
Automated Synthesis of Certified Neural Networks
Matteo Zavatteria,*, Davide Bresolina,** and Nicolò Navarina,***

aDepartment of Mathematics, University of Padova, Italy

Abstract. Neural networks find applications in many safety-critical
systems that raise concerns about their deployment: Are we sure the
network will never advise doing anything violating a set of safety
constraints? Formal verification has been recently applied to prove
whether an existing neural network is certified for some property
(i.e., if it satisfies the property for all possible inputs) or not. For-
mal verification can prove that a network respects the property, but
cannot fix a network that does not respect it. In this paper we focus on
the automated synthesis of certified neural networks, that is, on how
to automatically build a network that is guaranteed to respect some
required properties. We exploit a Counter Example Guided Inductive
Synthesis (CEGIS) loop that alternates Deep Learning, Formal Ver-
ification, and a novel data generation technique that augments the
training data to synthesize certified networks in a fully automatic
way. An application of a proof-of-concept implementation of the
framework shows the feasibility of the approach.

1 Introduction and related work

Applications of neural networks include fields where they act as ac-
tion advisors and controllers for safety-critical systems, where safety
is paramount, and errors can be extremely expensive or dangerous.
When a neural network is deployed in a safety-critical system, it is
of extreme importance to prove that it satisfies the desired properties
in all possible scenarios and under all possible inputs, as testified,
for instance, in a recent technical paper on the use of formal meth-
ods for neural networks certification in aviation [13]. Moreover, the
European Union is working on the text of the AI act [14] that will
require for all AI systems categorized as high-risk to be assessed
before being put on the market and also throughout their lifecycle.

Formal verification provides algorithms and methodologies that
can exhaustively explore the state space of a system to guarantee
that the system itself respects the desired properties. Hence, the cer-
tification of neural networks has recently received attention from the
formal verification community: the annual competition VNN-COMP
[5] and the standard format VNN-LIB [31] have been established to
compare state-of-the-art neural network verification tools and share
benchmarks and test cases.

Many of the current approaches to verify a neural network reduce
the problem to finding a solution to a constraint satisfaction prob-
lem (CSP). Such a CSP consists of a set of constraints encoding the
neural network and a set of constraints encoding the property, and it
is typically formulated within the frameworks of Mixed Integer Lin-
ear Programming (MILP), Satisfiability Modulo Theories (SMT), or

∗ Corresponding Author. Email: matteo.zavatteri@unipd.it
∗∗ Corresponding Author. Email: davide.bresolin@unipd.it
∗∗∗ Corresponding Author. Email: nicolo.navarin@unipd.it

more generally Constraint Programming (CP). Some selected refer-
ences of these (and other) formal verification methods can be found
in [2]. Some tools such as RELUPLEX [20] and Marabou [21] pro-
vide specialized versions of the SIMPLEX method to boost scalabil-
ity of the formal verification phase.

However, verification alone can only give a yes or no answer and
cannot synthesize a neural network that is guaranteed to respect the
property when the answer to the verification problem is negative. A
few attempts in the literature to deal with the synthesis of certified
neural networks have been provided. Some of them are restricted
to general monotonicity of the network [25, 29], whereas others are
limited to constraining the output for Hierarchical Multi-label classi-
fication Problems [11, 12, 15]. Considering more general rules, some
works [23, 24, 33, 36, 35] propose to inject constraints in the loss
function of a neural network in such a way that the training of the
model should prefer solutions where the constraints are satisfied.
[26] generates counterexamples (solving an optimization problem)
that violate some constraints that are expressed in first-order logic
(FOL) and include them in the training set in NLP tasks. [10] ex-
presses constraints as logical clauses directly incorporated in the net-
work structure as an additional layer that adds trainable parameters
(clause weights) that represent the satisfiability level of constraints,
providing explainability to the model as well as increased general-
ization. Some other methods additionally provide guarantees on the
considered constraints, even though they either pose limitations on
the constraints [18, 36], or rely on an external component to enforce
the desired properties at run time [3, 9, 38]. Finally, a recent review
of deep learning with logical constraints is provided in [16].

The problem of automatically generating a computational system
that provably satisfies a given high-level specification has been stud-
ied in computer since the seminal works of Church [8]. One rele-
vant methodology developed by this line of research is the Counter
Example Guided Inductive Synthesis (CEGIS) workflow, initially
proposed in [30] for the automated synthesis of programs. The
CEGIS workflow has been recently applied to prove stability of neu-
ral controllers [1, 6] and to generate invariants for dynamical sys-
tems [7, 28]. While these works exploit a learning-verify loop sim-
ilar to our approach, they start from an analytical description of the
dynamical system, and they consider only the problem of learning a
network that satisfies the desired properties. In our setting we start
from a dataset sampled from an unknown distribution, and we aim to
preserve the accuracy of the network as much as possible. To do so,
we develop a data generation technique to augment the training data
that turns out to be crucial to keep the final network as close as pos-
sible to the one trained on the unknown data-generating distribution.

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240633

1341

Counterexample
not found

(CSP is UNSAT)

Dataset

Training

Encoding
into a CSP

Property

Formal
Verification

Done
(NN is certified)

Generation
of new data
from the c.e.
for the next

training phase

Neural
Network

Counterexample
found

(CSP is SAT)

Negation

Figure 1. High level view of the CEGIS workflow employed for the
synthesis of certified neural networks.

