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Abstract. Integrating symbolic knowledge and data-driven learning
algorithms is a longstanding challenge in Artificial Intelligence. De-
spite the recognized importance of this task, a notable gap exists due
to the discreteness of symbolic representations and the continuous
nature of machine-learning computations. One of the desired bridges
between these two worlds would be to define semantically grounded
vector representation (feature embedding) of logic formulae, thus en-
abling to perform continuous learning and optimization in the seman-
tic space of formulae. We tackle this goal for knowledge expressed in
Signal Temporal Logic (STL) and devise a method to compute contin-
uous embeddings of formulae with several desirable properties: the
embedding (i) is finite-dimensional, (ii) faithfully reflects the seman-
tics of the formulae, (iii) does not require any learning but instead is
defined from basic principles, (iv) is interpretable. Another signifi-
cant contribution lies in demonstrating the efficacy of the approach in
two tasks: learning model checking, where we predict the probability
of requirements being satisfied in stochastic processes; and integrat-
ing the embeddings into a neuro-symbolic framework, to constrain
the output of a deep-learning generative model to comply to a given
logical specification.

1 Introduction

The need for integrating Artificial Intelligence (AI) and symbolic
(i.e. logical) knowledge has been claimed for a long time [27],
with logic being closely related to the way in which humans rep-
resent knowledge and reasoning [19]. However, a remarkable gap
burdens on the integration of Machine Learning (ML) algorithms
and symbolic representations: the latter are discrete objects, while
ML models typically work in continuous domains. In this context,
Neuro-Symbolic AI (NeSy) is emerging as a paradigm for the prin-
cipled integration of sub-symbolic connectionist systems and logic
knowledge [7]. As an example, NeSy models might address the fol-
lowing: leveraging logic knowledge for aiding the ML system im-
prove its performance and/or learn with less data, using background
knowledge expressed in symbolic form to constraint the behaviour
of the ML system [12]. Temporal logic is a formalism suitable and
since [28] widely used for describing properties and requirements
of time-series related task, in particular of dynamical systems. Here,
we specifically consider stochastic processes, such as epidemiologi-
cal models or cyber-physical systems, where Signal Temporal Logic
(STL) [26] emerges as the de-facto standard language, being concise

yet rich and expressive for stating specifications of systems evolv-
ing over time [5]. For example in STL one can state properties like
"the temperature of the room will reach 25 degrees within the next
10 minutes and will stay above 22 degrees for the successive hour".
In this area, one is typically interested in understanding or verifying
which properties the system under analysis is compliant to (or more
precisely, in the probability of observing behaviour satisfying the
property). Such analysis is often tackled by formal methods, via al-
gorithms belonging to the world of quantitative model checking [4].
In this work, we address the challenge of incorporating knowl-

edge in the form of temporal logic formulae inside data-driven

learning algorithms. The key step is to devise a finite-dimensional
embedding (feature mapping) of logical formulae into continuous
space, yielding their representation as vectors of real numbers. In this
way, symbolic knowledge can be seamlessly integrated into distance-
based or neural-based architectures, and eventually doors are opened
towards gradient-based optimization techniques. To make these tech-
niques truly effective, we additionally require that semantically simi-
lar formulae are mapped to nearby representations. We call such em-
beddings semantic, allowing the efficient continuous optimization to
happen in the “semantic” feature space of formulae.

Our contribution consists in formulating a way for computing
such finite-dimensional continuous semantic embeddings of formu-
lae of STL that are interpretable, and proving their effectiveness in
integrating logical knowledge and machine-learning algorithms. In
detail, we make the following contributions:

(i) We construct finite-dimensional semantic embeddings of STL for-
mulae starting from the kernel defined in [8]: kernel methods are
indeed suitable in this context, since they efficiently allow to im-
plicitly define a rich feature space, without the need of manually
constructing it. Kernel PCA [33] then allows us to construct suit-
able finite-dimensional approximations;

(ii) We give an interpretable description of the geometry of such em-
beddings, up to a certain quantified extent, differently from state-
of-art logical embedding methods. Notably, the embeddings are
not learnt but defined from basic principles, and, as we show,
the characterization is resilient w.r.t. the parameters of the em-
bedding construction method, indicating the revealed structure
is inherent to the logic. The extracted features foster human-
understandability of the formulae representation, and thus also of
the optimization;
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(iii) We prove that the computed representations meaningfully cap-
ture the semantic similarity of formulae, by using our finite-
dimensional logical embeddings for learning model checking, i.e.
for predicting the probability of a given requirement being sat-
isfied by a stochastic process, given a set of observed properties
with their probabilities;

(iv) We demonstrate the efficacy of the representations in preserving
the semantic information carried by the formulae by using them as
semantic conditioning inside a NeSy deep generative framework.
We show that this improves the deep-learning process and model,
critically relying in the form of our embeddings.

2 Preliminaries

Kernel methods leverage a positive semi-definite kernel function
k to map input datapoints, e.g. vectors in R

m, to a feature space RD ,
usually of higher dimension, i.e. D � m [29]. Let Φ : Rm → R

D

denote this feature map, a key characteristic of kernel functions is
that Φ is not explicitly calculated, but instead it is implicitly defined
by computing its inner product in R

D , formally k : Rm × R
m → R

such that k(xi,xj) = 〈Φ(xi),Φ(xj)〉. The kernel trick hence al-
lows to perform learning tasks in a feature space of higher dimension
without explicitly constructing it, enabling the encoding of nonlinear
manifolds without knowing the explicit feature maps, with a compu-
tational cost independent of the amount of features but only on the
number of training points.

