LAACA.
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this task either, as evidenced by the experimental results summa-
rized in Table 1. To address this limitation, we propose a new met-
ric, Aesthetic Color Distance Metric (ACDM),3 in the LAB color
space, which is constructed to be perceptually uniform and more
closely aligns with human visual perception compared to the RGB
space [34]. The LAB color space consists of three channels: L rep-
resents lightness, ranging from 0 to 100, A and B represent color
opponents, with A ranging from -128 (•) to 127 (•) and B ranging
from -128 (•) to 127 (•).

Given two images z1, z2 ∈ R
C×H×W in the LAB color space,

where C = 3 denotes the number of color channels (L, A, B),
and H,W denote the image height and width, respectively. For each
color channel c ∈ {L,A,B}, we compute the histogram of values.
The histogram represents the distribution of pixel values for each
color channel, and is considered an effective method to characterize
the color composition of an image.

The number of bins Nc for each channel is determined by taking
the square root of the difference between the maximum and mini-
mum values of that channel:

Nc =
⌈√

maxc −minc

⌉
(7)

where minc and maxc denote the possible value range of channel c.
Denote the bin width as h = maxc −minc

Nc
, the corresponding bins

are {Bi}Nc
i=1, where Bi = [minc + (i− 1)h,minc + ih) for i =

1, . . . , Nc − 1, and BNc = [minc + (Nc − 1)h,maxc).
Let Hc : RH×W → R

Nc denote the function that maps a channel
image to its corresponding Nc-dimensional frequency count vector.
To enable a meaningful comparison between the color distributions
of the two images, we normalize the histogram vectors of both im-
ages z1 and z2 by dividing each histogram by its own sum:

ĥc(zi) =
Hc(zi,c)∑Nc

j=1 Hc(zi,c)j
. (8)

This normalization step converts the histogram vectors into probabil-
ity distributions, ensuring that the resulting normalized histograms
ĥc(z1) and ĥc(z2) have a total sum equal to 1. By representing
the color distributions as probability distributions, we can effectively
capture the relative frequencies of pixel intensities in each channel,
facilitating a fair comparison between the two images.

Earth Mover’s Distance based metric. To measure the color dif-
ference between z1 and z2, we employ the Earth Mover’s Distance
(EMD) between their normalized histograms for each channel. The
EMD calculates the minimum cost required to transform one proba-
bility distribution into another. By using the EMD, we consider not
only the absolute differences between corresponding histogram bins
but also the overall shape and structure of the distributions. This is
particularly important in the context of color distributions, as the
EMD can capture perceptually meaningful differences that simple
bin-wise comparisons may overlook. Moreover, the EMD takes into
account the ground distance between bins, which allows for a more
nuanced comparison of the color distributions.

When the two distributions are 1-D vectors, the distance can be
solved with a closed-form solution [19, 22]:

Dc(z1, z2) =

∑Nc
n=1 |F(ĥc(z1))n −F(ĥc(z2))n|

Nc − 1
. (9)

where F(ĥc(zi))n =
∑

j=1...n ĥc(zi)j is the cumulative probabil-
ity mass up to the n-th bin. To scale the data for better interpretability,

3 Our code is available at https://github.com/ZhongliangGuo/ACDM.

we adopt a max-min normalization with a theoretical maximum dif-
ference of two distributions. By employing the EMD, we obtain a
robust and semantically meaningful measure of the color difference
between the two images in each perceptual color channel. Finally, we
obtain the overall color difference score by summing the differences
across all three channels:

ACDM(z1, z2) =
∑

c∈{L,A,B}
Dc(z1, z2). (10)

Discussion on distance metrics. Consider a toy example of his-
tograms from one channel of 3 images, each with 4 bins. Suppose the
normalized histograms of these images are: A = [0.0, 1.0, 0.0, 0.0],
B = [0.2, 0.3, 0.5, 0.0], C = [0.2, 0.3, 0.0, 0.5]. Histograms B and
C have the same bin values but in a different order. Intuitively, the
distribution of B ought to be more similar to A because the posi-
tion of its 0.5 entry is closer to that of 1.0 in A compared with
C. However, when we use �1 loss (H1), �2 loss (H2), Cross En-
tropy (H3), Cosine Similarity (H4) or Euclidean Distance (H5) to
compare these vectors, we find that B and C have the same loss
values when compared to A: H1(A,B) = H1(A,C) = 0.35,
H2(A,B) = H2(A,C) = 0.195, H3(A,B) = H3(A,C) =
1.4437, H4(A,B) = H4(A,C) = 0.4867, H5(A,B) =
H5(A,C) = 0.8832, which indicates that although B and C have
different similarities to A, these three loss functions cannot distin-
guish between them. On the other hand, if we use EMD to compare
these vectors, we find that: EMD(A,B) = 0.7,EMD(A,C) = 1.2.

