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Abstract. Despite the impressive advancements in Large Language
Models (LLMs), their ability to perform reasoning and provide ex-
plainable outcomes remains a challenge, underscoring the continued
relevance of ontologies in certain areas, particularly due to the rea-
soning and validation capabilities of ontologies. Ontology modelling
and semantic search, due to their inherent complexity, still demand
considerable human effort and expertise. Addressing this gap, our
paper introduces the problem of ontology text alignment, which in-
volves finding the most relevant axioms with respect to the given
reference text. We propose an advanced Retrieval Augmented Gener-
ation framework that leverages BERT models and generative LLMs,
together with ontology semantic enhancement based on atomic de-
composition. Additionally, we have developed benchmarks in geol-
ogy and biomedical areas. Our evaluation demonstrates the positive
impact of our framework.

1 Introduction

In the ever-evolving landscape of artificial intelligence, the develop-
ment of ontologies represents a frontier of both opportunity and chal-
lenge. Particularly in domains where generative LLMs have demon-
strated significant success, the role of these models in ontology con-
struction is becoming increasingly pertinent. Despite their effective-
ness in generating knowledge graphs, LLMs encounter substantial
difficulties when grappling with the complexities of ontology devel-
opment. Ontologies, set apart from the relatively simpler structure
of knowledge graphs composed of subject-predicate-object triples,
are characterized by their elaborate configurations and intricate se-
mantic elements, including but not limited to negation, existential
restrictions, and universal restrictions. This complexity introduces a
notable disparity in the application of LLMs for ontology creation,
with considerable reliance still placed on human expertise and effort.

The construction of a precise and meaningful ontology is not a
trivial endeavor. It necessitates not only in-depth domain-specific
knowledge but also a comprehensive understanding of formal logic
to accurately interpret and represent complex semantic concepts. The
task becomes increasingly arduous when dealing with intricate ele-
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ments such as negation and universal restrictions, which are pivotal
to the ontology’s integrity yet challenging to master. In the current
market, there is a obvious demand for skilled ontologists capable of
crafting such detailed and accurate ontologies, but the availability of
such expertise is limited.

An additional challenge in real-world ontology applications is
their sheer size. Many ontologies are vast and complex, making them
too cumbersome for human users to fully comprehend and navigate.
This adds another layer of difficulty, as the management and under-
standing of these large-scale ontologies become increasingly daunt-
ing for even the most skilled ontologists.

To address these challenges, several solutions like ontology mod-
ularity [33, 12, 17] and ontology alignment [10] have been put forth.
Ontology modularity, in particular, involves creating subsets within
an ontology that align with specific human interests, enabling tar-
geted functionality for diverse applications. While these modular ap-
proaches maintain logical consistency in reasoning, they are con-
strained by the need for precise specifications and often struggle with
ambiguous or incomplete information. For example, a module that
includes soymilk but overlooks soy can only provide limited insights.
A significant challenge lies in assisting users to define these specifi-
cations, a task that existing tools are yet to properly manage.

Another notable limitation within ontology modularity is the diffi-
culty in constraining the size of ontology modules [3]. Adjustments
in the signature, a set of entities that users are interested in, can in-
fluence the module’s size, but without any definitive guarantees. The
concept of ontology excerpts [3] has emerged as a potential solution
to this problem. These are constrained ontology modules containing
a maximum number of axioms. However, even this approach does
not fully address the challenge of signature selection and its applica-
bility remains narrow.

In real-world scenarios, ontologists frequently rely on academic
literature and online resources, summarizing and assimilating rel-
evant knowledge into text, which they then convert into an ontol-
ogy format. This process also involves identifying relevant axioms
in both the current and similar ontologies. Drawing inspiration from
these practical methodologies, our paper introduces a novel problem:
ontology text alignment. This innovative problem aims to extract the
most relevant axioms that correspond to the given reference text, pre-
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senting a unique solution to bridge the gap between theoretical ontol-
ogy development and practical application. The problem of ontology
text alignment has the following applications:

Ontology Modeling: For ontology modelling, the ontology text
alignment serves as a powerful tool for ontologists. By leveraging
advanced LLMs like GPT models, they can efficiently summarize
extensive literature into coherent texts that forms the basis for ontol-
ogy construction. The ontology text alignment technique enables the
identification of relevant axioms from existing ontologies, thereby
reducing the need to model every axiom from scratch and facilitating
the development of comprehensive and relevant ontologies.

Ontology Selection: The ontology text alignment technique also
plays a critical role in ontology selection. Faced with an array of on-
tologies, determining the most suitable one for a particular use case
can be overwhelming. The extractive summary method can gener-
ate concise overviews of various ontologies based on specific texts,
such as research queries or project requirements. This not only aids
in understanding the core aspects of each ontology but also helps in
identifying the most relevant ontology, streamlining decision-making
processes in extensive ontology databases.

Semantic Search Enhancement: In semantic search engines, on-
tology text alignment can enhance search accuracy and relevance. By
extracting key axioms aligned with search queries, they offer more
precise search results, catering to users’ specific information needs.

Through these applications, ontology text alignment emerges as a
transformative tool in ontology development, offering efficient and
precise solutions that bridge theoretical concepts with practical im-
plementations. The contributions of our paper are as follows:

1. We introduce the ontology text alignment problem, a novel issue
that arises from the practical needs of ontology modelling in real-
world applications.