Kernel Principal Component Analysis (PCA) is a nonlinear di-
mensionality reduction technique that involves performing PCA [18]
in the manifold identified by a kernel function. Given a dataset with
points described in R

D and an integer number d � D, PCA con-
sists in finding the set of d orthogonal directions, called Principal
Components (PC), preserving the highest amount of information (i.e.
variance) of the original dataset, and projecting the datapoints along
these vectors, reducing their dimension. In kernel PCA, such direc-
tions are provably the eigenvectors of the centered kernel matrix of
the dataset, corresponding to its d highest eigenvalues.

Signal Temporal Logic (STL) is a linear-time temporal logic
which expresses properties on trajectories over dense time intervals
[26]. We define as trajectories the functions ξ : I → D, where
I ⊆ R≥0 is the time domain and D ⊆ R

k, k ∈ N is the state space.
The syntax of STL is given by:

ϕ := tt | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b]ϕ2

where tt is the Boolean true constant; π is an atomic predicate, in-
terpreted as a function of the form fπ(x) ≥ 0 over variables x ∈ R

n

(we refer to n as the number of variables of a STL formula, i.e.
individual signals used as arguments of the atomic predicates); ¬
and ∧ are the Boolean negation and conjunction, respectively (from
which the disjunction ∨ follows by De Morgan’s law); U[a,b], with
a, b ∈ Q, a < b, is the until operator, from which the eventually
F[a,b] and the always G[a,b] temporal operators can be deduced. We
can intuitively interpret the temporal operators over [a, b] as follows:
a property is eventually satisfied if it is satisfied at some point in-
side the temporal interval; a property is globally satisfied if it is true
continuously in [a, b]; the until operator captures the relationship be-
tween two conditions ϕ,ψ in which the first ϕ holds until, at some
point in [a, b], the second ψ becomes true. For example, the sentence
"the temperature τ of the room will reach 25 degrees within the next
10 minutes and will stay above 22 degrees for the successive 60 min-
utes" translates in STL as F[0,10](τ ≥ 25 ∧G[0,60]τ ≥ 22). We call

P the set of well-formed STL formulae. STL is endowed with both
a qualitative (or Boolean) semantics, giving the classical notion of
satisfaction of a property over a trajectory, i.e. s(ϕ, ξ, t) = 1 if the
trajectory ξ at time t satisfies the STL formula ϕ , and a quantitative
semantics, denoted by ρ(ϕ, ξ, t). The latter, also called robustness,
is a measure of how robust is the satisfaction of ϕ w.r.t. perturba-
tions of the signals. A recursive definition of robustness can be found
in [26]. Robustness is compatible with satisfaction via the follow-
ing soundness property: if ρ(ϕ, ξ, t) > 0 then s(ϕ, ξ, t) = 1 and
if ρ(ϕ, ξ, t) < 0 then s(ϕ, ξ, t) = 0. When ρ(ϕ, ξ, t) = 0 arbitrary
small perturbations of the signal might lead to changes in satisfaction
value. For numerical stability reasons, we use a normalized robust-
ness, rescaling the output signals using a sigmoid function, see Sec-
tion A of the supplementary material [32]. When we evaluate prop-
erties at time t = 0, we omit t from the previous notations. A dis-
tribution F over STL formulae can be algorithmically defined by a
syntax-tree random recursive growing scheme, that recursively gen-
erates the nodes of a formula given the probability pleaf of each node
being an atomic predicate, and a uniform distribution over the other
operator nodes.

Stochastic Processes within this context are probability spaces de-
fined as triplets M = (T ,A, μ) of a trajectory space T and a proba-
bility measure μ on a σ-algebra A over T . Given a stochastic process
M, the expected robustness is a function RM : P × I → R such
that RM(ϕ, t) = EM[ρ(ϕ, ξ, t)] =

∫
ξ∈T ρ(ϕ, ξ, t)dμ(ξ). Simi-

larly, the satisfaction probability SM : P × I → R is computed as
SM(ϕ, t) = EM[s(ϕ, ξ, t)] =

∫
ξ∈T s(ϕ, ξ, t)dμ(ξ). In probabilis-

tic and statistical model checking, one is often interested in comput-
ing or estimating these quantities, see [4] for details. In this work we
consider stochastic processes that can be simulated via the Gillespie
Stochastic Simulation Algorithm (SSA) [11], which samples from
the exact distribution μ over trajectories.

A kernel function for STL formulae is defined in [8] by lever-
aging the quantitative semantics of STL. Indeed, robustness allows
formulae to be considered as functionals mapping trajectories into
real numbers, i.e. ρ(ϕ, ·) : T → R such that ξ �→ ρ(ϕ, ξ). Con-
sidering these as feature maps, and fixing a probability measure μ0

on T , a kernel function capturing similarity among STL formulae on
mentioned feature representations can be defined as:

k(ϕ,ψ) = 〈ρ(ϕ, ·), ρ(ψ, ·)〉 =
∫
ξ∈T ρ(ϕ, ξ)ρ(ψ, ξ)dμ0(ξ) (1)

opening the doors to the use of the scalar product in the Hilbert space
L2 as a kernel for P; intuitively this results in a kernel having high
positive value for formulae that behave similarly on high-probability
trajectories (w.r.t. μ0), and viceversa low negative value for formulae
that on those trajectories disagree. For what concerns the measure
μ0 on T , it is designed in such a way that simple signals are more
probable, considering total variation and number of changes in the
monotonicity as metrics for measuring the complexity of trajectories,
we refer to [8] for full details. Note that, although the feature space
R

T (which we call the latent semantic space) into which ρ (and thus
Equation 1) maps formulae is infinite-dimensional, in practice the
kernel trick allows to circumvent this issue. It does so by mapping
each formula to a vector of dimension equal to the number of training
formulae, i.e. those used to evaluate the kernel (Gram) matrix. Such
embeddings are continuous representations of discrete symbolic ob-
jects, and can be used to solve tasks such as predicting the expected
robustness and the satisfaction probability of a stochastic process via
continuous optimization-based ML algorithms.
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# var τ = τ =
0.95 0.98

3 10 13
4 11 16
5 14 19
6 16 22
7 18 25
8 20 28
9 22 31

10 24 35

Table 1: # PC
for achieving
Xd ≥ 95% (resp.
98%), increasing
the number of
variables # var.