Contribution and organization

This paper combines Deep Learning with Formal Methods and em-
ploys the Counter Example Guided Inductive Synthesis (CEGIS)
workflow for the automated synthesis of certified neural networks.
Section 2 provides a general description of the synthesis workflow
and identifies, in a technology-independent way, the modules that
we need to obtain our goal. Section 3 sums up how to encode a
ReLU neural network into a first-order linear real arithmetic formula
(LRA). Section 4 identifies a fragment of LRA to express proper-
ties and formally state the problem we want to solve. Section 5 dis-
cusses how to generate new data starting from the counterexamples
found by the verification phase when the network does not respect the
property and how to add the new data to the training set for the sub-
sequent training phase. Sections 6 and 7 discuss a proof-of-concept
implementation of our workflow and show how to certify two prop-
erties on an existing dataset from a robotic scenario, and for different
learning rates and structure of the network (number of hidden layers
and nodes per layer). Section 8 concludes and discusses future work.

2 CEGIS workflow

The general framework that we use in this paper is based on the
Counter Example Guided Inductive Synthesis (CEGIS) workflow
shown in Figure 1. CEGIS was initially proposed in [30] for the au-
tomated synthesis of programs. In general, CEGIS works by generat-
ing a candidate solution for the problem at hand (a program in [30],
a neural network in our case) and then formally verifying whether
the candidate solution respects the desired properties or not. If not,
the formal verification phase generates one or more counterexam-
ples that are used to generate a new, better, solution, until the candi-
date solution is proved to respect the required properties. The CEGIS
workflow is thus not a new concept. What is new here is how we set
up CEGIS for the neural context and how we use the counterexam-
ples to generate new data with which we add to the training set until
a certified neural network is produced.

Our CEGIS approach starts from a dataset D of input-output pairs
disjointly partitioned in training, validation, and test set. We then cre-
ate a neural network N as a result of some training algorithm that

works on training and validation sets only. After that, we encode N
into a suitable constraint satisfaction problem (CSP) along with the
negation of the property P that we want N to satisfy. The output of
the formal verification part can lead to two situations:

1. the CSP is unsatisfiable; this means that no counterexample exists
and thus N is certified for P ;

2. the CSP is satisfiable; this means that we found a counterexample:
an input x where the output N(x) does not satisfy P .

In the former case, the process is completed and we have proof that N
respects the property P for all possible values in the input domain,
and not only for the inputs contained in the (finite) dataset D. In
the latter case, we use the counterexample (x, N(x)) to extend the
training set with new input-output pairs (x′,y′) that satisfy P , before
proceeding with the next iteration of the CEGIS workflow. These
new pairs are obtained by first replacing the output of the network
in the counterexample with an output y such that (x,y) satisfies the
property, and then sampling around it to increase the number of new
data points that are added to the training set.

3 Encoding ReLU neural networks

A directed weighted graph N = (V,E,w) consists of a set of nodes
V , a set of directed edges E, and a weight function w : E �→ R asso-
ciating real numbers to edges. A feedforward ReLU neural network
is built on top of a directed weighted graph by imposing restrictions
on the form of the graph as well as adding further characteristics to
the nodes as follows.

• The network always includes an input layer, an output layer, and
may include hidden layers in between. A network with exactly one
hidden layer is shallow; it is deep if there exist at least two hidden
layers. We denote with d the number of layers in the network.
Layer 1 is the input layer, while layer d is the output layer. Layers
2, . . . , d− 1 are the hidden layers.

• A layer is a vector of nodes. We denote with �i the size of the i-th
layer, that is, the number of nodes in the layer. The j-th node of
layer i is denoted by vi,j . To ease readability, we omit the sub-
script j when the corresponding layer consists of only one node.

• Every non-output node is connected to all nodes in the following
layer through weighted edges, whereas every non-input node is
connected to all nodes in the preceding layer through weighted
edges.

• Hidden nodes serve as computational units. Every hidden node
vi,j also has an associated bias bi,j and a non-linear activation
function. The node computes a linear function over the output of
the nodes in the previous layer, and then it applies the activation
function to generate its output. In this paper, we consider the fol-
lowing activation function: ReLU(x) := max(0, x).

• Output nodes also have associated biases but no activation func-
tions. In this way, they compute a linear combination of the nodes
in the last hidden layer. Networks with activation functions in the
output layer (e.g., a sigmoid for binary outputs) can be certified as
well if the property can be rewritten to consider only the input of
the activation function.

Figure 2 gives an example of a small neural network with a sin-
gle input node v1,1, a single output node v3,1, and a hidden layer
containing 2 nodes v2,1, v2,2 with ReLU activation functions. Biases
are shown above the nodes, and weights are above the edges. The

M. Zavatteri et al. / Automated Synthesis of Certified Neural Networks1342

x v1,1

v2,1

8

v2,2

−7
v3,1

2

y

2

−3

−1

5

Figure 2. A neural network with one hidden layer.

network computes the function:

N(x) := −
computed by v2,1︷ ︸︸ ︷

(max(0, 2x+ 8))+5

computed by v2,2︷ ︸︸ ︷
(max(0,−3x− 7))+2

where x is the single input of the network.
Taking inspiration from the encoding used in [20] to verify neural

networks and in [34] to solve planning problems, we use the theory
of linear real arithmetic (LRA) to encode the network and the prop-
erties. LRA formulas are first-order logic formulas built from atoms
that are linear constraints

∑n
i=1 cxi �� b, where c, b are rational con-

stants, and ��∈ {<,≤,=, >,≥, �=}.
Let N be a ReLU neural network with d layers, n inputs repre-

sented as the vector x = (x1, . . . , xn) ∈ X , and m outputs repre-
sented as the vector y = (y1, . . . , ym) ∈ Y . To encode the network
into an LRA formula we proceed as follows.