2. We propose an innovative framework that leverages the BERT
model alongside LLMs to effectively address this challenge. This
framework also enhances axiom ranking by incorporating struc-
tural and logical semantic insights derived from the syntactical
structure and atomic decomposition of the ontology.

3. We develop three unique benchmark datasets tailored to different
domains and scales. In particular, we employ justifications to con-
struct semantically accurate benchmark sets, Anatomy.

4. Our evaluation highlights the significant benefits of our frame-
work, particularly emphasizing the role of additional ontology
semantic enhancement. This enhancement substantially improves
the framework of ontology text alignment.

2 Related Work

BERT and LLMs. BERT (Bidirectional Encoder Representations
from Transformers) is a sophisticated model that leverages deep bidi-
rectional transformers for generating contextualized word embed-
dings [7]. It is typically pre-trained on a vast corpus of general-
purpose text, utilizing a dual-task framework to enhance its language
understanding capabilities. The architecture of BERT incorporates
a [CLS] token at the start of each sequence for classification tasks,
and a [SEP] token to delineate the end of each sentence within the
pair. During pre-training, BERT learns the contextual relationships
between words through two self-supervised tasks: Next Sentence
Prediction (NSP) and Masked Language Modeling (MLM). NSP in-
volves predicting whether sentence B logically follows sentence A
based on the representation derived from the [CLS] token, while
MLM focuses on predicting the identity of randomly masked tokens

within both sentences A and B. Since the introduction of BERT, the
model has garnered significant interest within the research commu-
nity. Numerous variants of BERT have been developed, each fine-
tuned for specialized domains and diverse downstream tasks. No-
table adaptations include Sentence-BERT (SBERT) [26], optimized
for sentence embeddings to enhance semantic textual similarity as-
sessments; and SapBERT [19], which focuses on improving domain-
specific entity linking tasks through pre-training using an integrated
medical ontology.

Recent LLMs (like GPT and LLaMA series) generally follow the
Transformer architecture of BERT, but are using the decoder, instead
of the encoder of the Transformer. LLMs have significantly greater
parameter sizes and are trained with unprecedented amounts of data
on the Web. The field of LLMs is fast-moving and we refer readers
to the recent survey of LLMs with their relation to KGs [23]. We
examine the BERT variations and LLMs for ontology text alignment.

Ontology Modularity. Ontology modularity has significantly ad-
vanced to tackle the challenges of reusability and interoperability
across various systems, a topic well-covered in the scholarly litera-
ture [33, 12, 17, 16, 5, 22, 18, 4, 2]. Several module notions have been
proposed, including deductive modules [18], semantic modules [15],
and locality-based modules [28]. However, those modules are often
computationally expensive or excessively large. For locality-based
modules, the total number of potential modules within an ontology
can grow exponentially with respect to the number of terms or ax-
ioms it contains [12]. To manage this complexity, atom decomposi-
tion [35] has been introduced as a succinct method to represent all
possible modules of an ontology efficiently. It helps streamline the
modularization process by providing a more manageable and com-
putationally feasible framework for handling large ontologies.

Entity Linking. Entity linking is the task of matching a mention
in the text to an entity or class in the ontology [30]. Entity link-
ing can support ontology construction and enrichment by associat-
ing text mentions to existing classes or identifying new classes in an
ontology [9, 8]. The input mentions can come from texts in corpora
or tables: for texts in corpora, a step of Named Entity Recognition
(NER) or mention detection may be needed to identify the mentions
before their linkage to an ontology; alternatively, a joint, end-to-end
NER and entity linking locates the span of mention together with
the class [30, 29]. Traditional entity linking methods are rule-based
(by string matching and rules) and feature-based (using lexical fea-
tures), and recent methods leverage deep learning, especially embed-
ding and BERT-based methods [30, 31, 29]. The usage of generative
LLMs for entity linking remains an open question, with still scarce
research, e.g., on biomedical ontologies [36]. The task of ontology
text alignment is more complex than entity linking, as the former lo-
cates a subset of axioms which usually have more entities with their
relations in the ontology, and need to consider a paragraph of texts
instead of one or few mentions each time in entity linking.

3 Problem Statement

Consider a scenario where an ontologist aims to incorporate the con-
cept ‘Abnormal blood oxygen pressure’ into an existing ontology.
Rather than building the representation from scratch, the ontologist
seeks to leverage existing biomedical ontologies for any predefined
notions. Upon locating the desired definition in textual format, as
shown below, the ontologist would employ the ontology text align-
ment process to identify relevant axioms in the SNOMED CT ontol-
ogy. An example of such text that requires alignment is as follows:
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Figure 1: Illustrative example of the most relevant axiom diagram
related to the reference text, presented through the SNOMED CT
browser interface.

"Abnormal blood oxygen pressure is a medical condition that
reflects a deviation from the normative range of oxygen par-
tial pressure in the bloodstream, with ’abnormal’ indicating
a measurement outside the accepted reference values used by
medical practitioners for defining physiological health."