EMD provides a more intuitive and accurate measure of the dif-
ference between the distributions. The smaller EMD value between
A and B reflects that their high-value bins are concentrated in the
same region, and only a slight movement of some pixels is needed to
match them perfectly. In contrast, the larger EMD value between A
and C indicates that more pixels need to be redistributed among the
bins to match distributions.

4 Results

4.1 Experimental Setup

We use the normalized VGG-19 [10] as our encoder, consistent with
NST methods like AdaIN and EFDM, capturing intermediate layer
outputs from relu1_1, relu2_1, relu3_1, relu4_1. We set k = 4,
α = 8, ε = 80, T = 100 to balance visual integrity and attack ef-
fectiveness, with hyperparameter discussions in the ablation studies.
Content images are sourced from MS-COCO [23], and style images
are from WikiArt [18].

We target five popular NST methods: Gatys [8], 4 AdaIN [15], 5

OST [26], 6 SANet [31], 7 and EFDM [42], 8 representing various
approaches in the NST domain. For all NST methods, we set the im-
age size as 512×512, for Gatys, we follow the initial setting, setting
style_weight = 1e6, content_weight = 1, epochs = 500; For
OST, α = 0.6; For AdaIN, SANet and EFDM, we apply the default
parameter α = 1 which was discussed in their paper. We randomly
sample around 300 pairs of style and content images to evaluate orig-
inal and protected artworks, pre-and post-protection NST images.

As no existing attack methods are specifically designed for style
images of NST, we extend the Feature Disruptive Attack (FDA) [6]

4 https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
5 https://github.com/naoto0804/pytorch-AdaIN
6 https://github.com/boomb0om/PyTorch-OptimalStyleTransfer
7 https://github.com/GlebSBrykin/SANET
8 https://github.com/YBZh/EFDM
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to our task with the same layers and the encoder as our method. We
also consider the Universal Adversarial Perturbation (UAP) [30] as a
baseline due to its wide applicability in adversarial settings. To align
with our method, the �ε norm of two baselines is also set as 80.

To further evaluate the performance of our method in real-world
scenarios, where images are often compressed or downscaled for ef-
ficient distribution, we simulate common image degradation tech-
niques by applying JPEG compression (retain 75% quality) and
Gaussian blur (kernel in Equation 4 with k = 3) to the test images.

4.2 Evaluation for ACDM

Color is a key indicator for image style differences, often overlooked
by existing metrics. Our proposed Color-based metric, ACDM, effec-
tively distinguishes between style differences from color perspective.

Due to the current lack of well-annotated datasets for color-centric
tasks, we validate ACDM in the Neural Style Transfer (NST) con-
text. We hypothesize that positive pairs (same style, different con-
tent) should have higher color correlations than negative pairs (same
content, different styles). We expect smaller ACDM scores for posi-
tive pairs and larger scores for negative pairs.

We sample 10,000 pairs from MS-COCO (content) and WikiArt
(style), perform style transfer using EFDM, and compare ACDM
with two popular metrics Structural Similarity Index Measure for
color image (SSIMc) [39] and Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [41], where SSIMc is a SSIM’s variant considering
the color information. It is worth noting that we use the LPIPS with
VGG, aligning with the convention in NST domain. The evaluation
results are shown in Table 1.

Table 1. Evaluation on effectiveness of ACDM compared with SSIMc and
LPIPS, ↑/↓ indicates that bigger/smaller value means better image quality.

IQA positive pairs (P) negative pairs (N) change ratio |P−N|
P

SSIMc ↑ 0.2871 0.4072 41.83%
LPIPSVGG ↓ 0.5851 0.5459 6.70%

ACDM ↓ 0.0464 0.2982 542.67%

In comparison, although SSIMc considers the color information,
it demonstrates a more notable ability to capture image structure,
which is more related to the content of the image rather than its color
style. This is evidenced by the higher SSIMc score for negative pairs,
where the content is consistent, compared to positive pairs, where the
content varies. This suggests that SSIMc is more sensitive to changes
in image content rather than to changes in color or style. This percep-
tual ability of SSIMc can be leveraged as an evaluation metric for as-
pects other than color in our proposed Locally Adaptive Adversarial
Color Attack (LAACA) method.

Furthermore, in the context of NST, LPIPS exhibits similar perfor-
mance for both positive and negative pairs. This suggests that LPIPS
may not be particularly sensitive to changes in either content or style
when the other component remains consistent. In other words, LPIPS
seems to be influenced by both content and style simultaneously,
making it less discriminative when one of these factors is fixed. This
observation highlights the need for a more targeted evaluation metric,
such as our proposed ACDM, which can effectively capture color-
related changes even when content or style is held constant.