Figure 1: For a set of STL formulae with 3 vari-
ables (left) log spectrum of the covariance ma-
trix of its Gram matrix; (right) 1st vs 2nd PC,
showing formulae with only var. 0 1 2.

3 stl2vec

We are interested in “semantic” embeddings: intuitively, map-
ping formulae with similar semantics to nearby vectors; formally,
given that the robustness ρ captures the considered semantics in the
infinite-dimensional latent semantic space R

T , the new embeddings
should (approximately) preserve the distances induced by the kernel
in Equation 1, and thus should essentially be ρ’s “almost continu-
ous” projections. In this work, we (i) provide an algorithmic proce-
dure, called stl2vec, to construct explicit finite-dimensional semantic
embeddings of STL formulae (Section 3.1), (ii) explore the geometry
of such representations, producing human-interpretable explanations
to a vast amount of information retained by the new representation
(Section 3.2), and (iii) show the effectiveness of the embeddings in
integrating temporal logic knowledge inside data-driven learning al-
gorithm (Section 4). We remark that the explainability provides more
control over producing continuous STL formulae embeddings. Fi-
nally, we also recall that creating finite-dimensional representations
is a crucial step to make data more manageable (reducing the risk of
incurring in the so-called curse of dimensionality), and help to elim-
inate noise and redundant information.

3.1 Building Explicit STL Embeddings

The starting point of our investigation are kernel embeddings for STL
formulae as defined in Section 2. All reported results in this Section,
unless differently specified, are obtained by keeping the default pa-
rameters used in [8]; later in the manuscript we will also report abla-
tion studies to enforce our statements. Hence, starting from implicit
infinite-dimensional embeddings constructed via Equation 1, we de-
rive explicit finite-dimensional numerical representations of STL for-
mulae using kernel PCA. As we will highlight in the remainder of
the paper, this transformation gives us a deep insight into the geom-
etry of these representations, to the point of making us able to give
explanations for the vast majority of information captured by the em-
beddings.

In detail, the algorithm stl2vec proceeds as follows: given a fixed
set of D STL formulae (that we call training set) and an integer
d � D representing the reduced dimension of the embeddings, we
obtain the coordinates of the reduced dimensional space by perform-
ing the eigenvalue decomposition of the centered kernel matrix of
the training set (which is D-dimensional) and retaining the top-d
eigenvectors (i.e. PC), which are those corresponding to the d largest
eigenvalues. These PC will be used to project the data into a lower-
dimensional subspace. We remark that this procedure does not re-
quire any learning. We denote as stl2vec(d) of a STL formula ϕ its

d-dimensional embedding computed as above.
In practical applications, given the set of eigenvalues of the kernel

matrix of the data {λk}Dk=1 (sorted in descending order) to select the
number d of dimensions to retain, it is common to look at the so-
called proportion of variance explained: Xd =

∑d
i=1 λi∑D
j=1 λj

, choosing

the smallest d for which Xd ≥ τ , for some threshold τ ∈ [0, 1].
Notably, for STL kernel embeddings built from a training set ofD =
1000 random formulae, only a few tens of components are necessary
to explain more than 95% of the variability in the data, as reported in
Table 1. Moreover, in Figure 1 (left) we plot the log-spectrum (first
10 eigenvalues) of a dataset of D = 1000 formulae with 3 variables,
corresponding to the 95% of variance explained, as per Table 1.

In order to experimentally prove the independence of the individ-
uated PC on the set of training formulae used to compute the STL
kernel, we compare the coordinates found when changing the train-
ing set. In detail we sample 50 different training sets, coming from
5 different distributions, obtained by changing the parameter pleaf of
the formulae sampling algorithm F detailed in Section 2. We vary it
in the set [0.3, 0.35, 0.4, 0.45, 0.5] and sample 10 datasets for each
value, each composed of D = 1000 STL formuale with 3 variables.
We then reduce their dimension to d = 13 (hence retaining more than
the 98% of information, according to Table 1). Results show that, up
to permutation of coordinates, the identified principal directions

are almost the same across all datasets. Indeed, if we compute the
pairwise cosine similarity between corresponding PC of each possi-
ble pair of datasets, we get that, up to the 5th PC, all datasets share
a cosine similarity of at least 0.95, moreover similarity stays above
0.69 for all the 13 considered components, with both mean and me-
dian similarity being > 0.9 in every direction, for all possible pair
of datasets, see also Section B of the supplementary material [32].
Hence the embeddings are robust w.r.t. the choice of training formu-
lae, at least on their most significant components.