For each node vi,j of N we add two auxiliary variables vini,j and
vouti,j , that represent respectively the input and the output of the node.
To improve readability, we use x1, . . . , xn instead of the auxiliary
variables vin1,1, . . . , v

in
1,n for the input layer, and y1, . . . , ym instead

of the auxiliary variables voutd,1 , . . . , v
out
d,m for the output layer.

Input nodes simply forward the input to the output. Hence, for each
input node we add the conjunct:

xj = vout1,j

For each hidden node vi,j , where 1 < i < d, we add the following
conjuncts:

vini,j = bi,j +

�i−1∑
k=1

w(vi−1,k, vi,j) · vouti−1,k

vouti,j = max(0, vini,j)

where a = max(0, b) can be encoded in LRA as:

a ≥ 0 ∧ a ≥ b ∧ (a = 0 ∨ a = b).

For each output node vd,j , we add the following conjuncts:

vind,j = bd,j +

�d−1∑
k=1

w(vd−1,k, vd,j) · voutd−1,k

yj = vind,j

Finally, the LRA formula FN (x,y) that encodes the network N
is obtained by conjoining all equations above and then existentially
quantifying on all auxiliary variables vini,j and vouti,j . The resulting
formula has only input variables x1, . . . , xn and output variables
y1, . . . , ym as free, and it is true if and only if y = N(x).

The LRA encoding of Figure 2 is the following formula:

FN (x, y) := ∃vout1,1 , v
in
2,1, v

out
2,1 , v

in
2,2, v

out
2,2 , v

in
3,1

(
x = vout1,1∧

vin2,1 = 8 + 2vout1,1 ∧ vout2,1 = max(0, vin2,1)∧
vin2,2 = −7− 3vout1,1 ∧ vout2,2 = max(0, vin2,2)∧
vin3,1 = 2− vout2,1 + 5vout2,2 ∧ y = vin3,1

)
4 Constraint language and formal verification

In this work, we use LRA not only to encode neural networks but
also to specify properties. The formulae expressing the properties of
a network N that we consider have the form Fpre(x)⇒ Fpost(x,y),
where Fpre(x) is a quantifier-free LRA formula over input variables
only, and Fpost(x,y) is a quantifier-free LRA formula over both in-
put and output variables. In this setting, a network is certified for a
property if for all inputs where the precondition Fpre(x) is satisfied,
then the output of the network y = N(x) is such that the postcondi-
tion Fpost(x,y) is satisfied as well. More formally,

Definition 1. A ReLU neural network N is certified for a property
P := Fpre(x)⇒ Fpost(x,y) if the following formula is valid:

FN,P (x,y) := (FN (x,y) ∧ Fpre(x))⇒ Fpost(x,y).

Since Fpre(x) and Fpost(x,y) are arbitrary quantifier-free formu-
las, limiting properties to the form Fpre(x) ⇒ Fpost(x,y) does
not restrict the expressiveness of our framework, as any arbitrary
LRA formula on (x,y) can be rewritten to respect the implicative
form. We say that a property P is realizable if there exists a function
G : X �→ Y such that Fpre(x) ⇒ Fpost(x, G(x)) is true for all
x ∈ X . From now on, we consider only realizable properties.

Problem statement. Given:

• a dataset D of input-output pairs disjointly partitioned in training,
validation, and test, and

• a realizable property P defined as above,

synthesize a ReLU neural network N such that:

• N is certified for P , and
• the accuracy of N on the test set is preserved as much as possi-

ble with respect to the accuracy of a (non necessarily certified)
network resulting from the training on the initial D only.

An LRA formula with free variables is valid if and only if its nega-
tion is unsatisfiable. Hence, to check if N is certified for a property
P , we can equivalently check whether ¬FN,P (x,y) is unsatisfiable.
Written more explicitly:

¬FN,P (x,y) := ¬ ((FN (x,y) ∧ Fpre(x))⇒ Fpost(x,y))

≡ FN (x,y) ∧ Fpre(x) ∧ ¬Fpost(x,y)

is an LRA formula with free variables x and y, whose set of solutions
matches the set of counterexamples proving that N falsifies P .

To give a simple example, consider the following property P on N
of Figure 2 in natural language: an input less or equal than 0 always
implies an output less or equal than 0. More formally,

FN,P (x, y) := (FN (x, y) ∧
Fpre (x)︷ ︸︸ ︷
x ≤ 0)⇒

Fpost (x,y)︷ ︸︸ ︷
y ≤ 0

N is not certified for P , since the formula

¬FN,P (x, y) := FN (x, y) ∧ x ≤ 0 ∧ y > 0

is satisfiable. By letting α be an assignment that associates a real
value to each of the variables in x and y to make ¬FN,P (x,y) true,
one possible solution is α(x) = −3, α(y) = 10 since N(−3) = 10.

M. Zavatteri et al. / Automated Synthesis of Certified Neural Networks 1343

5 Counterexample repair for data generation

Let N be a ReLU neural network and P be a property on N . Suppose
that ¬FN,P (x,y) is satisfiable and let α be a satisfying assignment.
To correct the behavior of the network, we want to build another
assignment α′ such that:

1. the value assignments to the input variables do not change: for
each i = 1, . . . , n, it holds that α′(xi) = α(xi);

2. the new assignment α′ makes Fpost(x,y) true.

