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Abstract. Many Reinforcement Learning algorithms assume a
Markov reward function to guarantee optimality. However, not all
reward functions are Markov. This paper proposes a framework for
mapping non-Markov reward functions into equivalent Markov ones
by learning specialized reward automata, Reward Machines. Unlike
the general practice of learning Reward Machines, we do not require
a set of high-level propositional symbols from which to learn. Rather,
we learn hidden triggers, directly from data, that construct them. We
demonstrate the importance of learning Reward Machines over their
Deterministic Finite-State Automata counterparts given their ability
to model reward dependencies. We formalize this distinction in our
learning objective. Our mapping process is constructed as an Integer
Linear Programming problem. We prove that our mappings form a
suitable proxy for maximizing reward expectations. We empirically
validate our approach by learning black-box, non-Markov reward
functions in the Officeworld domain. Additionally, we demonstrate
the effectiveness of learning reward dependencies in a new domain,
Breakfastworld.

1 Introduction

Reinforcement Learning (RL) is traditionally formulated as a se-
quential decision-making task modeled under a Markov Decision
Process (MDP) [4]. This implies that both the reward and transition
functions are Markov, depending solely on the current state and ac-
tion. However, in complex environments, these functions are not al-
ways known and cannot always be assumed to be Markov. In fact, it
has been shown that there are behaviors that cannot be encoded by
any Markov reward function under certain state representations [1].
To address non-Markov dynamics, researchers often extend the state
representation to enforce the Markov property, though this is usually
at the cost of overcomplicating the state representation or making it
excessively sparse. For example, Mnih et al. [19] stacked subsequent
frames from the Atari games [3] to encode a suitable representation
for training Deep Q-Networks (DQNs). Similarly, Recurrent DQNs
(RDQNs) have been used to encode state histories for similar pur-
poses [14]. However, these sparse, deep models obscure the interpre-
tation of rewards. To better understand them, it is crucial to examine
their dynamics under less sparse and more interpretable forms.

To this end, automata have been used to compactly represent the
hidden or historical features of non-Markov rewards. While Deter-
ministic Finite-State Automata (DFAs) have traditionally served this
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role [5, 12, 11], more recently, specialized reward automata, Reward
Machines (RMs), have been used [32, 22, 23, 10]. We highlight two
distinctions between DFAs and RMs: 1.) DFAs are inherently less
expressive than RMs as they only accept or reject traces. Conse-
quently, when rewards are complex, multiple DFAs must be learned
[12]. In contrast, RMs can encode complex reward behavior in a sin-
gle automaton. 2.) DFAs are only capable of representing patterns
over H = (S × A)∗, the history of states and actions. Conversely,
RMs can represent patterns over H = (S×A×R)∗, which includes
rewards. This affords us a unique learning objective where rewards
serve as memory allowing us to model their dependencies.

However, prior work on learning RMs assumes access to P , a set
of high-level propositions, and L : S×A×S → 2P , a labeling func-
tion mapping transitions to instantiations in P . This makes much of
this prior work ungeneralizable. We, instead, infer L by identifying
minimal patterns in H = (S × A × R)∗, called hidden triggers,
that differentiate reward outcomes. Rather than learn RMs directly,
we map observed non-Markov rewards onto the cross-product of U ,
the state space of a candidate RM, and S, the observed state space,
to form a Markov representation called the Abstract Reward Markov
Decision Process (ARMDP). We infer an ARMDP, and thus its de-
composable RM, by solving an Integer Linear Program (ILP), lend-
ing itself to powerful off-the-shelf discrete optimization solvers.
Contributions: We introduce a novel algorithm for mapping non-
Markov reward functions to equivalent Markov ones. We show how
by leveraging H = (S × A × R)∗ in our learning objective we can
dramatically expedite learning in cases with interdependent reward
signals. We validate our approach by demonstrating our ability to
learn black-box RMs from the Officeworld domain, originally intro-
duced in the first RM paper [16]. We then evaluate the representative
power of the ARMDP by extending DQN agents with ARMDP fea-
tures to compare their learning profiles against various sparse RDQN
variants. Finally, we validate our approach to represent complex re-
ward function behavior in a new domain, Breakfastworld, featuring
black-box RMs with interdependent reward signals. We show how by
leveraging H = (S×A×R)∗ in these experiments we can expedite
learning. Our main contributions are three-fold:

1. We introduce a novel algorithm for learning RMs without assumed
access to P and L,

2. We prove that the ARMDP is a suitable proxy for maximizing
reward expectations under non-Markov rewards,

3. We demonstrate the effectiveness of learning RMs under multiple
interdependent reward signals.
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2 Related Work

Decision-making with non-Markov reward functions is often repre-
sented as a Non-Markov Reward Decision Process (NMRDP) [27].
An NMRDP is similar to an MDP except that the reward function,
R : H → R, maps state and action histories, H = (S × A)∗, to
reward values. However, as H can become unwieldy due to the curse
of history, more succinct representations have been encoded using
automata. The intuition of this approach lies in the fact that automata
are finitely represented and offer a level of interpretation due to their
structured form and symbolic representation.