Finally, we check that the embeddings are semantic, by assess-
ing linear correlation between the distance among kernel PCA em-
beddings (with d = 10) of each pair of formulae in the considered
dataset, and the corresponding distance between robustness vectors,
i.e. the vectors ρ(ϕ) = [ρ(ϕ, ξi)]

M
i=0 of robustness of a STL for-

mula ϕ computed on M (in our case 10 000) trajectories randomly
sampled from μ0. The Pearson correlation coefficient among the two
quantities is 0.9688, and their correlation is graphically shown in
Figure 2; intuitively, formulae whose quantitative robustness agrees
on a high number of trajectories are mapped nearby in the continuous
space of their stl2vec embeddings.
In summary, (i) the principal directions of the embeddings are in-
herent to the STL robustness semantics (and thus it makes sense to
try and explain them), and (ii) our embeddings are also experimen-
tally observed as semantic (and thus it makes sense to measure how
well they approximate the full semantic information as defined by
robustness and reflected by the kernel). We examine the former in
Sec. 3.2 and the latter in Sec. 4.1.

It is worth noting that the STL kernel imposes a smoothing on the
combinatorics of satisfiability, through the measure μ0, for which
the semantics of formulae is captured w.r.t. the probability distribu-
tion over trajectories (i.e. trajectories are weighted in such a way that
STL formulae which only differ on few complicated signals are es-
sentially considered equivalent), hence all the geometrical properties
of the STL embeddings presented are valid up to this statistical filter.
Such filter can however be changed by using a custom measure on
trajectories for computing the kernel (e.g. the data generating distri-
bution of the problem at hand), and this adds another layer of flexi-
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bility to our methodology.

3.2 Explaining Principal Directions

Having described how explicit embeddings for STL formulae are
computed, and confirming their semantic character, we now delve
into exploring the geometry of these representations. We substantiate
our explanations by statistical evidence, namely strong correlations
detailed in the remainder of this Section and in Section B.1 of the
supplementary material [32]. Looking at the spectrum of the kernel
matrix for formulae with 3 variables in Figure 1 (left) and recalling
that clear gaps in the spectrum are an indication that dimensional-
ity reduction including the components before the gap is meaningful,
we immediately observe that, after a big gap between the first and
the second eigenvalue, the spectrum is partitioned into groups of 3
eigenvalues divided by gaps. This intuitively suggests that principal
directions (apart from the first one) might encode properties that hold
variable-wise, possibly denoting that different variables are mapped
to different sub-manifolds in the latent semantic space. Following
this intuition, and having in mind the way in which embeddings are
computed (i.e. starting from Equation (1)), we are able to provide
an interpretable explanation for the information carried by the first
principal direction and the following two sets of components, each
composed of as many values as the variables appearing in the for-
mulae. In particular, we identify statistical properties based on the
robustness of STL formulae which are linearly correlated with the
PC. This is intuitively meaningful since the quantitative semantics of
STL is the bridge used by the STL kernel for mapping discrete for-
mulae into a continuous space. For this reason, we also believe that
further PC encode more refined properties related to the robustness
profile of formulae, which we are not able to describe. We stress that
a clear interpretation of projections obtained by kernel PCA is far
from trivial, as seen in [30]. In this case, we work with objects and
embeddings with a semantic nature, and this is reflected in the fea-
tures captured by the PC, whose meaning is however not-immediate
to assess.

The first principal direction PC0 describes the
median robustness of each formula ϕ over a random set of

trajectories sampled from μ0. For the statistical evidence refer to
Section B.1 of the supplementary material [32].

Hence the first PC captures a descriptor of the satisfiability of a for-
mula, which from a statistical point of view acts as the main source
of variability of the robustness distribution computed by Equation 1.

The second group of principal components which is composed
of n coordinates, when considering formulae of n variables, accounts
instead for the variability of the robustness over μ0, being linearly
correlated with the mean kernel similarity to formulae which exhibit
high variance in robustness across signals sampled from μ0. In detail,
the quantity which is linearly correlated with each direction belong-
ing to this group can be computed via the following steps, given a
test dataset D of STL formulae with n variables:

A.1 Sample a random dataset Di of STL formulae containing only
variable xi, with i ∈ N, 0 ≤ i < n;

A.2 Sample an arbitrary number of trajectories T̂ from μ0; from the
current trajectory distribution (e.g. μ0);

A.3 Evaluate the robustness vector ρ(ϕj) = {ρ(ϕj , ξ)}ξ∈T̂ of each
formula ϕj ∈ Di (on the selected trajectories);

A.4 Compute the standard deviation σj = std(ρ(ϕj)) of the robust-
ness vector of each formula ϕj ∈ D;

A.5 Select the indexes j of each σj corresponding to values above the
90th percentile, to get a subset of formulae D̂i;

A.6 Compute the vector of mean kernel similarity k̃|xi =
{

1

|D̂i|
∑|D̂i|

k=1 k(ϕj , ϕk)
}|D|
j=1

between the formulae in D and the
ones obtained by previous steps;

A.7 ∀i, k̃|xi is then linearly correlated with one of the PC having index
in [1, n].

To give an intuitive description of the behaviour of formulae in D̂i

obtained as per steps A.1-A.5, we have experimentally verified that
most of them are properties which are robustly satisfied and robustly
unsatisfied on a comparable number of trajectories sampled from μ0.

The third group of principal components is composed
of n directions as well, when considering STL formu-
lae with n variables. The information they carry represents
the importance of each variable in determining the seman-
tics/robustness of a formula, as it is directly proportional to the
change in robustness when fixing the part of the signals involving
the variable itself. In particular, the quantity which describes each of
these PC can be computed with the following steps, starting with a
given a test dataset D:

B.1 Compute a set of m random trajectories Ξ = {ξk}mk=1 on n vari-
ables, according to the given distribution;

B.2 For each variable index i ∈ N, 0 ≤ i < n, compute the set of
trajectories Ξi = {ξik}mk=1 by replacing the ith component of
each signal in Ξ with the constant 0;

B.3 For each ϕ ∈ D, compute the mean absolute difference {ρ̃i(ϕ) =
1
m

∑m
k=1 |ρ(ϕ, ξk)− ρ(ϕ, ξik)|}n−1

i=0 ;
B.4 ∀i, ρ̃|xi = {ρ̃i(ϕ)}ϕ∈D is then linearly correlated with one of

the PC having index in [1 + n, 2 · n].