To build α′, we proceed as follows. Let s = (s1, . . . , sm) be a
vector of fresh real variables not appearing in Fpost(x,y), and let
F ′
post(s) be the quantifier-free LRA formula defined as follows:

F ′
post(s) := Fpost(x,y)[α(x1)/x1, . . . , α(xn)/xn,

α(y1) + s1/y1, . . . , α(ym) + sm/ym]

where F [t1/x1, . . . , tk/xk] is the simultaneous multiple substitution
that replaces every occurrence of the free variable xi with the term
ti. In our example,

F ′
post(s) := Fpost [α(x)/x, α(y) + s/y] = 10 + s ≤ 0

Now, any assignment β to the variables s that makes F ′
post(s) true

defines a corresponding assignment α′ to the variables x and y as
follows:

1. For each i = 1, . . . , n, let α′(xi) = α(xi);
2. For each i = 1, . . . ,m, let α′(yi) = α(yi) + β(si).

In our example, any β(s) ≤ −10 is fine as 10+β(s) ≤ 0. Clearly,
α′ makes the original postcondition formula Fpost true. Thus, we can
add the new input-output pair:

(α′(x1), . . . , α
′(xn), α

′(y1), . . . , α
′(ym))

to the current dataset D, and start over the training phase with
this new information. If β(x) = −10, then we will add the pair
(α(x), α(y) + β(s)) = (−3, 0) to D. However, any β assigning a
value less or equal to −10 to s still produces a new pair that respects
the postcondition.

We would like to generate an α′ such that the loss of the certified
N on the test set is preserved as much as possible with respect to
the loss that a non certified network, trained on D, would have on
the same test set. To this end, we use as new data point an α′ that
minimize the distance from the counterexample α. Such an α′ can be
computed by solving the following quadratic programming problem
(QP):

min
∑

i=1,...,m

s2i subject to F ′
post(s)

In this way we generate a new data point (x,y′) by selecting a y′

that is at minimal distance from the original y and such that the prop-
erty is respected. In fact, the purpose of the minimization problem is
to generate an example as close as possible to the original data distri-
bution while respecting property P , that is, to minimize the changes
needed to certify the network.

In our example, we solve

min s2 subject to 10 + s ≤ 0

The optimal solution is β(s) = −10, leading to:

α′(x) = α(x) = −3
α′(y) = α(y) + β(s) = 0

and thus (−3, 0). Finally, to speed up the next training phase we
generate further points to add to D by sampling around α′ and adding
a sample to the dataset D only if it satisfies Fpost(x,y). This way we
avoid solving multiple QP problems to generate additional data.

Termination. The overall goal of the CEGIS loop is to synthesize
a function that respects a given property. Since there are uncount-
ably many possible inputs for the function, the CEGIS loop may go
on for a very long time (or even forever), producing more and more
counterexamples, even when a function respecting the property ex-
ists. Since the property is a quantifier-free LRA formula, we know
we can restrict the search to piecewise-linear functions. We know
that ReLU neural networks compute piecewise linear functions, and
thus, from recent universal approximation results for ReLU neural
networks [27], we can conclude that a network big enough to respect
the property exists. Well established results from probably approx-
imately correct (PAC) learning prove that in our setting the sample
complexity of the learning problem is finite [4, Theorem 21.5], and
thus that the CEGIS loop terminate with high probability. We believe
that for some subclasses of constraints the approach is guaranteed to
converge with a number of iterations that depends on the expressive-
ness of the network and on the size of the property. We are currently
carrying out an investigation on this theoretical part, that is left for
future publications.

6 Mind your manners, robot!

We applied our framework to the MANNERS-DB example [32]. The
case study involves a robot moving in a room where humans and an-
imals are present. The controller is implemented through a neural
network. The description of the inputs and outputs are given in Ta-
ble 1. In particular, the outputs of the neural network provide num-
bers representing the adequacy of the possible actions executable by
the robot. Each adequacy is a score of 1 to 5, where the bigger the
number, the more adequate the action. The adequacy scores have
been computed as the average across human judgments obtained
via crowdsourcing (see [32]). The original dataset comprises 11050
input-output pairs.

We normalized each input and output to make it fall in [0, 1]. When
some inputs are not applicable, such as distance to the closest animal
when no animal is present or group distance when no group exists,
we normalized their value to 1. We tested our workflow on 5 dif-
ferent ReLU, where each network has 28 inputs and 8 outputs and
a different combination of number of hidden layers and nodes per
layer. We considered the following networks (we highlight in bold
the identifiers that we also use in the rest of the paper):

6x9: 6 hidden layers with 9 nodes each;
7x8: 7 hidden layers with 8 nodes each;
8x7: 8 hidden layers with 7 nodes each;
9x6: 9 hidden layers with 6 nodes each;
10x10: 10 hidden layers with 10 nodes each.