Traditionally, the automata of choice has been the DFA, yield-
ing promising results in identifying Markov representations for NM-
RDPs [5, 12, 11]. More recently, specialized reward automata, RMs,
have also been used [16]. While DFAs operate over an input alpha-
bet and emit true or false over traces, RMs extend this expressive-
ness by emitting reward values along each transition. RMs are par-
ticularly appealing as they offer succinct encoding of non-Markov
reward behavior and task decomposition. They have also been ex-
tended by a broad range of RL algorithms that exploit RM structure
to learn effective or optimal (in the discrete case) policies [7]. These
include but are not limited to, specialized Q-Learning (QRM), Coun-
terfactual experiences (CRM), Hierarchical Reinforcement Learning
(HRM) and Reward Shaping (RSRM) for RMs [7, 17].

Whether using a DFA or an RM, various strategies for learning
them exist. One prominent strategy for learning automata is to use
Angluin’s L* algorithm [2]. L* has been applied for both DFA [12]
and RM [22, 23, 10] learning. Other strategies include Inductive
Logic Answer Set Programming (ILASP) [11] for DFAs and SAT
solvers [32] or Tabu search [29] for RMs. Non-automata-based learn-
ing of non-Markov rewards has been accomplished via Linear Tem-
poral Logic (LTL), [18, 5, 6]. LTL can also be later translated into
automata. Camacho et al. provide a helpful pipeline for transforming
LTL formulae into RMs [7].

A notable limitation of these prior works is that they assume access
to a set of high-level symbols (the input language for the automata)
and the relationship of the underlying process to those symbols. In
RM literature, these are denoted P and L : S ×A× S → 2P where
P is a set of symbols, separate from the NMRDP, and L is a mapping
of transitions from the NMRDP to instantiations in P , respectively. A
similar assumption is often made for DFA learning, with exceptions
being the work of Gaon and Brafman [12] as well as Christoffersen
et al. [9] who learn symbolic representations from H = (S × A)∗

to build their automata. Gaon and Brafman learned their DFAs by
applying L*, however, their approach was shown to be sample inef-
ficient. Christoffersen et al. improved upon this by solving a discrete
optimization problem for DFA learning, outlined by Shvo et al. [24],
which regularized automata based on their size to enhance general-
ization. We improve upon these approaches by, instead, learning an
RM without assumed access to P and L. We show how, by learning
RMs, we can model reward dependencies in a single automaton by
representing patterns in H = (S ×A× R)∗.

3 Preliminaries

3.1 Reinforcement Learning and Non-Markov Reward

RL is a type of self-supervised learning in which an agent learns
to interact with its environment to maximize its long-term reward
expectation [25]. It is an iterative process in which the agent re-
ceives feedback in the form of rewards or punishments to adjust its
behavior. RL is formalized using the MDP. An MDP is a 6-tuple,

(S,A, T,R, γ, ρ), where S is the state space, A is the action space,
T : S × A × S → [0, 1] is a Markov probabilistic transition func-
tion, R : S × A × S → R is a Markov reward function mapping
states, actions and states to rewards, γ ∈ [0, 1) is the discount factor
and ρ : S → [0, 1] is the initial state distribution. Briefly, NMRDPs
are similar to MDPs in that they share (S,A, T,R, γ, ρ); however,
R : H → R maps histories of states and actions to rewards, instead.

The solution for an MDP is a policy, π : S → A, that maps states
to actions. The value of a policy for any state, s ∈ S, at time point t,
is the expected discounted return, defined as follows:

Vπ(s) = Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s

]
(1)

where Eπ is the expected reward from starting in s and following
π. The optimal policy, denoted π∗, is determined by solving for the
optimal state value function:

V∗(s) = max
π

Vπ(s) (2)

for all s ∈ S. We can write the optimal state-action value function in
terms of the state value function as follows:

Q∗(s, a) = Eπ [rt+1 + γV∗(st+1) | st = s, at = a] (3)

for all s ∈ S and a ∈ A. Hence:

V∗(s) = max
a

Q∗(s, a) (4)

Equation (4) is often solved through a process called value iteration
[25]. The optimal policy is realized by selecting actions according
to maxa Q∗(s, a), otherwise known as a greedy policy. A popular
model-free approach for learning Equation (4) is Q-Learning [30]:

q(st, at)
α←− [rt+1 + γV (st+1)] (5)

where q(st, at) is updated slowly according to α ∈ [0, 1). When up-
dating Equation (5) in an online fashion, typically an ε-greedy strat-
egy is employed where the agent follows a greedy policy but chooses
a random action ε−percent of the time. Both strategies are guaran-
teed to converge to the optimal policy in the limit as each state-action
pair is visited infinitely often, but only under the assumption that T
and R are Markov. Otherwise, expectations have no stable solution.