An intuitive understanding of the explanations can be given by
considering simple requirements. If we take for example the fol-
lowing formulae of 1-variable: G(x0 ≥ 0) ∧ F (x0 < 0) and
G(x0 ≥ 0) ∨ F (x0 ≤ 0) then we immediately recognise that they
are a contradiction and a tautology, respectively. This is indeed re-
flected in the first two components of their embeddings, which are
[−0.06357, 0.0025] and [0.0593, 0.0058], i.e. for both the second
component is small, witnessing a little variability of their robustness
across trajectories, while the first is high (positive) for the tautology
and low (negative) for the contradiction (as shown in Figure 1 (right)
the reference range of PC0 is ±0.07 and of ±0.08 for PC1 ). If we
now take a slightly more complex formula in 2 variables, namely
ϕ = (G(x0 ≥ 0)) ∧ (G(x1 ≥ 0) ∧ F (x1 < 0)), then we recog-
nize that it is a contradiction and that the most evident reason guiding
our intuition only involves variable x1, being the right conjuct of ϕ a
contradiction in which only x1 appears. The explainable components
of ϕ are: [−0.03219, −0.0272,−0.0018, 0.0165,−0.4901], which
lead to the following observations: a high negative value (w.r.t. above
mentioned ranges) for the first component together with a small value
for a component belonging to the second group suggests that the for-
mula is a contradiction, finally the fact that in the third group a com-
ponent is small and positive, while the other is negative and an order
of magnitude higher indicates that most of the semantic of ϕ only de-
pends on a specific variable. These examples help in getting a sense
of both the intuitive meaning of the explained components, and of
their usefulness in grasping the semantic of a formula when the for-
mula is too big to be understood just visually inspecting it, or when
only its embedding is available (e.g. when it is the outcome of an
optimization procedure).
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Figure 2: L2 distance between 10-dim embed-
dings of random formulae vs L2 distance among
their respective robustness vectors.

Figure 3: Resilience of the explanations of PC to changing of the parameters (from
left to right) pleaf , q and K in terms of absolute Pearson Correlation Coefficient (r).
Bold labels represent default parameters.

Explanations of principal components are resilient to the mea-
sure considered in the space of trajectories. Our reference measure
μ0 (that is shown to be rather general in [8]) samples from piece-
wise linear functions in the interval I = [a, b] by: setting the num-
ber of discretization points in the trajectory and sampling the ini-
tial point from N (0, 1); sampling the total variation of the trajectory
tv = (N (0,K))2; sampling the local variation between each pair
of consecutive points uniformly in [0, tv ] and for each such a point
changing the sign of the derivative (i.e. the monotonicity) with prob-
ability q. Finally consecutive points of the discretization are linearly
interpolated to make the signal continuous. Hence μ0 has the follow-
ing parameters which can be tuned in order to significantly change
the probability space of trajectories: (i) the mean q of the Bernoulli
distribution governing the number of changes in the monotonicity of
each signal and (ii) the standard deviation K of the Gaussian distri-
bution from which the total variation of each trajectory is sampled.

We test the stability of our explanations by measuring the Pear-
son correlation coefficient r between the PC and the corresponding
statistical quantities that we argue are their interpretation. For what
concerns μ0, by increasing q we are considering signals with an in-
creasing number of changes in monotonocity, while by increasing K
we are testing trajectories with larger total variation. Besides, con-
sidering the formulae distribution F (see Section 2), decreasing the
parameter pleaf increases the syntactic complexity of formulae. In
Figure 3 we show the quantiles of the distribution of the absolute lin-
ear correlation coefficient |r| between the PC and our explanations,
across 50 independent datasets of STL formulae, in all the described
ablation studies, verifying that it remains high in all settings, hence
establishing the resilience of our interpretations. Moreover, we ver-
ify the stability of the explanations by changing the number n of
variables in formulae from 3 to 10: denoting the median absolute
correlation coefficient |r| as η|r|, we have η|r| > 0.97 for the first
PC, η|r| > 0.84 for the second group of PC and η|r| > 0.8 for the
third group of PC, again proving resilience of the explanations. We
remark here that, according to Table 1, when the number of variables
is higher then 5 we are providing an interpretation for more than the
95% of the variance in the data. Additional results and plots are re-
ported in Section B.1 of the supplementary material [32]. Finally, we
test the stability of our explanations when replacing μ0 with another
stochastic process, namely the SIRS epidemiological model [6]: for
the first component the median correlation is η|r| = 0.98, for the
second group of PC η|r| > 0.53 and for the third group η|r| > 0.57,
showing moderate linear correlation, hence resilience of the expla-
nations also for a completely different trajectory distribution. Inter-
estingly, if we plot PC0 against PC belonging to the second group
we are not only able to individuate formulae in which only a vari-

able appears, but also identify the involved variable (i.e. its index),
as reported in Figure 1 (right). Intuitively, this might depend on: (i)
the fact that the explanations for the second group of components
hold variable-wise (suggesting that different variables are mapped to
different semantic subspaces) and (ii) the significant amount of infor-
mation carried by PC0, observable from the gap after PC0 in Figure 1
(left). A similar behaviour is observed when considering PC belong-
ing to the third group, as reported in Section B of the supplementary
material [32]. From the same plot it is possible to observe a quadratic
relation between PC0 and PC belonging to the second group (PC1 in
the picture). Although a clear explanation for this phenomenon is
still lacking, we can interpret the behavior of formulae mapped to
the extreme points of the three ellipsis: PC0 ≈ 0 denotes formulae
which neither robustly satisfy nor robustly unsatisfy any trajectory,
or which robustly satisfy and unsatisfy a comparable number of tra-
jectories, hence they are likely to have a highly variable robustness
vector, explaining the fact that the (absolute) value for the second
group of PC is high; viceversa, a formula whose variability is ≈ 0,
for the opposite reason, is expected to have a high absolute median
robustness value.