Unlike traditional named entity recognition and entity linking
problems, our problem focuses on inferring the text’s claims from
axioms rather than simply identifying concept mentions. This adds
complexity and increases the challenge. The diagram of the axiom
can be visualized in Figure 1 using the SNOMED CT browser. For-
mally, the definition of ontology text alignment is defined as follows:

Definition 1 (Ontology Text Alignment) Let O be an ontology,
E ⊆ O, ref be the reference text, and let k ∈ Z+. Additionally,
let μ : (O, E , ref) �→ R≥0 be a relevance measure function. The task
ontology text alignment w.r.t. ref under μ is to identify an E ⊆ O
satisfying the following condition:

μ(O, E , ref) = max{μ(O, E ′, ref) | E ′ ⊆ O, |E ′| ≤ k }.

The objective is to identify a subontology that achieves the high-
est relevance score w.r.t. the given reference text, subject to the size
constraint k. Note that our paper primarily focuses on terminologi-
cal axioms (TBox axioms) characterized by their rich semantics and
complex structures. We do not consider factual assertions, namely,
class/role assertions (ABox axioms).

4 Framework

We tackle this problem by identifying the most relevant, top-ranked
axioms, inspired by recent advancements in generative LLMs and the
Retrieval-Augmented Generation framework. Our approach includes
the following components, based on these key considerations:

Verbalization. Complex axioms often contain complex logical op-
erations like conjunctions and existential restrictions, and classes are
encoded as URLs, making them challenging and not inherently read-
able by current LLMs. Through verbalization, we transform axioms
into descriptive natural language texts.

Indexing. Handling large ontologies, like SNOMED CT with more
than 300K axioms, is challenging for current generative LLMs due
to their limitations with long texts. We address this by employing
pre-trained models like BERT for initial indexing.

Axiom Type Verbalization

C � D "Every V(C) is a V(D)."
C ≡ D "V(C) is defined as V(D)."
C � ∃r.
 "V(C) is the domain of the property V(r)."

 � ∀r.D "V(D) is the range of the property V(r)."
C �D � ⊥ "V(C) and V(D) are disjoint."

Table 1: Verbalization Rule for different axiom types.

Integration of generative LLMs. We aim to improve the accuracy
and relevance of indexing by integrating semantically rich ontology
graphs into LLM prompts. This enriches the indexing process with
contextually relevant knowledge, enhancing the understanding and
use of ontological structures.

The subsequent sections will elaborate on each process and de-
scribe the methodologies and technologies applied.

4.1 Ontology Axiom Verbalization

We leverage recent advancements in the field of natural language pro-
cessing to bridge the gap between complex ontology knowledge and
understandable language. This process, known as ontology verbal-
ization, involves translating ontological axioms into text that is easily
comprehensible by individuals without specialized knowledge in the
field. The main challenge in this process is to preserve the original
meanings of the axioms while making them more accessible. We use
natural language processing techniques to decode and rephrase the
often intricate and abstract structures of ontology axioms. Although
existing tools are available in this area, they often lack maintenance.

In our approach, we start by verbalizing each concept name us-
ing their RDFS labels. The function to verbalize a logical formula
f is denoted as V(f). We adopt methods from prior work [13] to
verbalize complex concepts C, represented as V(C). The rules for
generating these verbalizations are outlined in [13].

For each axiom α, we further apply the rules listed in Table 1
to verbalize axioms of different types, denoted as V(α). Notably,
the axiom types C � ∃r.
 and 
 � ∀r.D are specialized cases
within the general category C � D, representing the domain and
range of the property r, respectively. Our study primarily focuses on
terminological axioms, also known as TBox axioms.

4.2 Indexing: Axiom Text Embedding and Ranking

After the axioms are verbalized, they are processed through a lan-
guage model for encoding, with the goal of representing each axiom
sentence as a vector. Given the versatility and robustness demon-
strated by BERT and its derivatives in capturing contextual relation-
ships within text, we have selected BERT and its variants for the task
of vectorizing ontology axiom sentences. This approach leverages
the deep learning capabilities of BERT to enhance semantic under-
standing and representation in ontologies.

For a robust representation of sentence-level information, we em-
ploy a BERT model to vectorize an axiom sentence V(α) for ax-
iom α through a technique known as mean pooling. Initially, an
axiom sentence V(α) is processed through a specified BERT tok-
enizer, transforming V(α) into a sequence of tokens. We denote this
tokenization function of an axiom sentence s = V(α) as T(s) =
[t1, t2, . . . , tn], where ti represents the i-th token. The tokens are
subsequently passed through the BERT model, which outputs a se-
quence of embeddings [

−−→
tCLS,

−→
t1 ,

−→
t2 , . . . ,

−→
tn ,

−→
tSEP]. Each embedding
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−→
ti corresponds to its respective token ti. To synthesize a single,
fixed-size representation of the axiom sentence V(α), mean pooling
is applied over the embeddings corresponding to the original input
tokens, excluding any special tokens such as [CLS] and [SEP]. In
summary, the embedding of each axiom sentence and the reference
text ref is calculated as:

−−−→
V(α) =

1

n

n∑

i=1

−→
ti , ti ∈ TOK(V(α)) \ {[CLS], [SEP]},

−→
ref =

1

n

n∑

i=1

−→
ti , ti ∈ TOK(V(ref)) \ {[CLS], [SEP]},

where TOK(t) denotes the tokenization function, which is utilized
to decompose the text t into a sequence of discrete tokens ti, and
n = |TOK(V(α)) \ {[CLS], [SEP]}|.