3.2 Reward Machines

RMs are a specialized type of automata imposed over an underly-
ing state and action space, S and A [16]. RMs operate over a set
of propositional symbols, P , representing high-level events, separate
from S. RMs are defined as a 5-tuple, (U, u1, F, δu, δr), where U is
a finite state space, u1 ∈ U is the initial state, F is a set of terminal
states where F ∩ U = ∅, δu : U × 2P → U ∪ F is a transition
function and δr : U × 2P × (U ∪ F ) → R is a reward function.
A labeling function, L : S × A × S → 2P , connects S and A to
the RM by mapping transitions to instantiations in P . RMs are ca-
pable of modeling reward dependencies based on histories that can
be represented as a regular language (e.g., loops, conditions, and in-
terleaving). RMs were initially demonstrated on the Officeworld do-
main [16] shown in Figure 1 (a). Tasks (b-e) represent RMs sensitive
to P = {c,m, o, ∗, A,B,C,D} where c is a coffee tile, m, the mail
tile, o, the office tile, ∗, a plant tile, and A,B,C,D are room IDs. ¬,
∨ and ∧ are logical operators for negation, or, and and, respectively.
The cross-product of an NMRDP and an RM can be used to form a
Markov representation for predicting both R and T .
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Figure 1. The Officeworld domain (a) with four Reward Machines, (b)
deliver coffee to office, (c) deliver mail to office, (d) deliver coffee and mail

to office and (e) patrol task sequencing A, B, C, and D.

4 Approach

We wish to map non-Markov reward signals into succinct Markov
representations. We do so by inferring minimal RMs that represent
hidden or historical features that render the representation Markov.
To make our approach generalizable to practical decision-making
scenarios, we drop the assumed access to P and L. For simplicity
of notation, we drop notation on terminal states, F .

Problem Statement Given a finite set of finite-length trajectories,
To, sampled from an NMRDP, (S,A, T,R, γ, ρ), we learn a minimal
RM, (U, u1, δu, δr), that renders rewards Markov to S, A and U .

While R in the NMRDP is unknown, we assume it can be sampled
from and is representable as an RM. Hereafter, we will refer to R as a
black-box RM. Our approach for solving this problem is to learn an
ARMDP, which is simply the MDP cross-product between an RM
and an NMRDP that enables the extraction of the associated RM.
Learning of the ARMDP is formulated as an ILP. A minimal RM is
an RM with the smallest hidden state space |U |, and the least number
of transition edges between different RM states.

The following sections are organized as follows: We begin by
defining the ARMDP as the cross-product space between an RM and
an NMRDP in Section 4.1. Section 4.2 describes a passive learning
approach for learning ARMDPs from To, by solving an ILP. We later
make this an active learning approach in Section 4.5 by incorporat-
ing a Q-Learning agent. Section 4.3 briefly outlines how to extract an
RM from an ARMDP. Finally, Section 4.4 describes the theoretical
insights of ARMDPs as a proxy for the NMRDP.

4.1 Abstract Reward Markov Decision Process

An ARMDP is an MDP with additional properties sufficient for ex-
tracting/learning a valid RM.

Definition 1. Given an NMRDP, (S,A, T,R, γ, ρ), RM,
(U, u1, δu, δr), and labeler, L : S × A × S → 2P , an AR-
MDP is an MDP, (S̃, A, T̃ , R̃, γ, ρ̃), satisfying:

1. S̃ = S × U
2. {u | (s, u) ∈ S̃, ρ̃((s, u)) > 0} = {u1}
3.

T̃ ((s, u), a, (s′, u′)) =

{
T (s, a, s′) if δu(u, L(s, a, s′)) = u′

0 otherwise

4. R̃((s, u), a, (s′, u′)) = δr(u, L(s, a, s
′), u′).

Property 1 defines the state space of the ARMDP as the cross-
product of S (what we observe) and U (what we do not observe).
Property 2 imposes an initial state distribution compliant with u1 ∈
U being the initial RM state. Property 3 defines the transition func-
tion of the ARMDP as a composition function of T and δu. Finally,
Property 4 defines the reward function of the ARMDP as δr .

The intuition behind the ARMDP is that if we assume rewards in
To are Markov to S and A, conflicts are bound to arise. Consider
δr : U × 2P × U → R, for some black-box RM, being rewritten as
δr : U × S × A × S × U → R by invoking L. Because we do not
observe U , we lack the specificity to predict δr . Our goal is to find
some candidate ARMDP, that renders rewards Markov to S, A, and
U , by identifying hidden triggers in H = (S×A×R)∗ that resolve
all reward conflicts in To.

4.2 Formulation

We infer candidate ARMDPs by solving an ILP that resolves reward
conflicts over To. Let τm ∈ To be the m-th trace in To of length
lm. Further, let τm,n = (smn , am

n , rmn+1, s
m
n+1) be the n-th tuple of

τm. We define a reward conflict to be any two τm,n and τm̃,ñ where
(smn , am

n , smn+1) = (sm̃ñ , am̃
ñ , sm̃ñ+1), but rmn+1 �= rm̃ñ+1. The moti-

vation of our ILP is to map To onto a valid ARMDP such that we
resolve all reward conflicts observed in To. Intuitively, S̃ provides a
degree of freedom over U to do just that.