4 Applications

We claim and experimentally prove the high semantic expressiveness
and the practical usefulness of stl2vec embeddings in two different
scenarios: predicting average robustness and satisfaction probability
of properties in a stochastic process (as defined in Section 2) and
semantically conditioning a deep learning generative model for the
generation of trajectories compliant to arbitrary temporal properties.
We emphasize that in all the presented applications, the distribution
used to evaluate Equation 1 ismu0. Indeed, we experimentally prove
that it is very effective in capturing semantic similarity of formulae,
hence it can be used as reference distribution for all contexts in which
neither the data generating distribution nor a consistent number of
trajectories are available.

4.1 Predictive Power of Explicit Embeddings

In this suite of experiments, we use the embeddings of STL formu-
lae as input for ridge regression in order to predict: robustness of
formulae ϕ ∈ F on single trajectories ξ ∈ T , i.e. the function
ρ : ϕ �→ ρ(ϕ, ξ); expected robustness Eξ∼μ0 [ρ(ϕ, ξ)] and satisfac-
tion probability Eξ∼μ0 [s(ϕ, ξ)] of formulae ϕ ∈ F , proxied by the
experimental averages on a stochastic system {ξj ∈ T }mj=1, i.e. re-

spectively R : ϕ �→
∑

j ρ(ϕ,ξj)

m
and S : ϕ �→

∑
j s(ϕ,ξj)

m
. We fix μ0
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Figure 4: Mean of the quantiles for RE over 100
regression experiments for predicting average ro-
bustness of trajectories sampled from the SIRS
model, varying the number of retained PC.

relative error (RE) absolute error (AE)

1quart median 3quart 99perc 1quart median 3quart 99perc

ρ
STL kernel

stl2vec(250)
stl2vec(500)

0.00772
0.01246
0.00917

0.02582
0.03385
0.02532

0.09225
0.10293
0.07942

1.41988
1.26477
1.14463

0.01362
0.02409
0.01769

0.04376
0.06393
0.04689

0.14283
0.17317
0.13455

0.92352
0.83707
0.79238

R
STL kernel

stl2vec(250)
stl2vec(500)

0.00629
0.01162
0.00822

0.02209
0.03026
0.02235

0.07593
0.08979
0.06859

1.19013
1.28718
1.0287

0.00608
0.01129
0.00797

0.02052
0.02868
0.021

0.06493
0.07669
0.05864

0.43494
0.38096
0.34801

S
STL kernel

stl2vec(250)
stl2vec(500)

0.00209
0.00255
0.00212

0.02762
0.03235
0.02821

0.85246
1.18237
0.87827

3.8337
4.35775
3.81897

0.00782
0.01161
0.00825

0.02634
0.03256
0.02679

0.08807
0.09893
0.08823

0.60182
0.62148
0.60294

Table 2: Mean of quantiles for RE and AE over 100 experiments for prediction of ro-
bustness on single trajectory ρ (top), average robustness R (middle) and satisfaction
probability S (bottom), for a dataset of trajectories sampled from the SIRS model.

with its default parameters as the base measure on the space of trajec-
tories (i.e. we use it for computing the kernel). We quantify the errors
in terms both of Relative Error (RE) and Absolute Error (AE), and
unless differently specified, we average results over 100 independent
experiments. We denote as stl2vec(d) the embeddings obtained with
our methodology, keeping the first d PC. We perform the above men-
tioned model checking task on different scenarios: still considering
μ0 as T , but varying the dimensionality of signals; changing T con-
sidering trajectories coming from other stochastic processes, namely
the SIRS epidemiological model (3-dim) and three other stochastic
models (used as benchmarks also in [8]) simulated using the Python
library StochPy [24] which are called Immigration (1-dim), Isomer-
ization (2-dim) and Transcription (3-dim). We stress that in all the
test cases, the STL kernel (hence the embeddings) is computed ac-
cording to the base measure μ0.

As reported in Table 2, for a dataset of D = 1000 STL formulae
tested on trajectories sampled from the SIRS model, stl2vec embed-
dings of 500 components, i.e. half the original size, achieve results
comparable to those of full STL kernel ridge regression. Moreover,
even if we keep just 250 components, the predictive performance
of the embeddings still is acceptable (median relative error < 6%
when predicting ρ, < 1% when predicting R and < 2% for S).
Interestingly, as shown in Figure 4, where we compare against stan-
dard kernel regression monitoring performance changes as the num-
ber of retained PC is varied, the quality of predictions in terms of
both errors improves until the dimensionality of the representations
is ≤ 300, then it stabilizes to values comparable to those of full STL
kernel ridge regression (whose quantiles are reported in red in the
figure). In the same figure, we highlight with an orange box the er-
rors reported when doing regression just with the components that
we are able to explain (7 in this case, since we are working with a
dataset of 3 variables), hence in a scenario in which ridge regression
can be fully interpreted. For what concerns the Immigration, Isomer-
ization and Transcription models, under the same experimental as-
sumptions, as well as experiments done on 10-dimensional signals
sampled from μ0, results in terms of median RE are reported in Ta-
ble 3. In all cases, we observe that the difference in performance
between full and reduced embeddings is limited: using stl2vec(500)
instead of vanilla STL kernel brings at most 0.01% of additional er-
ror, while using stl2vec(250) brings a performance drop of at most
2.5%. In general, we can observe that results of these experiments
are good: in all cases, the error when predicting ρ is < 3.5%, it is
< 1.4% when estimating R and < 8.5% for S. in We refer to Sec-
tion C.1 of the supplementary material [32] for more detailed results,
however the same observations done for the SIRS models applies in
all tested cases. Hence, in summary, the dimensions required for our
embeddings to capture almost complete information are reasonably
small.