We randomly partitioned the dataset in train, validation, and test
so that they contain 8840 (i.e., 80%), 1105 (i.e., 10%), and 1105
(i.e., 10%) pairs, respectively. We used the Adam optimizer [22]
with learning rates of 0.01, 0.001, and 0.0001 and mean square er-
ror (MSE) loss function to train the networks on the normalized data
for 100 epochs and by dividing the data in batches of size 100 each.
We keep the network with minimal loss on the validation set among
the epochs, by applying an early stopping criterion of 20 epochs and
we evaluate its accuracy (at the end) on the test set. Every CEGIS

M. Zavatteri et al. / Automated Synthesis of Certified Neural Networks1344

Input Description Type Range

x1 operating mode INT [0, 1]
x2 number of people INT [0, 9]
x3 number of people in group INT [0, 5]
x4 group radius FLOAT [0.5, 1]
x5 distance to group FLOAT [0, 6]
x6 robot within group INT [0, 1]
x7 robot facing group INT [0, 1]
x8 robot work radius FLOAT [0, 3]
x9 distance to closest human FLOAT [0.3, 5]
x10 distance to 2nd closest human FLOAT [0.3, 5]
x11 distance to 3rd closest human FLOAT [0.3, 5]
x12 direction to closest human FLOAT [0, 360]
x13 direction to 2nd closest human FLOAT [0, 360]
x14 direction to 3rd closest human FLOAT [0, 360]
x15 direction from closest human to robot FLOAT [0, 360]
x16 robot facing closest human INT [0, 1]
x17 robot facing 2nd closest human INT [0, 1]
x18 robot facing 3rd closest human INT [0, 1]
x19 closest human facing robot INT [0, 1]
x20 2nd closest human facing robot INT [0, 1]
x21 3d closest human facing robot INT [0, 1]
x22 number of children INT [0, 2]
x23 distance to closest child FLOAT [0.4, 6]
x24 number of animals INT [0, 1]
x25 distance to closest animal FLOAT [0.4, 6]
x26 number of people on sofa INT [0, 2]
x27 music playing INT [0, 1]
x28 number of agents in scene INT [1, 11]

Output Description Type Range

y1 vacuum cleaning INT [1, 5]
y2 mopping the floor INT [1, 5]
y3 carry warm food INT [1, 5]
y4 carry cold food INT [1, 5]
y5 carry drinks INT [1, 5]
y6 carry small objects INT [1, 5]
y7 carry big objects INT [1, 5]
y8 cleaning or starting conversation INT [1, 5]

Table 1. Input and outputs of the MANNERS-DB neural network.

iteration starts over with a new network whose weights are randomly
initialized.

We considered two properties that are examples of behavioral con-
straints on the manners of the robot.

P1: “if the distance to the closest child is within 0.6 (meters), then
mopping the floor must be the less adequate action”;

P2: “if the distance to the closest human is within 0.6 (meters), then
the adequateness of mopping the floor must be less than or equal
to the adequateness of mopping the floor in all possible scenarios
in which the distance to the closest animal is within 0.6 (meters)”.

In this section we discuss the first property only. To formalize the
second property we need to extend our property language as we will
show in the next section.

The first property is formalized by the following formula:

P1(x,y) :=
(

Fpre (x)︷ ︸︸ ︷(28∧
i=1

0 ≤ xi ≤ 1
)
∧ x23 ≤ 0.1

)
⇒

Fpost (x,y)︷ ︸︸ ︷
8∧

i=1

y2 ≤ yi

The formula Fpre restricts the inputs of the network to be inside the
normalized interval [0, 1], and formalizes the constraint “distance to
the closest child within 0.6 meters” by forcing the corresponding in-
put variable x23 to be less or equal to 0.1 (i.e., 0.6 normalized). We

set up the verification phase to produce up to 50 counterexamples if
N does not respect P1. For each counterexample α we compute α′

by solving the quadratic problem:

min
8∑

i=1

s2i subject to
8∧

i=1

α(y2) + s2 ≤ α(yi) + si

and then sample 20 additional points by adding a noise vector
to the repaired counterexample with mean of 0 and a variance and
standard deviation of 1. Notice that among all the sampled points,
we keep only those which satisfy the constraint. Thus, that hyper-
parameter to obtain the noise vector has a (usually small) impact on
the ratio of counterexamples actually added for each iteration, but it
does not affect the convergence of the method. Thus, at each itera-
tion of the CEGIS workflow we can add up to 1050 new pairs to the
dataset.

We implemented our approach in Python 3, using PyTorch 2.1.1
as the deep learning framework and Gurobi 11 [17] to solve the vari-
ous constraint satisfaction problems (see [37] for the source code).
Gurobi can also produce multiple solutions to constraint satisfac-
tion problems, a functionality that we exploited to generate multiple
counterexamples. We run our software on a High Performance Com-
puting (HPC) center using used a node equipped 2 Intel(R) Xeon(R)
CPU E5-2650 v3 2.30GHz, 1 GPU Nvidia T4 (cudadrv495), 160GB
of RAM, and running Ubuntu 20.04.3 LTS. The HPC is handled by
the SLURM workload manager [19]. We assigned the corresponding
job 20 CPU cores, 150GB of RAM, and the whole GPU of the node.

Table 2 provides a summary of the experimental results. For each
combination of property, network structure and learning rate, the ta-
ble lists the number of iterations needed to certify the network, the
total computation time, and the time spent on training, verification
and sampling (in seconds). It also provides some statistics on the
quality of the final network by comparing the loss value of the initial
network with the loss value of the final network, and by showing the
total number of new pairs added to the dataset. Each experiment is
intended with respect to one property, one network, one learning rate.

The data is aligned with property P1 and P2. Since the properties
are implications, most of the data satisfies them trivially by falsifying
the precondition. 98% of points satisfies P1 trivially, 0.5% satisfies
P1 by respecting the post-condition, and 1.5% violates the property.
For property P2 we have that 94.5% of points satisfies the property
trivially, 2.7% satisfies the post-condition and 2.7% violates P2.