We define the matrix, O = M×N×K×K, where M = |To|, N
reflects the largest lm, ∀τm ∈ To, and K = |U | reflects the size of
the finite state space for some candidate RM. Each Om,n, then, is a
K×K matrix that lays the foundation for Property 1 in the ARMDP:

Om,n =

⎛
⎜⎜⎜⎝

Om,n,1,1 Om,n,1,2 · · · Om,n,1,K

Om,n,2,1 Om,n,2,2 · · · Om,n,2,K

...
...

. . .
...

Om,n,K,1 Om,n,K,2 · · · Om,n,K,K

⎞
⎟⎟⎟⎠

Each Om,n,i,j ∈ Om,n is a binary variable reflecting the decision
to map smn to RM state ui ∈ U and smn+1 to RM state uj ∈ U .
That is, if Om,n,i,j = 1, then τm,n = (smn , am

n , rmn+1, s
m
n+1)

is mapped onto the corresponding ARMDP tuple of the form,
((smn , ui), a

m
n , rmn+1(s

m
n+1, uj)). As such, each τm,n introduces

K2 variables through its respective Om,n matrix. We constrain
each Om,n to choose a single mapping by enforcing that ∀m =
1, 2, ...,M, ∀n = 1, 2, ..., lm:

K∑
i=1

K∑
j=1

Om,n,i,j = 1 (6)

We further constrain Om,n where n = 1 to satisfy the initial state
requirement of Property 2 in the ARMDP. That is, ∀m = 1, 2, ...,M :
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K∑
j=1

Om,1,1,j = 1 (7)

Next, we ensure the continuity of each trajectory in the mapping pro-
cess. That is, we encode agreement between subsequent mappings
of all Om,n and Om,n+1 pairs by enforcing the following constraint
∀m = 1, 2, ...,M, ∀n = 1, 2, ..., lm − 1, ∀j = 1, 2, ...,K:

K∑
i=1

Om,n,i,j =
K∑

j′=1

Om,n+1,j,j′ (8)

Equation (8) simply forces smn+1 to be mapped to the same RM state
in both τm,n and τm,n+1. Equations (6-8) form the scaffolding of
our mapping.

Thus far, all constraints have been applied over individual or sub-
sequent tuples of To. However, it is necessary to form a consensus
on the mapping for all observed traces onto the ARMDP to ensure
Property 3 and Property 4. We begin with Property 3.

Property 3 encodes a transition function, T̃ , constructed over com-
ponents T , from the NMRDP, and δu, from the RM. Even though
δu is unknown, we know that it must be deterministic. That is, for
any transition, (s, a, s′) ∈ S × A × S, and for any ui ∈ U ,
δu(ui, L(s, a, s

′)) must map to a single uj ∈ U . Therefore, we must
constrain O to agree on the assignments of ui and uj over shared
transition tuples. We construct the following indicator variable:

Is,a,s′,i,j =

⎡
⎢⎢⎣

M∑
m=1

lm∑
n=1,

(s,a,s′)=(smn ,am
n ,smn+1)

Om,n,i,j ≥ 1

⎤
⎥⎥⎦

Is,a,s′,i,j is an indicator variable representing the sum of all Om,n,i,j

in O sharing the transition tuple (s, a, s′) with assignments i, j ∈
1, 2, ...,K. When Is,a,s′,i,j = 1, it acts as a hidden trigger that
highlights the sensitivity of L to (s, a, s′) and enforces the transi-
tion δu(uj , L(s, a, s

′)) = uj , in the RM, thus governing T̃ . We later
consider the sensitivity of hidden triggers to rewards in Property 4.

Let (S,A, S)o = {(smn , am
n , smn+1) | m ∈ {1, 2, ...,M}, n ∈

{1, 2, ..., lm}} be the set of all unique transitions in To. Then
to enforce the determinism of δu, we impose that ∀(s, a, s′) ∈
(S,A, S)o, ∀i = 1, 2, ...,K:

K∑
j=1

Is,a,s′,i,j ≤ 1 (9)

Consider that for any (s, a, s′) ∈ (S,A, S)o and for any i ∈
{1, 2, ...,K} that when we constrain the sum ∀j = 1, 2, ...,K, in
Equation (9), to be less than or equal to 1, we limit δu(ui, L(s, a, s

′))
to have at most one outcome. With this, Equation (9) satisfies the de-
terminism of δu and Property 3 of the ARMDP.