4.2 Conditional Generation of Trajectories

Another context in which stl2vec might be sensibly applied is that
of conditional generation of trajectories, i.e. inside a model whose
goal is to produce synthetic multivariate signals satisfying arbitrary
STL properties. To the best of our knowledge, conditioning a deep
learning model on temporal logic embeddings for generating time-
series has not been studied before [35].

Conditional Variational Autoencoders (CVAE) [34, 17] are gener-
ative models that learn a probabilistic mapping between input data
and distributions on a continuous latent space, conditioning the gen-
eration process on some given additional information. More in detail,
given inputs x with associated conditioning vectors y, CVAE maps x
to latent representations z by simultaneously learning two parametric
functions: a probabilistic generation network (decoder) pθ(x|y, z)
and an approximated posterior distribution (encoder) qφ(z|y,x), by
maximizing the evidence lower bound (given a prior pψ(z|y)):

L(φ, θ, ψ;x,y) =Ez∼qφ(z|y,x)[log pθ(x|y, z)]
− β ·KL[qφ(z|y,x)‖pψ(z|y)]

(2)

where KL[·‖·] is the Kullback-Leibler divergence, weighted by a
hyperparameter β ∈ R controlling the balance between the recon-
struction accuracy and the regularization of the learned latent space
[16]. Once trained, one might use the decoder as a generative model,
by sampling vectors z from the prior distribution and adding con-
ditional information y, to obtain a point x̂ which should satisfy the
given condition.

ρ R S

Immigration 0.023/0.030/0.023 0.014/0.017/0.013 0.024/0.024/0.024
Isomerization 0.027/0.043/0.027 0.008/0.015/0.008 0.043/0.047/0.043
Transcription 0.033/0.054/0.033 0.011/0.019/0.010 0.064/0.085/0.065
μ0 (10-dim) 0.034/0.039/0.035 0.003/0.005/0.003 0.005/0.006/0.005

Table 3: Median RE (across 100 experiments) when using
STLkernel/stl2vec(250)/stl2vec(500) in learning model checking un-
der different test trajectory distributions.

We devise a CVAE for multivariate time-series data, whose ob-
jective is to generate trajectories statistically similar to those of the
data generating distribution and satisfying a given STL requirement,
provided in the form of stl2vec embedding. More in detail, we en-
code signals using multiple stacked 1D convolutional layers, and de-
code them using the same number of 1D transposed convolutions;
both the encoder and the decoder take as conditioning vector y the
stl2vec representation of a property each input trajectory satisfies.
We trained the architecture on signals sampled from the SIRS model
[6] (which are 3-dimensional time-series): we randomly sampled a
set Dtrain of 1000 formulae from F , and ∀ϕ ∈ Dtrain we generated
200 SIRS trajectories ξ via SSA satisfying ϕ (we do not exclude
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Figure 5: Results of a random experiment for the conditional genera-
tion of trajectories using CVAE, in terms of average robustness.

that the same signal might appear multiple times associated with dif-
ferent properties). The conditioning vector of each input ξ is then
computed with stl2vec, retaining 250 components. We test the capa-
bility of the network to generate a trajectory ξ compliant with a given
STL property ϕ. Hence, for each test formula ϕ ∼ F in the test
set Dtest , represented as a 250-dimensional semantic vector using
stl2vec, we decode 1000 signals, and compute the satisfaction prob-
ability and the average robustness of ϕ on them, denoted as Scond

and Rcond respectively. Ideally, all the generated trajectories should
satisfy (robustly) the corresponding ϕ; practically, we compare our
results against the satisfaction probability and the average robustness
of all ϕ ∈ Dtest on a set of 10 000 unconstrained signals sampled
from the SIRS model via SSA, denoted respectively as Suncd and
Runcd . Results are shown in Figure 5, where we plot the difference
in average robustness as a function of Runcd . Comparing the distri-
bution of Runcd against that of Rcond , as done in Table 4 and on the
histogram of Figure 5, highlights the improvement in having trajecto-
ries compliant to a given STL requirement when using a generative
model. We experimented with conditioning vectors of different di-
mensions: retaining [10, 50, 100, 250, 500] components yields a me-
dianRcond of [0.7008, 0.8134, 0.8737, 0.903, 0.9023] and a median
Scond of [0.8305, 0.9065, 0.9363, 0.9515, 0.951], respectively (be-
ing Runcd and Suncd as in Table 4). In stark constrast, using implicit
STL kernel embeddings of dimension 1000 we get median Rcond

and Scond of 0.4657 and 0.73, probably because they contain redun-
dant information which confuses the algorithm. In conclusion, our
dedicated finite-dimensional embedding are much better suited for
the task than the full semantic information ρ(ϕ, ·) even if the latter
can be represented also finite-dimensionally (by the Gram matrix for
the original kernel) with high enough dimension from enough data.
See Section C.2 of the supplementary material [32] for more results.