By leveraging various BERT models, we can capture the nuanced
semantic and syntactic features of the sentences, facilitating a more
nuanced understanding of the underlying ontological concepts. Af-
ter mean pooling, the resulting vector effectively encapsulates the
semantic properties of the axiom sentence in a form conducive to
downstream tasks such as text classification or similarity analysis.

Axiom Ranking. Once each axiom sentence is encoded, the next
step is to compute the semantic similarity between these verbalized
axiom sentences and the reference text. This process involves mea-
suring the semantic closeness of the vectors representing the axiom
sentences to the reference text vector. The sentences are subsequently
ranked based on their similarity scores, where higher scores denote a
greater alignment with the reference text.

Several methods exist for computing text similarity, including co-
sine similarity, Euclidean distance, Jaccard similarity, BM25, and
BM25+ [27]. Cosine similarity measures the cosine of the angle
between vectors, which effectively captures orientation rather than
magnitude, making it suitable for high-dimensional text data. Eu-
clidean distance, by contrast, measures the geometric distance be-
tween points and can be overly sensitive to vector magnitude. Jac-
card similarity, often used for binary data, fails to effectively capture
the nuanced semantic differences in textual data. BM25 and BM25+
are information retrieval functions that score documents based on
the query terms appearing in each document, considering both term
frequency and inverse document frequency. However, they may not
perform optimally in scenarios where semantic richness and context
from longer text segments need to be assessed, as they traditionally
focus on keyword matching rather than contextual meaning.

Given these factors, we employ cosine similarity due to its robust-
ness in handling the directional properties of semantic vectors, mak-
ing it highly effective for the comparison of textual data where the
semantic context is more significant than vector magnitude.

To assess the similarity between each axiom α and the reference
text ref, we compute the cosine similarity, for the embedding of each
axiom sentence V(α) and the reference text as follows:

SIM(α, ref) =
−−−→
V(α) · −→ref

‖−−−→V(α)‖‖−→ref‖
,

where �a · �b represents the dot product of �a, �b and ‖�a‖ represents
the Euclidean norms of vector �a. Once the similarity between each
axiom and the input reference text has been calculated, axioms can
be ranked based on their values of similarity w.r.t. the reference text.

4.3 Semantic Enhancement

In earlier phases of axiom retrieval, the internal structure of the ontol-
ogy and semantics of axioms were not taken into account. To address
this limitation, we propose to enhance the top-k-ranked axioms by
integrating the internal structure of the ontology. This enhancement
further involves leveraging semantic values of the ontology axioms,
which are enriched through methodologies developed within the do-
main of knowledge representation and reasoning. Consequently, we
constructed ontology atomic graphs to refine the results obtained in
previous axiom retrieval phases.

Before we construct ontology atomic graphs, we first introduce
Ontology Syntax Graphs, which is designed to elucidate the direct
syntactical relationships between axioms. Formally, the Ontology
Syntax Graph is defined as follows:

GS(O) = {(αi, αj) | sig(Di) ∩ sig(Cj) �= ∅, αi, αj ∈ O},

where αi := Ci � Di, αj := Cj � Dj and sig(C) is the function
that retrieves the concept and property names of concept C. Each
axiom is represented as a node. An edge is drawn between two nodes,
axiom αi and axiom αj , both of which are of the form C � D, if
the symbols on the right-hand side of αi intersect with those on the
left-hand side of αj . Note that each concept definition of the form
C ≡ D is logically transformed into the combination of C � D and
D � C before constructing the Ontology Syntax Graphs.

Ontology Atomic Graph. To impose semantic relationships be-
tween axioms in the graph, we utilize a technique known as atom
decomposition, developed within the field of knowledge representa-
tion and reasoning. An atom [35, 20] of an ontology, defined under
the framework of locality-based modules [28], is a subset of axioms
that exhibits either full inclusion or non-intersection with any given
module. In our paper, we opted for star modules due to their rela-
tively smaller size compared to bottom- or top-local modules, while
they still preserve essential logical consequences and can be com-
puted with high efficiency. Formally, a set of axioms A constitutes an
atom of an ontology O if, for every locality-based module M ⊆ O,
if A ⊆ M or A ∩ M = ∅ holds [35]. Additionally, for any atom
A1 and A2 of an ontology O, A1 ∩ A2 = ∅ holds. This definition
encapsulates the notion that an atom is a decomposable part of an on-
tology, invariant across all locality-based modules, ensuring that the
axioms within a single atom always co-occur. Dependency between
atoms is defined as follows: an atom A1 is said to depend on another
atom A2, denoted A1 � A2, if A1 ⊆ M implies A2 ⊆ M for
every module M, i.e., the inclusion of A1 in any module M neces-
sarily implies the inclusion of A2 in M. This relation captures the
foundational dependencies among atoms within the ontology.