In the case of property P1, we were able to certify all combinations
of network, for every learning rate, with a relatively small number of
iterations and computation time. The MSE loss of the initial network
is between 0.059 and 0.066, while the MSE loss of the final network
ranges between 0.061 and 0.067, showing that certifying P1 has little
impact on the MSE loss on the test set. Moreover, the experiments
shows that changing the number of hidden layers does not seem to
affect the final loss value, nor the computation time.

7 Extended constraint language

As we already pointed out, the second property is not expressible
with the language proposed in Section 4. To formalize P2 we need
to consider the output of the network on two different input vectors:
one that represents a scenario where the closest human is within 0.6
meters and one for a scenario where the closest animal is within 0.6
meters, and then check that the adequateness of mopping the floor
in the first scenario is less or equal to the adequateness in the sec-
ond scenario. This can be formalized by extending the formula used

M. Zavatteri et al. / Automated Synthesis of Certified Neural Networks 1345

Property Network Learning Rate CEGIS Iterations Total Time (s) Training Time (s) Verification Time (s) Repair + Sampling Time (s) Initial Loss (test) Final Loss (test) New Pairs

P1

6x9
0.01 30 1334 1273 11.222 0.868 0.06 0.067 8178
0.001 65 5821 5683 33.163 1.89 0.059 0.067 20826

0.0001 34 2827 2729 17.602 1.031 0.062 0.062 10366

7x8
0.01 35 1290 1229 9.691 1.052 0.066 0.067 8839
0.001 16 858 825 9.313 0.443 0.059 0.066 4763

0.0001 21 1571 1520 8.227 0.603 0.066 0.062 6229

8x7
0.01 25 1053 1017 4.821 0.709 0.06 0.066 5542
0.001 22 1360 1317 9.1 0.634 0.06 0.066 6419

0.0001 19 1461 1424 6.848 0.533 0.062 0.067 6314

9x6
0.01 23 1085 1049 3.416 0.664 0.061 0.066 5422
0.001 34 1972 1922 7.684 1.029 0.06 0.067 6793

0.0001 20 1617 1581 4.733 0.564 0.064 0.067 5986

10x10
0.01 21 855 805 22.499 0.636 0.066 0.066 4791
0.001 41 8863 3015 5771.98 1.243 0.06 0.061 12345

0.0001 17 1517 1449 38.539 0.492 0.062 0.067 5468

P2

6x9
0.01 9 348 329 3.404 0.332 0.059 0.066 6634
0.001 11 753 721 8.15 0.416 0.059 0.078 9948

0.0001 136 51371 51005 91.485 5.586 0.06 0.161 118480

7x8
0.01 2 43 41 0.13 0.04 0.061 0.066 74
0.001 97 23922 23599 108.857 3.817 0.06 0.113 97192

0.0001 8 617 590 5.639 0.285 0.063 0.077 6670

8x7
0.01 7 258 245 1.822 0.241 0.06 0.066 4456
0.001 7 454 438 2.717 0.242 0.06 0.068 5448

0.0001 4 277 266 1.799 0.121 0.063 0.07 3242

9x6
0.01 2 75 72 0.119 0.041 0.061 0.066 126
0.001 6 375 361 2.428 0.202 0.061 0.068 5666

0.0001 5 370 360 1.46 0.165 0.061 0.07 3306

10x10
0.01 2 88 86 0.276 0.043 0.061 0.066 14
0.001 8 574 531 28.639 0.291 0.06 0.068 5606

0.0001 62 9354 9035 247.04 2.889 0.062 0.105 29342

Table 2. Summary of the experimental results. Network shows the size of the hidden part given in (LAYERS)x(NODES_PER_LAYER).

in Definition 1 with two copies of the network (one for each input-
output pair), and by allowing Fpre to be defined on the two inputs
and Fpost on the two input-output pairs:

FN,P2(x,y,x
′,y′) :=

(
FN (x,y) ∧ FN (x′,y′)∧

(28∧
i=1

0 ≤ xi ≤ 1 ∧ 0 ≤ x′
i ≤ 1

)
∧ x9 ≤ 0.1 ∧ x′

25 ≤ 0.1
)

︸ ︷︷ ︸
Fpre (x,x′)

⇒ y2 ≤ y′
2︸ ︷︷ ︸

Fpost (x,y,x′,y′)

where (x,y) is the input-output pair of the first copy of the network
and (x′,y′) is the input-output pair of the second copy. With the new
encoding, every counterexample is a pair of data points (one for each
copy of the network). When we repair the counterexample by solving
the quadratic problem:

min

(
8∑

i=1

s2i +
8∑

i=1

(s′i)
2

)

subject to α(y2) + s2 ≤ α(y′
2) + s′2

we obtain two new data points as well. As for the first property, we
sample around the new data points to add up to 2100 new points to
the dataset.

Table 2 pictures a different situation for P2 compared to P1. In
this case certifying the property requires very few iterations, with
little impact on the loss, except for some combinations of network
structure and learning rate where certifying the property may require
up to 136 iterations and more than 14 hours of computation. Also,
the MSE loss of the final certified network increases significantly in
these cases (it more than doubles in the worst case).