1perc 1quart median 3quart 99perc

Runcd -0.9994 ± 0.0004 -0.5128 ± 0.0123 0.0869 ± 0.0104 0.7321 ± 0.0046 1.0 ± 0
Rcond -1.0 ± 0 -0.6157 ± 0.0086 0.903 ± 0.0043 1.0 ± 0 1.0 ± 0

Suncd 3.23e-04 ± 0.0003 0.229 ± 0.0076 0.5243 ± 0.0051 0.8122 ± 0.0022 1.0 ± 0
Scond 0.0 ± 0 0.1923 ± 0.0045 0.9515 ± 0.0021 1.0 ± 0 1.0 ± 0

Table 4: Mean and standard deviation of quantiles of the distributions
of Runcd (resp. Suncd ) and Rcond (resp. Scond ), over 300 test formu-
lae, averaged over 30 experiments.

5 Related Work

Finding continuous embedding of logical formulae has been an
active research topic lately, with several works using Graph Neu-
ral Networks (GNN) for encoding the parsing tree of a formula to
a continuous representation [20]. Most of them, however, consider
propositional and/or first-order logic [9, 36, 22, 31], hence are hard
to generalize to temporal logics such as STL. In [1] a Semantic Prob-
abilistic Layer is devised to impose properties on the output of a

DL model, leveraging circuit representations of formulae. Although
strictly related to ours, the approach is specific for DL model. Other
works such as [10, 13] devise NeSy architectures which approxi-
mates first-order logic operations with neural networks, and then im-
plement rules as neural operators applied to tensor representations of
premises, to generate tensor representation of conclusions. Finding
continuous embeddings of temporal logic formulae is addressed in:
[37], where a GNN is used to construct semantic-based embeddings
of automata generated from Linear Temporal Logic (LTL) formulae
and [14], where STL formulae are mapped to a continuous space by
training a skip-gram and then used inside a neural network controller.
The main difference between our method and the cited works is that
stl2vec embeddings are not learnt, hence they are more controllable
and robust, since they do not rely upon any training.

Using STL formalism inside machine learning algorithm has
been exploited in: [21], where a STL formula is learnt which ab-
stracts the computational graph of a neural networks trained to
perform interpretable classification of time-series behaviour; [23],
where STL is used as language to enhance the training of a neural
network model for sequence predictions compliant to a set of pre-
defined properties; [15], in which a tool is devised for the translation
of informal requirements, given as English sentences, into STL. In
all these cases, we believe that our approach can be valuably inte-
grated for enforcing the semantics of the involved properties inside
the neural architectures.

Logic-based distances between models are typically tackled in the
area of formal method using branching logic, e.g. bisimulation met-
rics for Markov models [3, 2]; the problem of computing the distance
between STL specifications is instead addressed in [25] and applied
to the generation of designs that exhibit desired behaviors specified
in STL, in the field of synthetic genetic circuits. Differently, our work
does not focus on the (dis)similarity between formulae, but instead
aims at finding a semantic-preserving continuous representation of
STL properties.

6 Conclusions

In this work we propose a constructive algorithm for computing in-
terpretable finite-dimensional explicit embeddings of Signal Tem-
poral Logic (STL) formulae. We demonstrate their predictive power
both as features for learning models and as semantic conditioning
vectors inside other algorithms; most importantly, we provide expla-
nations for a vast amount of information retained by the embeddings,
a task which is highly non-trivial in general, but which is possible in
this scenario due to the semantic nature of the objects involved. We
believe that stl2vec has the potential to be a new framework for in-
corporating background knowledge in learning algorithms, under the
umbrella of Neuro-Symbolic computing. We plan to extend this al-
gorithm to other logics, such as Linear Temporal Logic (LTL); this
requires finding a distribution (hence a sampling algorithm) for LTL
discrete traces, which are typically higher dimensional than contin-
uous signals used for STL. We also aim at using stl2vec as seman-
tic conditioning information inside learning algorithm in other con-
texts, such as the synthesis of robot controllers satisfying some given
(safety) properties. Most importantly, we would like to devise a way
for inverting such embeddings, hence opening the doors to plenty of
other applications, such as requirement mining.
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tic and interpretable vector representation of temporal logic. CoRR,
abs/2405.14389, 2024. Full version of this paper.

[33] B. Schölkopf, A. J. Smola, and K. Müller. Kernel principal compo-
nent analysis. In ICANN ’97, 7th International Conference, Lausanne,
Switzerland, October 8-10, 1997, Proceedings, volume 1327 of Lecture
Notes in Computer Science, pages 583–588. Springer, 1997.

[34] K. Sohn, H. Lee, and X. Yan. Learning structured output representation
using deep conditional generative models. In NeurIPS 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 3483–3491, 2015.

[35] Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu. Time se-
ries data augmentation for deep learning: A survey. In IJCAI 2021, Vir-
tual Event / Montreal, Canada, 19-27 August 2021, pages 4653–4660.
ijcai.org, 2021.

[36] Y. Xie, Z. Xu, K. S. Meel, M. S. Kankanhalli, and H. Soh. Embedding
symbolic knowledge into deep networks. In NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 4235–4245, 2019.

[37] Y. Xie, F. Zhou, and H. Soh. Embedding symbolic temporal knowl-
edge into deep sequential models. In IEEE International Conference on
Robotics and Automation, ICRA 2021, Xi’an, China, May 30 - June 5,
2021, pages 4267–4273. IEEE, 2021.

G. Saveri et al. / stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic1388


	Introduction
	Preliminaries
	stl2vec
	Building Explicit STL Embeddings
	Explaining Principal Directions

	Applications
	Predictive Power of Explicit Embeddings
	Conditional Generation of Trajectories

	Related Work
	Conclusions