Based on the foundational notions described previously, we pro-
pose the construction of an ontology atomic graph, where edges are
established between two axioms if they consistently co-occur within
atoms or if a dependency relationship exists between them, as dic-
tated by the ontology’s syntactic structure. This construction facili-
tates the linking of axioms based on both syntactic structure and se-
mantic relationships inherent in the ontology. Formally, the ontology
atomic graph is defined as follows:

GA(O) = {(αi, αj) ∈ GS(O) | ∃A, such that αi, αj ∈ A}
∪ {(αi, αj) ∈ GS(O) | ∃A1,A2, such that αi ∈ A1,

αj ∈ A2,A1 � A2},

where A,A1,A2 are atoms of the given ontology O.
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Algorithm 1 Enhance Candidate List via Ontology Atomic Graph
1: procedure EXPANDCANDIDATELIST(L, k, ref, GA)
2: n ← �k/2�
3: L ← L[1 : n]
4: while |L| < k do

5: T ← ∅
6: for α ∈ L do

7: for each β such that in (α, β) or (β, α) ∈ GA do

8: T ← T ∪ {β}
9: L ← L ∪ T

10: Sort L by SIM(α, ref) descending
11: return L[1 : k]

Expansion of Candidate Lists Using Ontology Atomic Graphs.

Once the ontology atomic graph has been established, it serves as a
crucial tool for enhancing the top k axiom candidates derived from
embedding phases. These candidates are further enriched through
their integration with the structural and semantic insights provided
by the ontology atomic graph. To systematically expand the initial
set of candidates, we employ the Expand Candidate List algorithm,
which effectively broadens the search space while maintaining rele-
vance to the reference ontology.

As detailed in Algorithm 1, the input to the algorithm consists of
a ranked list of axiom candidates, denoted by L, which is sorted by
SIM(V(α), ref), where α ∈ O and k represents the desired number
of refined candidates to be returned. The goal of the algorithm is to
enhance this list using the ontology atomic graph, GA.

The process begins by selecting the top �k/2� candidates 1, chosen
for their high similarity scores. The candidate list is then dynamically
expanded by iteratively adding adjacent axiom nodes from the On-
tology Atomic Graph. This expansion continues until the list Lk con-
tains exactly k candidates. Each candidate is chosen based on direct
connections within the graph, which ensures their relevance in terms
of both semantic and structural attributes. The list is subsequently
refined by re-sorting the candidates based on their similarity to the
reference text, culminating in the retention of the top k candidates.2

4.4 Zero-Shot Prompting of LLMs

Upon obtaining the top k candidate axioms, we construct a struc-
tured prompt to guide LLMs in generating the most relevant axioms,
refined from the candidate list by ontology atomic graphs. The de-
sign of this prompt comprises a clear task description, the reference
text, and the enumerated top k axiom sentences. The template of the
prompt based on the top k candidates L[1 : k] and the input reference
text ref is as follows:

### Input:
Could you please find the most relevant setences from the following
candidate sentences with respect to the reference sentence? Please provide
the ranking in the format:

“The ranking of candidates is: [ranked list of IDs]."
Please answer briefly using candidate IDs, separated by commas.

Here is the reference sentence: {Reference text}

1 The ceiling function denotes the smallest integer greater than or equal to
k/2. We select the top �k/2� candidates predicted by the BERT models
for their linguistic strengths and then enrich them with �k/2� candidates
from an Ontology Atomic Graph, ensuring a balanced integration of natural
language processing and ontology-based enhancements.

2 As k is typically much smaller than the number of nodes reachable from
the initially selected axiom nodes, we assume Algorithm 1 terminates to
simplify the presentation.

Candidates:

ID {ID of αi}: - {V(αi)}
...

(list until k candidates)
### Response:

This structured approach aims to harness the zero-shot learning
capabilities of LLMs, where no additional fine-tuning or task-specific
training data is provided. The instruction sequence is followed by a
delineated marker (“### Response”), signaling the point at which the
LLM’s generated response is anticipated to commence.

5 Evaluation

5.1 Creation of Benchmark Datasets

To evaluate the performance of our framework, we developed three
benchmark datasets across diverse domains: geology, food, and
medicine. These datasets are based on extractive summaries derived
from three specific ontologies: GeoFault [25], and two branches of
the SNOMED CT 3 ontology that focuses on diseases and anatomy.