The encoding of Property 4 enforces the resolution of reward con-
flicts in To. While conflicts exist under the perspective of S×A×S,
by mapping conflicting reward tuples onto S×U×A×S×U we can
separate them. Similar to our encoding of Property 3, we do this by
constraining O to agree on the assignments of ui and uj over shared
reward tuples by way of indicator variables:

Is,a,r,s′,i,j =

⎡
⎢⎢⎣

M∑
m=1

lm∑
n=1,

(s,a,r,s′)=τm,n

Om,n,i,j ≥ 1

⎤
⎥⎥⎦

Is,a,r,s′,i,j is an indicator variable representing the sum over all
Om,n,i,j in O sharing the reward tuple (s, a, r, s′) with assignments
i, j ∈ {1, 2, ...,K}. When Is,a,r,s′,i,j = 1, it imposes the following
reward emission, δr(ui, L(s, a, s

′), uj) = r, in the RM.
Let r(s, a, s′) = {rmn+1 | m ∈ {1, 2, ...,M}, n ∈ {1, 2, ..., lm},

(smn , am
n , smn+1) = (s, a, s′)} be the set of all observed rewards for

some (s, a, s′). Then to enforce the determinism of δr , we impose
that ∀(s, a, s′) ∈ (S,A, S)o, ∀i = 1, 2, ...,K, ∀j = 1, 2, ...,K:

∑
r∈r(s,a,s′)

Is,a,r,s′,i,j ≤ 1 (10)

Consider that for any (s, a, s′) ∈ (S,A, S)o and for any i, j ∈
{1, 2, ...,K} that when we constrain the sum ∀r ∈ r(s, a, s′),
in Equation (10), to be less than or equal to 1, we limit
δr(ui, L(s, a, s

′), uj) to have at most one reward outcome, thus re-
solving our reward conflicts in To. Importantly, Is,a,r,s′,i,j = 1
contextualizes its corresponding hidden trigger, Is,a,s′,i,j , with re-
ward. When rewards are interdependent (e.g., some upstream reward
conflict determines a downstream reward conflict), rewards serve as
memory, hence, we capture relationships in H = (S ×A×R)∗. By
Equation (10), we satisfy the determinism of δr and Property 4 of
the ARMDP.

Equations (6-10) form the entirety of the constraints for ARMDP
learning. However, there are potentially many ARMDP solutions for
any given To. As such, we are motivated to derive simple and in-
terpretable models for representing reward dynamics. Therefore, we
orient our objective and learning procedure toward finding the min-
imal ARMDP, and thus the minimal RM, that satisfies To. This is
done in two ways. First, for any inference of an ARMDP, we start by
assuming K = |U | = 2, thus dramatically limiting our search space.
If K = 2 is determined to be insufficient to resolve reward conflicts
(ILP infeasibility) we increment K by 1 and try again. This is known
as a deepening strategy employed in various related works [9, 6].
Second, we limit the number of hidden triggers that dictate tran-
sitions between different RM states (i.e., δu(ui, L(s, a, s

′)) = uj

where ui �= uj). We do so by minimizing the following objective:

z =
∑

(s,a,s)∈(S,A,S)o

K∑
i=1

K∑
j=1,
i�=j

Is,a,s′,i,j (11)

We solve Equations (6-11) using out-of-the-box ILP solvers in
Gurobi [13] to infer viable ARMDPs. We note that all notation in
this section was constructed assuming L : S ×A× S → 2P though
it is straightforward to rewrite it as being sensitive to L : S → 2P .
We provide the full ILP in Appendix A1.

We also note a structural assumption that we make in later experi-
mentation. That is, we only use Om,n,i,j where j ≥ i (i.e., the upper
triangle matrix of each Om,n). The implication of this is that we as-
sume the RM to never return to a previous state, once left. While this
might seem to limit the expressiveness of any resulting ARMDP, we
note that our ILP simply unrolls these cycles expanding U as needed.
Because To represents a finite set of finite length trajectories, learned
ARMDPs will be equivalently expressive, but larger in some cases.
For all RMs considered in this work, this structural assumption holds
resulting in the minimal ARMDP being learned while dramatically
reducing learning time. We provide more details on this assumption
in Appendix B.

1 All Appendix items and code can be found in the full paper [15].
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4.3 Extracting RMs from ARMDPs

We provide a brief outline for extracting an RM from an ARMDP.
Given that K = |U | is determined by our deepening strategy, we
assume U is given. Additionally, by Equation (7) we designate u1 ∈
U to be the initial state. To extract the rules of δu and δr we simply
iterate ∀m = 1, 2, ...M, ∀n = 1, 2, ..., lm, ∀i = 1, 2, ...,K, ∀j =
1, 2, ...,K. If Om,n,i,j = 1 then δu(ui, L(s

m
n , am

n , smn+1)) = uj

and δr(ui, L(s
m
n , am

n , smn+1), uj) = rmn+1.