These findings underscore the effectiveness of our proposed
ACDM metric in evaluating color-mattered tasks. The substantial dif-
ference in scores between positive and negative pairs demonstrates its
strong perceptual ability to capture color differences, setting it apart
from other commonly used metrics.

4.3 Results for LAACA

We employ three evaluation methods to assess and analyze the exper-
imental results: our proposed ACDM, SSIMc, LPIPS. ACDM quan-
tifies the color variations between the original and attacked images.
SSIMc is used to measure the changes in image structure before and
after the attack, with higher SSIMc values indicating greater struc-
tural similarity and a maximum value of 1 indicating identical im-
ages. LPIPS measure the perceptual similarity of the pre- and post-
attack images. For both SSIMc and ACDM, we use a Gaussian ker-
nel size of 11, following the default setting of SSIMc, to ensure a
consistent and comparable evaluation. In the following tables, +/−
indicates that bigger/smaller value means better results.

SSIMc. Table 2 presents the SSIMc scores comparing the struc-
tural similarity between the original and attacked images. Our
method overwhelmingly achieves an SSIMc score better than that of
FDA and UAP, indicating excellent preservation of structural infor-
mation. For the style-transferred images, LAACA obtains an average
SSIMc score of 0.3356, better than both FDA and UAP, demonstrat-
ing its effectiveness in disrupting the style transfer process. Under
defense, LAACA’s performance slightly declines. However, these re-
sults remain within an acceptable range, showcasing LAACA’s ro-
bustness in real-world scenarios where images may undergo com-
pression or blurring during distribution.

Table 2. SSIMc evaluation results, a higher score means better quality.

(the best, style images + Neural Style Transfer Methods
the second best) Gatys AdaIN OST SANet EFDM Average −

LAACA 0.6130 0.2392 0.3891 0.3671 0.3150 0.3674 0.3356

FDA 0.5647 0.3075 0.5260 0.4503 0.4016 0.5061 0.4593
UAP 0.3556 0.3059 0.4555 0.3121 0.2599 0.4222 0.3511

JPEG 75% Comp. 0.6218 0.2639 0.3986 0.3757 0.3229 0.3765 0.3475
Gaussian blur 0.6214 0.5499 0.5354 0.5403 0.4704 0.5080 0.5208

ACDM. Table 3 presents the ACDM scores, which measure the
color difference between the original and attacked images. For the
style images, our proposed LAACA method achieves an ACDM
score of 0.0495, significantly better than FDA (0.1406) and UAP
(0.1350), indicating excellent preservation of visual color informa-
tion in protected images. For the style-transferred images, LAACA
obtains the second highest average ACDM score, demonstrating its
ability to disrupt the color of the style-transferred images. Despite the
application of common image distortions, such as JPEG compression
and Gaussian blur, LAACA maintains its effectiveness in both pre-
serving color information in the style images and disrupting color in
the style-transferred images, as evidenced by the consistent ACDM
scores across all scenarios.

LPIPS. The LPIPS results in Table 4 demonstrate that LAACA
ranks in the top tier for original/protected style images in terms of
maintaining the perception, and it performs the best on disrupting the
perception of post-NST images. This indicates that LAACA is effec-
tive in preserving the perceptual quality of the style images while
successfully disrupting the perceptual similarity of the NST images.
When subjected to defense methods, LAACA shows competitive re-
sults. JPEG compression performs similarly to LAACA on both style
images and NST images, suggesting that LAACA maintains its ef-
fectiveness even when the images undergo compression. Although
Gaussian blur slightly degrades LAACA’s performance, the perfor-
mance loss remains within an acceptable range. This indicates that
our method exhibits a certain level of robustness against potential
image degradation that may occur during distribution.
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Figure 4. Ablation study results, for those labels on X-axis, they represent comparisons of pre- and post-attack images of X-axis value on a certain metric.

Table 3. ACDM evaluation results, a lower score means better quality.

(the best, style images− Neural Style Transfer Methods
the second best) Gatys AdaIN OST SANet EFDM Average +

LAACA 0.0495 0.1322 0.1913 0.0711 0.1300 0.1798 0.1409
FDA 0.1406 0.1746 0.1553 0.1218 0.1517 0.1473 0.1486

UAP 0.1350 0.1475 0.1412 0.1208 0.1406 0.1317 0.1364
JPEG 75% Comp. 0.0492 0.1244 0.1821 0.0682 0.1241 0.1694 0.1196

Gaussian blur 0.0438 0.0660 0.0839 0.0493 0.0906 0.0875 0.0755

Table 4. LPIPS evaluation results, a lower score means better quality.