The datasets were constructed with two primary use cases in mind:
ontology modeling and semantic search. For ontology modeling, we
created GeoFault and Disease datasets. Initially, our methodology
involved extracting definition annotations 4, which were previously
added by ontologists during the modeling phase of each ontology.
These annotations provided essential contextual foundations for our
datasets. We identified and extracted entities related to these annota-
tions along with their corresponding axioms. A meticulous manual
review of these annotations and axioms was conducted. This critical
step was essential to ensure the relevance and integrity of the data in-
cluded in our datasets. Axioms identified as irrelevant or extraneous
were systematically excluded. To maintain the quality of the dataset,
any data points that raised doubts regarding their relevance to the ax-
ioms were also removed. Although this may result in datasets that
are less challenging, this approach significantly simplified the sub-
sequent validation process. In particular, for the GeoFault ontology,
we sought additional validation by consulting with the original on-
tologists who developed GeoFault. Their expert insights were cru-
cial for confirming the accuracy and relevance of the data extracted
for the GeoFault benchmark dataset. Consider the second use case,
which is focused on semantic search, specifically, extracting axioms
that are semantically pertinent to reference texts. We leveraged the
principle of justifications, a foundational notion that is proposed in
the field of knowledge representation and reasoning. Justifications,
also known as axiom pinpointing, are concerned with identifying
a minimal subset of an ontology that preserves a specified logical
consequence that follows the given ontology. Formally, a justifica-
tion [1, 24] for O |= β is defined as a subset M ⊆ O, such that
M |= β and for any M′ � M, M′ �|= β. There may exist multiple
justifications for a single logical consequence β. For this use case,
the dataset was constructed by generating reference texts as V(β),
with β on the form of A � B, where A and B are any concept names
in the ontology such that O |= A � B. The verbalization of the
logical statement β, along with the corresponding axioms, are de-
fined as {α | α ∈ J, J ∈ Just(O, β)}. For example, if O |= β
and β := Abscess � Clinical_Finding, α1 := Abscess � Disease,
α2 := Disease � Clinical_Finding, where α1, α2 ∈ O. There exists

3 https://termbrowser.nhs.uk/
4 http://www.w3.org/2004/02/skos/core#definition
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only one justification, Just(O, β) = {{α1, α2}}, we can use justifi-
cation to create the benchmark. That is, the most relevant axioms to
the reference text V(β), “Every abscess is a Disease", are {α1, α2}.

This approach ensures that the axioms included are those from all
justifications for β in O, utilizing tools detailed in [6]. This approach
ensures that the axioms included are those from all justifications for
β in O, utilizing tools detailed in [6]. This results in an absolutely
minimal set of axioms that are relevant to the reference text V(β),
thereby optimizing the relevance of the dataset. The datasets Geo-
Fault, Disease, and Anatomy contain 102, 2147, and 976 reference
texts along with their corresponding axioms, respectively.

5.2 Evaluation Metrics

To evaluate the performance of our framework, we adapt traditional
metrics, specifically mHits@k and Mean Reciprocal Rank (MRR), to
accommodate scenarios commonly encountered in our dataset where
multiple valid axioms correspond to a single input reference text.

Mean Hits@k. The mean Hits@k metric, denoted as mHits@k,
measures the frequency with which correct axioms appear within the
top k predicted axioms. Unlike the traditional Hits@k, which typ-
ically accounts for a single correct response, mHits@k is designed
to handle multiple valid axioms for each input reference text. It thus
calculates the proportion of correct answers found among the top-
k positions, normalized by the smaller of k or the total number of
correct answers. The metric is defined as follows:

mHits@k =

∑
α∈C |Lk ∩ {α}|
min{k, |C|} ,

where C represents the set of all correct axioms for a given input ref-
erence text ref , and Lk is the set of top k predicted axioms. It ensures
that the metric accurately reflects the density of correct axioms in the
top k predictions, adjusted for the number of correct axioms.

Mean Reciprocal Rank (MRR). The Mean Reciprocal Rank
(MRR) is adapted to handle multiple correct axioms per input refer-
ence text. This adaptation is crucial for ensuring that the metric fairly
evaluates the earliest correct axiom prediction within the context of
multiple valid responses. The adapted MRR is calculated as:

MRR =
1

|C|
∑

α∈C

1

rank(α,Lk)
,

where rank(α,L) denotes the ranking position of the axiom α in the
prediction axiom list L.

5.3 Experimental Settings and Baselines

Implementation Details. We utilize the DeepOnto framework5 to
manage ontology operations and verbalize concepts. We employ sev-
eral BERT-based models for token embeddings, including the basic
BERT model, SBERT [26], and SapBERT [19]. SBERT is selected
for its ability to efficiently generate semantically meaningful sen-
tence embeddings, which are crucial for accurate and rapid similar-
ity assessments across extensive datasets. This model provides an
optimal balance between computational efficiency and performance.
Additionally, SapBERT is incorporated specifically for its expertise
in the biomedical domain, where it excels due to specialized train-
ing on large-scale biomedical corpora, enhancing semantic accuracy

5 https://github.com/KRR-Oxford/DeepOnto

in medical text processing. To improve the efficiency of our similar-
ity computations between axiom sentence embeddings and reference
texts, we incorporate the FAISS library [14]. This tool enables effi-
cient indexing of axioms and rapid similarity calculations. By focus-
ing on the top 10% closest axiom vectors, we significantly reduce
computational overhead without sacrificing accuracy, as confirmed
by sensitivity analysis conducted on the GeoFaults dataset. This anal-
ysis demonstrated negligible statistical variation in results with or
without this targeted selection approach6. For atom decomposition,
we employ the Fact++ reasoner [34]. Our computational framework
integrates the LLaMA 2 7 7b and 13b models among LLMs due to
their compatibility with our computational resources. We also utilize
the GPT-3.5 and GPT-4 models 8. However, due to the significantly
higher computational cost of GPT-4 (which is 60 times greater than
GPT-3.5), we limit its application to a subset of the datasets, but still
obtain insights into its performance. To ensure statistical rigor in our
evaluation, we calculate the necessary sample size to achieve a 95%
confidence level with a 5% margin of error, assuming a population
characteristic proportion of 50%. This approach is based on the Cen-
tral Limit Theorem [11], which asserts that the sample proportion p̂
is normally distributed around the true population proportion p with
a variance of p(1−p)

n
. The calculated random sample size of the Dis-

ease and Anatomy datasets are 326 and 214, respectively.9

Baseline Comparisons. As baselines, we utilize TF-IDF tokeniz-
ers [32] and Word2Vec [21] to generate embeddings for tokens,
which are then aggregated via mean pooling to represent reference
texts and axiom sentences. The similarity between these embeddings
is quantified via cosine similarity, in alignment with our framework.