4.4 Theoretical Considerations

Our ILP is constructed such that it infers an ARMDP that resolves
reward conflicts in To. Because the ARMDP is simply just an MDP,
we can apply out-of-the-box RL algorithms to solve it. However, it
remains to be shown how the ARMDP might be a suitable proxy for
the NMRDP for the purpose of maximizing reward expectations. We
start with the weighted Reward Sum (RS) for some τm ∈ To:

RS(τm) =

lm∑
n=1

rmn+1 · T (smn , am
n , smn+1) (12)

Given that we assume the form of R to be an RM and that δu and δr ,
in an RM, are deterministic functions, RS(τm) reliably captures the
reward observations essential for constructing a reward expectation,
assuming the trajectory sequence is preserved. Similarly, we con-
struct a weighted Abstracted Reward Sum (ARS) for some τm ∈ To

under the representation of the ARMDP to be:

ARS(τm) =

lm∑
n=1

K∑
i=1

K∑
j=1

rmn+1 ·T (smn , am
n , smn+1) ·Om,n,i,j (13)

We remind readers that every Om,n,i,j reflects a binary variable that,
if 1, indicates δu(ui, L(s

m
n , am

n , smn+1)) = uj . By referencing Prop-
erty 3 of the ARMDP, multiplying Om,n,i,j into T (smn , am

n , smn+1)
to determine T̃ should be evident. We introduce Theorem 1:

Theorem 1. RS(τm) = ARS(τm) ∀τm ∈ To.

For space reasons, we provide the proof of Theorem 1 in Ap-
pendix C, but briefly state that by ensuring RS(τm) = ARS(τm)
∀τm ∈ To, the ARMDP is a suitable proxy for maximizing reward
expectations for the NMRDP, assuming To is representative. Further-
more, even if To is not representative, we posit that any ARMDP
derived from To serves as a useful hypothesis for RL agents to in-
terrogate in an active learning paradigm. We explore that intuition in
the next section.

4.5 RL for Non-Markov Rewards

Our ILP formulation for learning ARMDPs is a form of passive
learning. That is to say, while the ARMDP will sufficiently resolve
reward conflicts found in To, To may not be representative of the
true reward dynamics. Therefore, we are interested in extending our
approach into an active learning framework by applying Q-Learning
over inferred ARMDPs. Our intuition is that while any instance of
To, or any ARMDP inferred from it, may not be truly representa-
tive, Q-Learning agents might gradually expand To in their pursuit
to maximize reward expectations. In this way, each inferred ARMDP
acts as a hypothesis that can be interrogated for consistency.

We present ARMDPQ-Learning, with pseudocode available in Al-
gorithm 1. The agent applies a deepening strategy by initially assum-
ing S and A form an MDP (i.e., |U | = 1). We denote this ARMDP

Algorithm 1 ARMDPQ-Learning
Input: NMRDP

1: ARMDP = ARMDP0

2: πARMDP = π0

3: To = []
4: K = |U | = 2
5: while !done do

6: τm, conflict = NMRDP .sim(ARMDP , πARMDP )
7: if conflict then

8: To.append(τm)
9: solved = False

10: while !solved do

11: ARMDP , solved = solve_ILP(To,K)
12: if !solved then

13: K = K + 1
14: end if

15: end while

16: πARMDP = π0

17: else

18: πARMDP = update_qsa(τm)
19: end if

20: end while

as ARMDP0 (line 1). K = |U | = 2, is used for subsequent ARMDP
inference. The agent policy, πARMDP , is initially set to π0, a policy
with all Q-values set to 0 (line 2). We use the NMRDP to simulate
some τm under the perspective of the current ARMDP, selecting ac-
tions according to πARMDP (line 6). If a conflict is found we add τm
into To (line 8) and solve for a new ARMDP (line 11). By adding
only conflicting τm, we maintain a smaller To for more efficient ILP
solving. If the problem is infeasible we increment K by 1 (line 13)
until there is a solution. As each ARMDP presents a new perspec-
tive, we reset πARMDP back to π0 (line 16). Assuming no conflict is
found for τm, we update πARMDP with τm according to Q-Learning
updating (line 18). Note that line 18 is shorthand. In reality, tuples
are updated in an online fashion while simulating the trajectory.

5 Experiments

We briefly outline our experiments. Experiment 1 tests the efficacy
of ARMDPQ-Learning in the Officeworld domain. Experiment 2 as-
sesses the representative power of ARMDPs by comparing learning
profiles of DQNs using S̃ versus various RDQN architectures only
using S. Finally, Experiment 3 demonstrates the efficacy of learning
RMs over DFAs given their ability to learn over H = (S×A×R)∗.

5.1 Experiment 1 - Officeworld

We validated our approach by applying ARMDPQ-Learning on the
four black-box RMs (Tasks (b-e)) from the Officeworld domain visu-
alized in Figure 1. We hid the RM as well as P and L from the agent.
We refer readers to Appendix D for details on hyper-parameter selec-
tion, but note that we used an ε-greedy policy and set ε to 0% after
90,000 episodes to exploit learned behavior. Results for Experiment
1 can be seen in Figure 2.