Figure 3 shows a detailed analysis of the experiments for the
8x7 network and learning rate 0.001. Figures 3(a) and 3(b) com-
pare the training time with the verification time for each iteration
of the CEGIS workflow, for property P1 and P2. The graphs are in
y-logarithmic scale, and show that the training time is currently the

boottleneck of the approach, since it is at least one order of magni-
tude greater than the verification time.

Figures 3(c) and 3(d) show the number of counterexamples gener-
ated by the verification phase and the number of new pairs added to
the dataset after the sampling phase. The number of counterexamples
is equal to the maximum of 50 in almost all iterations, except for one
iteration for property P1, one iteration for property P2, and the final
iterations (where no counterexample exist since the network now re-
spect the property). For property P1, the number of new pairs ranges
from 14 to 386, while for property P2 it ranges from 22 to 1132.

8 Conclusions and future work

We proposed a method based on the CEGIS workflow to automat-
ically synthesize certified neural networks. The certification part is
based on formal verification, whereas the overall synthesis exploits
information on counterexamples to repair them and build new input-
output pairs to add to the current dataset. An important point of our
approach is that it is modular, meaning that our approach can be ap-
plied off-the-shelf to other kinds of neural networks and properties
provided there exist a formal verification and a counterexample re-
pair part able to handle the corresponding constraints.

As future work, we will consider more complex tasks, e.g., re-
inforcement learning settings and, consequently, larger neural net-
works and more complex properties. We will also study if it is possi-
ble to extend the applicability of the proposed framework to enforce
fairness constraints, and we will explore to what extent the examples
generated to certify a specific network architecture can be reused in
other architectures. Finally, we will exploit methods to inject soft
constraints in the loss function to reduce the number of iterations re-
quired to generate a certified network, and to improve the scalability
of the framework.

Acknowledgements

This work was supported by the National Recovery and Resilience
Plan (NRRP), Mission 4 Component 2 Investment 1.5 - Call for ten-
der No. 3277 of 30 December 2021 of Italian Ministry of University
and Research funded by the European Union – NextGenerationEU;
project code: ECS00000043, Concession Decree No. 1058 of June

M. Zavatteri et al. / Automated Synthesis of Certified Neural Networks1346

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

CEGIS iteration

10−1

100

101

102

ti
m
e
(s
)

training-time

formal-verification-time

(a) Training and formal verification time.

2 3 4 5 6 7

CEGIS iteration

10−1

100

101

102

ti
m
e
(s
)

training-time

formal-verification-time

(b) Training and formal verification time.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

CEGIS iteration

0

50

100

150

200

250

300

350

400

N
u
m
b
er
of
p
ai
rs

50 50 50

2

50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

0

366
373

323

14

383

275

239

386
379

291

353

276

321

372

323

381

343

205 207

316

293

0

386
379

372
381386

CounterExamples New Pairs

(c) New added pairs.

1 2 3 4 5 6 7

CEGIS iteration

0

200

400

600

800

1000

N
u
m
b
er
of
p
ai
rs

50 50 50

1

50 50

0

1064 1068
1088

22

1074

1132

0

8
1088 10748 1074088

CounterExamples New Pairs

(d) New added pairs.

Figure 3. Certification process with for P1 (left) and P2 (right). Network 8x7, learning rate 0.001. Plots (a) and (b) are in y-log scale.

23, 2022, CUP C43C22000340006, project title “iNEST: Intercon-
nected Nord-Est Innovation Ecosystem”, and by Mission 4 Compo-
nent 2 Investment 1.3 - Call for tender No. 341 of March 15, 2022
of Italian Ministry of University and Research – NextGenerationEU;
project code PE0000013, Concession Decree No. 1555 of October
11, 2022, CUP C63C22000770006, project title “Future AI Research
(FAIR) - Spoke 2 Integrative AI - Symbolic conditioning of Graph
Generative Models (SymboliG)”. This work was also supported by
the Projects iNEST Young Researchers “Neuro-Symbolic AI in dig-
ital twins”, and by the INdAM-GNCS 2024 Project “Certificazione,
monitoraggio, ed interpretabilità in sistemi di intelligenza artificiale”
CUP_E53C23001670001.

References

[1] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo. Formal synthesis
of lyapunov neural networks. IEEE Control. Syst. Lett., 5(3):773–778,
2021.

[2] A. Albarghouthi. Introduction to neural network verification. Found.
Trends Program. Lang., 7(1-2):1–157, 2021.

[3] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu. Safe reinforcement learning via shielding. In AAAI 2018,
pages 2669–2678. AAAI Press, 2018.

[4] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical
Foundations. Cambridge University Press, 1999.

[5] C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu. First three
years of the international verification of neural networks competition
(VNN-COMP). Int. J. Softw. Tools Technol. Transf., 25(3):329–339,
2023.

[6] Y. Chang, N. Roohi, and S. Gao. Neural lyapunov control. In NeurIPS,
pages 3240–3249, 2019.

[7] K. Chatterjee, T. A. Henzinger, M. Lechner, and D. Zikelic. A learner-
verifier framework for neural network controllers and certificates of
stochastic systems. In TACAS (1), volume 13993 of Lecture Notes in
Computer Science, pages 3–25. Springer, 2023.

[8] A. Church. Logic, arithmetic, and automata. Journal of Symbolic Logic,
29(4):210–210, 1964. doi: 10.2307/2270398.

[9] C. Cornelio, J. Stuehmer, S. X. Hu, and T. M. Hospedales. Learning
where and when to reason in neuro-symbolic inference. In ICLR 2023.
OpenReview.net, 2023.