5.4 Analysis of Experimental Results

To generate prompts for LLMs, we selected the top 20 ranked ax-
iom candidates, in order to balance computational efficiency with
a broad capture of potential alignments. The overall experiment re-
sults, as delineated in Table 2, provide a comprehensive view of
the performance landscape. A critical element of our experiment in-
volved dissecting the impact of each system component, which of-
fered insights into the additive value of each feature. In scenarios
where only BERT models were employed, denoted as the ‘{BERT
model}’, e.g., ‘SBERT’ system setting, no semantic enhancement or
involvement of LLMs occurred—the performance rested solely on
the BERT model’s cosine similarity calculations. Comparatively, a
setting like ‘{BERT model}+{LLM model}’, e.g.,‘SBERT+LLaMA
7B’ excluded semantic enhancement, focusing on the direct contri-
butions of LLaMA 7B. The setting ‘OAG+{BERT model}+{LLM
model}’, represents the full capabilities of our framework. It employs
the Ontology Atomic Graph (OAG) to refine and enhance the axiom
ranking process, illustrating the synergy between structured ontology
data and advanced language model analytics.

Analysis of the results indicates a clear hierarchical pattern in per-
formance, with simple models like TF-IDF and Word2Vec provid-
ing a baseline and more complex models incorporating LLMs and
semantic enhancement strategies outperforming the baseline. While
TF-IDF delivers moderate outcomes, particularly in the GeoFault
dataset, its performance lags in more complex semantic tasks, which

6 Results detailed to three decimal places showed no statistical variation, en-
suring reliability in computational reduction strategies.

7 https://huggingface.co/blog/llama2
8 https://openai.com/
9 The implementation and datasets are available at: https://github.com/

JieyingChenChen/ontoTextAlignment.
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GeoFault Disease Anatomy

System Settings mHits@1 mHits@5 mHits@10 MRR mHits@1 mHits@5 mHits@10 MRR mHits@1 mHits@5 mHits@10 MRR

TF-IDF 0.500 0.350 0.300 0.138 0.197 0.194 0.231 0.185 0.069 0.247 0.301 0.142
Word2Vec 0.588 0.417 0.413 0.279 0.049 0.059 0.073 0.047 0.099 0.177 0.216 0.106

BERT 0.078 0.063 0.061 0.050 0.011 0.020 0.028 0.012 0.193 0.154 0.191 0.107
SBERT 0.676 0.465 0.485 0.325 0.216 0.303 0.343 0.196 0.591 0.296 0.317 0.255
SapBERT 0.657 0.474 0.478 0.313 0.256 0.366 0.423 0.234 0.297 0.277 0.306 0.180

BERT+LLaMA 7b 0.029 0.029 0.038 0.016 0.001 0.002 0.002 0.002 0.052 0.063 0.08 0.035
SBERT+LLaMA 7b 0.088 0.050 0.062 0.045 0.012 0.031 0.037 0.016 0.050 0.048 0.066 0.033
SapBERT+LLaMA 7b 0.078 0.033 0.045 0.034 0.007 0.031 0.040 0.014 0.035 0.034 0.044 0.021

BERT+LLaMA 13b 0.020 0.023 0.032 0.017 0.007 0.023 0.028 0.010 0.116 0.142 0.160 0.082
SBERT+LLaMA 13b 0.069 0.070 0.066 0.047 0.097 0.259 0.299 0.128 0.213 0.238 0.263 0.143
SapBERT+LLaMA 13b 0.039 0.055 0.070 0.031 0.099 0.285 0.350 0.141 0.117 0.207 0.242 0.109

BERT+GPT 3.5 0.137 0.061 0.059 0.051 0.037 0.040 0.040 0.021 0.394 0.191 0.190 0.154
SBERT+GPT 3.5 0.627 0.440 0.436 0.287 0.313 0.380 0.405 0.214 0.645 0.291 0.289 0.245
SapBERT+GPT 3.5 0.569 0.409 0.399 0.263 0.294 0.377 0.408 0.209 0.600 0.278 0.278 0.226

BERT+GPT 4 0.245 0.093 0.087 0.085 0.037∗ 0.040∗ 0.040∗ 0.021∗ 0.547∗ 0.237∗ 0.243∗ 0.209∗

SBERT+GPT 4 0.765 0.472 0.469 0.344 0.313∗ 0.380∗ 0.405∗ 0.214∗ 0.776∗ 0.323∗ 0.335∗ 0.305∗

SapBERT+GPT 4 0.419 0.458 0.468 0.344 0.294∗ 0.377∗ 0.408∗ 0.209∗ 0.593∗ 0.288∗ 0.289∗ 0.228∗