The agent learned to perform optimally in all tasks, suggesting
that a meaningful representation was learned. Task (b), (c), and (e)
all arrived at |U | reflecting the ground truth model (2, 2, and 4, re-
spectively). Conversely, Task (d) arrived at |U | ≈ 3.2. Because the
coffee and the mail tiles can be achieved in any order, occasionally

G. Hyde and E. Santos, Jr. / Detecting Hidden Triggers: Mapping Non-Markov Reward Functions to Markov 1361



Figure 2. Average rewards with standard deviations, evaluated over 10
trials using ARMDPQ-Learning on Tasks (b-e) in the Officeworld domain.

the agent would lock on to one solution, and not the other, requir-
ing less RM states. To remained relatively small for all tasks, with
|To| ≈ 4, 8, 39, and 44 for Tasks (b-e), respectively. We also tracked
the cumulative solve times for all ILP solves under each task to be
≈ 0.1, 0.6, 4,200, and 12,000 seconds, respectively. We include an
extension to Figure 2 in Appendix D, containing figures for |U |, |To|
and cumulative solve times.

In all experiments, we noticed high variability in early perfor-
mance reflected in high standard deviations between episodes 0-
20,000. We attribute this to identifying the wrong pattern in H during
early conflict resolution. Interestingly, because these early solutions
were so poor, they were easily testable by the Q-Learning agent. This
lends some credence to our initial intuition of the Q-Learning agent
serving as an important active learner capable of interrogating its own
perspectives and updating in the face of new evidence.

5.2 Experiment 2 - ARMDP Representations

Previously, Christoffersen et al. compared the learning rates of Q-
Learning agents over NMRDPs, using DFAs, to sparse, recurrent,
deep RL models [9]. However, in smaller discrete state spaces, Q-
Learning has the advantage of updating state-action values directly
given their simpler, tabular representation. In contrast, deep RL mod-
els must learn approximate solutions using complex computations
over large batches of data. It remained to be shown how beneficial
it could be to represent the state space of a DQN with S̃ instead of
S. This would allow for a more even comparison of training profiles
against RDQN architectures that have to learn a Markov representa-
tion over histories of S.

For each Task (b-e), in Experiment 1, we extracted S̃, from the
finalized ARMDP. We used S̃ as the feature space for an Abstracted
DQN (ADQN). As the ADQN explored each task we updated S̃ ac-
cording to its respective ARMDP. In parallel, we trained recurrency-
based models using S, namely, an RDQN, a Long-Short Term Mem-
ory DQN (LSTMDQN), and a Gated Recurrent DQN (GRUDQN).
For a baseline, we also trained a DQN using S.

Rewards were very sparse for the Officeworld tasks and explo-
ration via an ε-greedy policy was often insufficient. As we didn’t
seek to demonstrate the efficacy of RL strategies under sparse re-
wards, we seeded each model with an optimal trajectory every 10th
trajectory. Results for Experiment 2 can be seen in Figure 3.

In all tasks, the ADQN model learned at the rate of, or out-learned,
all other models. This became more apparent as the complexity of the
task increased (Task (e) being the most complex). We note that for
Task (b), the baseline DQN performed just as well as the other mod-

Figure 3. Average rewards with standard deviations, evaluated over 10
trials using DQN models on Tasks (b-e) in the Officeworld domain.

els only because the shortest path to the goal included the coffee tile.
Interestingly, for Task (e), the RDQN performed just as poorly as
the baseline DQN model while the LSTMDQN and GRUDQN mod-
els (while learning slowly) appeared to be uncovering the relevant
hidden mechanisms of the underlying RM. We hypothesize that the
forgetting component of the GRUDQN and LSTDQN is a key differ-
entiating factor in their learning ability. Still, we remind readers that
uncovering U , as discussed in Experiment 1, involves a non-trivial
cost before ADQN training can commence.

5.3 Experiment 3 - Breakfastworld

To evaluate the effectiveness of learning our RMs over H = (S ×
A × R)∗, rather than H = (S × A)∗, we introduce a new domain,
Breakfastworld, seen in Figure 4 (a). We include two tasks, Tasks
(b) and (c), containing multiple interdependent reward signals. The
domain uses P = {c, w, e, l} representing propositions for cooking,
washing, eating and leaving, respectively. Task (b) contains an RM
wherein the agent is meant to cook, eat, and then leave. (u1, c, u2)
returns a reward of -0.1, reflecting a time cost. This time cost is expe-
rienced in a non-linear fashion as the agent grows bored and spending
another turn cooking returns a reward of -0.3, (u2, c, u3). However,
this patience pays off in (u3, e, u4), where eating a well cooked meal
returns a reward of 2. In contrast, (u2, e, u5) returns 1, reflecting an
undercooked meal. Finally, (u4, l, term) and (u5, l, term) reflect
the last reward dependency, returning the cumulative reward for each
path in the RM, encouraging episode completion. Task (c) builds on
Task (b) by adding a reward dependency for washing. The penalty
for washing after cooking once, (u6, w, u7), is less than after cook-
ing twice, (u4, w, u5).

Both tasks reflect RMs more complex in terms of |U | than Task (e)
in Experiment 1. However, we demonstrate that RM learning benefits
in cases where rewards are interdependent as upstream reward con-
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Figure 4. The Breakfastworld domain (a) with two RMs, (b) to cook, eat,
and then leave, (c) to cook, eat, wash, and then leave.

flict resolution results in natural splits for downstream reward conflict
resolution. Conversely, DFA learning suffers under such conditions
as each reward conflict must be represented by its own DFA which
is learned independently from any other DFA [12], hence they only
learn according to H = (S ×A)∗.