(the best, style images− Neural Style Transfer Methods
the second best) Gatys AdaIN OST SANet EFDM Average+

LAACA 0.4043 0.6080 0.5552 0.4949 0.5545 0.5723 0.5570

FDA 0.4835 0.5841 0.4476 0.4437 0.5151 0.4642 0.4897
UAP 0.5740 0.5550 0.4239 0.4850 0.5231 0.4425 0.4859

JPEG 75% Comp. 0.3985 0.5944 0.5487 0.4881 0.5492 0.5653 0.5491
Gaussian blur 0.4226 0.4503 0.4513 0.4129 0.4615 0.4647 0.4481

4.4 Ablation Studies

In ablation studies, in addition to SSIMc and ACDM, we also include
the Lp norms as evaluation metrics to quantify the pixel-level differ-
ences between the protected and original images, which is regarded
as a convention in adversarial attack researches. For all experiments,
we set T = 100, ensuring convergence.

The parameter k determines the separation of high-frequency and
low-frequency components in the image, with a larger k resulting in
a wider range of frequencies being considered as high-frequency. As
k increases from 3 to 6, the SSIMc scores for the style images show
a slight improvement, indicating that a larger k may lead to a better
separation of high-frequency and low-frequency regions, resulting in
improved structural similarity between the pre- and post-attack style
images. However, the SSIMc scores for the other NST methods de-
crease, suggesting that a larger k may compromise their structural
similarity. The ACDM scores increase with larger k, indicating that
a larger k may introduce more color distortions in the style images
while affecting the color stability of other NST methods. The �2 dis-
tance decreases slightly for the style images as k increases, implying
that a larger k may produce lower pixel-wise differences, but it in-
creases for the other NST methods. The �∞ scores remain relatively
stable across different k values for all methods, indicating that the
maximum pixel-wise difference is nearly unrelated to k.

The parameter α determines the magnitude of the update in each
attack iteration. As α increases from 1 to 8, the SSIMc scores for
the style images remain relatively stable, while the scores for the
other NST methods decrease, suggesting that larger step sizes may
compromise their structural similarity. The ACDM scores increase
with larger α values, indicating that a larger step size may lead to
more color distortions in the style images while also affecting the
color stability of other NST methods. The �2 distance increases for

all methods with higher α values, implying that larger step sizes may
result in greater pixel-wise differences between the pre- and post-
attack images. The �∞ scores remain relatively stable across different
α values for all methods, suggesting that the maximum pixel-wise
difference is not significantly influenced by α.

The parameter ε defines the maximum allowed deviation from the
original image in the style transfer process. As ε increases from 10
to 80, the SSIMc scores for the style images remain relatively high,
while the scores for the other NST methods decrease significantly,
indicating that a larger perturbation range leads to a substantial de-
crease in their structural similarity. The ACDM scores increase with
larger ε values, suggesting that a higher perturbation range intro-
duces more color distortions in the style images while also affecting
the color stability of other NST methods. The �2 distance increases
for all methods as ε grows, implying that a larger perturbation range
results in greater pixel-wise differences between the pre- and post-
attack images. The �∞ scores increase with higher ε values, indicat-
ing that the maximum pixel-wise difference between pre- and post-
attack images becomes larger as ε increases, particularly for NSTs.

5 Conclusion, Limitations, and Future Work

In this work, we propose the Locally Adaptive Adversarial Color At-
tack, a method designed to interrupt unauthorized neural style trans-
fer use cases. Our approach significantly degrades the quality of NST
outputs while introducing acceptable perturbations, which will dis-
courage potential infringers from using the protected artwork, be-
cause of the bad NST generation. To supplement metrics in evaluat-
ing the performance of color-mattered tasks, we introduce an IQA,
ACDM, which quantifies the color distortions between pre- and post-
attack style images. The evaluation of ACDM’s performance in ex-
periments validates its effectiveness in assessing color-related tasks.
Experiments demonstrate the efficacy of our attack method in com-
promising the style transfer process, resulting in significant color dis-
tortions and structural dissimilarities in NST images while maintain-
ing the acceptable visual integrity of the post-attack style images.
However, our work has some limitations. The method’s runtime on
common GPUs is not optimal, and the numerous hyperparameters
currently provided may not be suitable for all images. Categorizing
style images into abstract and realistic paintings, our method is more
effective on abstract paintings, possibly because their bolder colors
and high-frequency components provide a larger manipulation space.
Future work will focus on improving computational efficiency and
exploring ways to make these parameters adaptive. Overall, our ap-
proach offers artists a potential tool to protect their intellectual prop-
erty, with the promise of mitigating or curbing electronic IP infringe-
ment.
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