OAG+BERT+LLaMA 13b 0.108 0.065 0.068 0.050 0.004 0.021 0.029 0.008 0.059 0.141 0.166 0.075
OAG+SBERT+LLaMA 13b 0.471 0.434 0.449 0.245 0.071 0.182 0.214 0.120 0.126 0.242 0.269 0.134
OAG+SapBERT+LLaMA 13b 0.520 0.456 0.456 0.255 0.091 0.224 0.267 0.140 0.076 0.222 0.261 0.11

OAG+BERT+GPT 3.5 0.186 0.084 0.079 0.067 0.029 0.030 0.031 0.018 0.444 0.203 0.202 0.177
OAG+SBERT+GPT 3.5 0.676 0.43 0.418 0.293 0.264 0.223 0.227 0.198 0.674 0.297 0.296 0.254
OAG+SapBERT+GPT 3.5 0.686 0.446 0.433 0.298 0.292 0.275 0.279 0.222 0.602 0.285 0.285 0.239

OAG+BERT+GPT 4 0.196 0.088 0.087 0.083 0.040∗ 0.029∗ 0.031∗ 0.023∗ 0.547∗ 0.239∗ 0.239∗ 0.221∗

OAG+SBERT+GPT 4 0.676 0.430 0.418 0.293 0.356∗ 0.269∗ 0.285∗ 0.259∗ 0.804∗ 0.324∗ 0.335∗ 0.320∗

OAG+SapBERT+GPT 4 0.804 0.490 0.485 0.359 0.396∗ 0.300∗ 0.316∗ 0.275∗ 0.654∗ 0.316∗ 0.324∗ 0.281∗

Table 2: Comparative performance of various system configurations across benchmarks. Values marked with an asterisk (*) are estimated from
a statistical model using randomly selected samples, achieving a 95% confidence level with a 5% margin of error, assuming a population
characteristic proportion of 50% based on the Central Limit Theorem [11]. The highest values in each column are highlighted in bold.

require deeper linguistic and semantic understanding. This is indica-
tive of the limitations inherent in non-contextual models when tasked
with discerning finer semantic distinctions.

The incremental gains from semantic enhancement based on OAG
are significant. Together with LLMs, such as ‘GPT 4’, this is evident
by the fact that’SBERT+GPT 4’ or ’SapBERT+GPT 4’ achieve the
highest scores in most categories. By adding the semantic enhance-
ment (OAG) component to the setting, most system configurations
achieve higher scores compared to their original settings without us-
ing semantic enhancement. It is not surprising, as semantic enhance-
ment adds rich semantic information to refine the candidate lists, give
LLMs additional context to consider.

The integration of LLMs like GPT significantly enhances the per-
formance of our framework, particularly for configurations such as
SBERT and SapBERT. Upgrading to version 4 from 3.5, for instance,
yields marked improvements, demonstrating the efficacy of these ad-
vanced models in semantic tasks. Conversely, the addition of compo-
nents like LLaMA 7B clearly demonstrates how each element within
our system can specifically affect performance. Not only do these
components fail to consistently enhance performance across all met-
rics, but they can also significantly worsen outcomes, as evidenced
by the comparisons between ‘SBERT’ and ‘SBERT+LLaMA 7B’,
or ‘SapBERT’ and ‘SapBERT+LLaMA 7B’. This variability high-
lights the complex and unique requirements of different ontology-
specific tasks, emphasizing the need for careful component selection
based on the targeted dataset. The GPT models improve the perfor-
mance significantly for SBERT and SapBERT, especially in versions
4 as opposed to 3.5, showing the effectiveness of integrating genera-
tive LLMs into the task. However, the incremental gains from adding
components such as LLaMA 7B point to the nuanced role that each

system element plays. While these additions may not always result
in stark improvements across all metrics, their influence is more pro-
nounced in certain datasets, underscoring the idiosyncratic nature
of ontology-specific tasks, sometimes, it will make the result sig-
nificantly worst, for example comparing the setting ‘SBERT’ with
‘SBERT+LLaMA 7b’, or ‘SapBERT’ with ‘SapBERT+LLaMA 7b’.

Limitation. Our framework are constrained by the BERT model’s
inherent limitation of processing only up to 512 tokens. For axiom
sentences that surpass the token limit, a potential solution involves
decomposing a long axiom into several logically equivalent, shorter
axioms. A significant bottleneck in our methodology is in the axiom
retrieval process. Exploring the development of specialized BERT
models tailored to distinct datasets represents a promising avenue for
enhancing our ability to retrieve relevant axioms more accurately.
Additionally, our datasets are created through the annotation of ax-
ioms and supplemented by manual validation. Further refinement and
development, particularly with the involvement of domain experts,
are crucial for enhancing the quality of our datasets. This improve-
ment is essential for more accurately assessing the tools.

6 Conclusion and Future Work

In this paper, we introduced the problem of ontology text alignment
and focused on extracting terminological axioms from textual data.
We developed a comprehensive framework that integrates knowledge
representation techniques with BERT and LLMs to enhance solution
implementation. We also constructed three distinct datasets for evalu-
ation. Future work will focus on enriching these datasets with domain
expert validation and advancing our framework to embed deeper se-
mantic meanings into the axiom retrieval process.
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