We demonstrate how advantageous it can be that our ILP naturally
learns according to H = (S × A × R)∗ by applying ARMDPQ-
Learning to Tasks (b) and (c). We then compare this to applying
ARMDPQ-Learning on RMs equivalent in structure to Task (b) and
(c), but that only emits cumulative rewards on terminal transitions.
All other rewards are made 0. We refer to Tasks (b) and (c), in Figure
4, as Task (b) Full and Task (c) Full, respectively. Conversely, the
RMs that only emit the cumulative rewards are referred to as Task
(b) Cumulative and Task (c) Cumulative, respectively. The purpose
of these cumulative tasks is to form a problem that produces reward
conflicts only on the l tile that can not be contextualized by upstream
reward conflicts. This would be similar to learning DFAs to parse the
different possible rewards on the l tile only using H = (S × A)∗.
We show results for Experiment 3 in Table 1.

In all solvable cases of ARMDPQ-Learning, the agent achieved
optimal performance and identified the correct |U |, for each task. We
include an extension figure to Table 1 in Appendix F containing such
results. Using Task (b) Full our cumulative solve time for all ILPs
was dramatically smaller (≈ 4.4 seconds) than when using Task (b)
Cumulative (≈ 1,102.9 seconds). This can be attributed to Task (b)
Full requiring only a fourth of the number of trajectories to solve than
Task (b) Cumulative, likely due to the leveraged context of upstream
rewards. More impressive were the results for Task (c) Full which
resulted in the cumulative solve time of ≈ 153.8 seconds. In no in-
stance of attempting to learn in Task (c) Cumulative did we arrive at
a stable solution in 100,000 seconds (>27 hours).

Task |To| Solve Time (s)

Task (b) Full 6.2 ± 1.1 4.4 ± 3.3
Task (b) Cumulative 22.4 ± 8.8 1102.9 ± 1068.8
Task (c) Full 10.8 ± 3.0 153.8 ± 197.8
Task (c) Cumulative n/a n/a

Table 1. Results over 10 trials using ARMDPQ-Learning on Tasks (b) and
(c) from the Breakfastworld domain.

6 Conclusions

In this work, we introduced a formulation for learning RMs from
non-Markov rewards by solving an ILP to learn an ARMDP. The
ARMDP represents the cross-product between an RM and the un-
derlying state space of an NMRDP. Importantly, we learn the AR-
MDP, and thus the RM, without knowledge of P or L, by identifying
hidden triggers that govern the rules of L : (S × A × S) → 2P .
We also demonstrated how effective it can be to learn our automata
according to H = (S × A × R)∗, rather than H = (S × A)∗, a
limitation of DFAs. We proved that the ARMDP is a suitable proxy
for maximizing the reward expectations of the NMRDP for To. We
validated our approach by applying ARMDPQ-Learning to train Q-
Learning agents over black-box RMs. We also evaluated the repre-
sentative power of the ARMDP by representing the state space of a
DQN as the state space of an ARMDP. We compared the training
profiles of these DQNs to the training profiles of various RDQN ar-
chitectures that had to learn Markov representations over the sparse
histories they encode.

An important aspect of this work is that the RMs we learn are in-
herently more interpretable than the sparse representation of histories
in H = (S×A×R)∗. This is in part because we learn minimal RMs
that encode H under the finite, structured, and symbolic representa-
tion of an automaton, but also because interpreting an RM doesn’t
require a comprehensive understanding of S and A outside of what
the labeler encodes. This is a consequence of the RM being entirely
decomposable from the ARMDP. For example, the RM in Figure 1
Task (b) conveys the need to bring coffee to the office without ever
needing to describe the sequence of states and actions to achieve that
goal. Since RL is predicated on the assumption that the reward func-
tion is the most concise, robust, and transferable definition of a task
[20], we posit that RMs emerge as strong candidates for reward func-
tion representation and interpretation.

RM representations also carry important weight for the field of In-
verse RL (IRL). In IRL, the goal is to learn a reward function from
behavioral data that motivated that behavior [20, 26, 8]. While most
approaches assume a Markov reward function, some of this work
has been focused on learning rewards in Partially Observable MDPs
(POMDPs) [8] and in Semi MDPs (SMDPs) [26]. We think that
relaxing the Markov assumption in a principled way, analogous to
this work, could yield insight into hidden abstractions made by a
decision-maker. Moreover, given their interpretable form, it might
shed light on what these hidden abstractions represent.

Lastly, we generally make note that this work is limited in that it
assumes S and A are discrete. As such, we would like to consider
automata extraction methods, in the future, using recurrent models
[28, 21, 31] as this would extend our approach into the continuous
case. Weiss et al. have demonstrated promising results in this regard
[31]. Similarly, this work assumes R to be deterministic to some his-
tory. In scenarios where R is stochastic or noisy, we posit that we
might be able to handle such cases by sampling histories to assess if
the reward distributions differ in some statistical sense.
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