[10] A. Daniele and L. Serafini. Knowledge enhanced neural networks for
relational domains. In AIxIA 2022, volume 13796 of LNCS, pages 91–
109. Springer, 2022.

[11] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio, Y. Li,
H. Neven, and H. Adam. Large-scale object classification using label
relation graphs. In ECCV 2014, volume 8689 of LNCS, pages 48–64.
Springer, 2014.

[12] P. Dragone, S. Teso, and A. Passerini. Neuro-symbolic constraint pro-
gramming for structured prediction. In (IJCLR 2021), volume 2986 of
CEUR Workshop Proceedings, pages 6–14. CEUR-WS.org, 2021.

[13] EASA and Collins Aerospace. Formal methods use for learning assur-
ance (ForMuLA). Technical report, Apr. 2023. URL https://www.easa.
europa.eu/en/downloads/137878/en.

[14] European Parliament. Artificial intelligence act, 2024. URL

M. Zavatteri et al. / Automated Synthesis of Certified Neural Networks 1347

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
52021PC0206.

[15] E. Giunchiglia and T. Lukasiewicz. Multi-label classification neural
networks with hard logical constraints. JAIR, 72:759–818, 2021.

[16] E. Giunchiglia, M. C. Stoian, and T. Lukasiewicz. Deep learning with
logical constraints. In IJCAI 2022, pages 5478–5485. ijcai.org, 2022.

[17] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024.
URL https://www.gurobi.com.

[18] N. Hoernle, R. Karampatsis, V. Belle, and K. Gal. Multiplexnet: To-
wards fully satisfied logical constraints in neural networks. In AAAI
2022, pages 5700–5709. AAAI Press, 2022.

[19] M. A. Jette and T. Wickberg. Architecture of the slurm workload man-
ager. In Job Scheduling Strategies for Parallel Processing, pages 3–23,
Cham, 2023. Springer Nature Switzerland.

[20] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks.
In CAV 2017, volume 10426 of LNCS, pages 97–117. Springer, 2017.

[21] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer, and C. W.
Barrett. The marabou framework for verification and analysis of deep
neural networks. In CAV 2019, volume 11561 of LNCS, pages 443–452.
Springer, 2019.

[22] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In Y. Bengio and Y. LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/
1412.6980.

[23] T. Li and V. Srikumar. Augmenting neural networks with first-order
logic. In ACL 2019, pages 292–302. Association for Computational
Linguistics, 2019.

[24] T. Li, V. Gupta, M. Mehta, and V. Srikumar. A logic-driven frame-
work for consistency of neural models. In EMNLP-IJCNLP 2019, pages
3922–3933. Association for Computational Linguistics, 2019.

[25] X. Liu, X. Han, N. Zhang, and Q. Liu. Certified monotonic neural net-
works. In NeurIPS 2020, 2020.

[26] P. Minervini and S. Riedel. Adversarially regularising neural NLI mod-
els to integrate logical background knowledge. In CoNLL 2018, pages
65–74. Association for Computational Linguistics, 2018.

[27] S. Park, C. Yun, J. Lee, and J. Shin. Minimum width for universal ap-
proximation. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=O-XJwyoIF-k.

[28] A. Peruffo, D. Ahmed, and A. Abate. Automated and formal synthe-
sis of neural barrier certificates for dynamical models. In TACAS (1),
volume 12651 of Lecture Notes in Computer Science, pages 370–388.
Springer, 2021.

[29] A. Sivaraman, G. Farnadi, T. D. Millstein, and G. V. den Broeck.
Counterexample-guided learning of monotonic neural networks. In
NeurIPS 2020, 2020.

[30] A. Solar-Lezama, L. Tancau, R. Bodík, S. A. Seshia, and V. A. Saraswat.
Combinatorial sketching for finite programs. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, pages 404–415. ACM,
2006.

[31] A. Tacchella, L. Pulina, D. Guidotti, and S. Demarchi. VNN-LIB, https:
//www.vnnlib.org, 2022.

[32] J. Tjomsland, S. Kalkan, and H. Gunes. Mind your manners! A dataset
and a continual learning approach for assessing social appropriateness
of robot actions. Frontiers Robotics AI, 9:669420, 2022.

[33] W. Wang and S. J. Pan. Integrating deep learning with logic fusion for
information extraction. In AAAI 2020, pages 9225–9232. AAAI Press,
2020.

[34] G. Wu, B. Say, and S. Sanner. Scalable planning with deep neural net-
work learned transition models. J. Artif. Intell. Res., 68:571–606, 2020.

[35] Y. Xie, Z. Xu, K. S. Meel, M. S. Kankanhalli, and H. Soh. Embedding
symbolic knowledge into deep networks. In NeurIPS 2019, pages 4235–
4245, 2019.

[36] J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. V. den Broeck. A seman-
tic loss function for deep learning with symbolic knowledge. In ICML
2018, volume 80, pages 5498–5507. PMLR, 2018.

[37] M. Zavatteri, D. Bresolin, and N. Navarin. Code for “automated syn-
thesis of certified neural networks”, 2024. URL https://github.com/
matteozavatteri/certified-nn-ecai24.

[38] H. Zhu, Z. Xiong, S. Magill, and S. Jagannathan. An inductive synthesis
framework for verifiable reinforcement learning. In ACM 2019, pages
686–701. ACM, 2019.

M. Zavatteri et al. / Automated Synthesis of Certified Neural Networks1348

