
Hierarchical Average-Reward
Linearly-Solvable Markov Decision Processes

Guillermo Infantea,*, Anders Jonssona and Vicenç Gómeza

aAI&ML research group, Universitat Pompeu Fabra, Barcelona, Spain

Abstract. We introduce a novel approach to hierarchical rein-
forcement learning for Linearly-solvable Markov Decision Processes
(LMDPs) in the infinite-horizon average-reward setting. Unlike pre-
vious work, our approach allows learning low-level and high-level
tasks simultaneously, without imposing limiting restrictions on the
low-level tasks. Our method relies on partitions of the state space that
create smaller subtasks that are easier to solve, and the equivalence
between such partitions to learn more efficiently. We then exploit
the compositionality of low-level tasks to exactly represent the value
function of the high-level task. Experiments show that our approach
can outperform flat average-reward reinforcement learning by one or
several orders of magnitude.

1 Introduction

Hierarchical reinforcement learning (RL) [4, 18, 21, 5, 3] aims to
decompose a complex high-level task into several low-level tasks.
After solving the low-level tasks, their solutions can be combined
to form a solution to the high-level task. Ideally, the low-level tasks
should be significantly easier to solve than the high-level task, in
which case one can obtain an important speedup in learning [15, 28].
Hierarchical RL has also been credited with other advantages, e.g. the
ability to explore more efficiently [16].

Most previous work on hierarchical RL considers either the finite-
horizon setting or the infinite-horizon setting with discounted rewards.
The average-reward setting is better suited for cyclical tasks character-
ized by continuous experience. In the few works on hierarchical RL in
the average-reward setting, either the low-level tasks are assumed to
be solved beforehand [6, 7, 27] or they have important restrictions that
severely reduce their applicability, e.g. a single initial state [8]. It is
therefore an open question how to develop algorithms for hierarchical
RL in the average-reward setting in order to learn the low-level and
high-level tasks simultaneously.

In this paper we propose a novel framework for hierarchical RL
in the average-reward setting that simultaneously solves low-level
and high-level tasks. Concretely, we consider the class of Linearly-
solvable Markov Decision Processes (LMDPs) [22]. LMDPs are a
class of restricted MDPs for which the Bellman equation can be
exactly transformed into a linear equation. This class of problems
plays a key role in the framework of RL as probabilistic inference [13,
14]. One of the properties of LMDPs is compositionality: one can
compute the solution to a novel task from the solutions to previously
solved tasks without learning [24]. Such a property has been exploited
in recent works about compositionality in RL [9, 25, 17] and in

∗ Corresponding Author. Email: guillermo.infante@upf.edu

combination with Hierarchical RL in the finite-horizon setting [12, 20,
10]. Adapting this idea to the average-reward setting requires careful
analysis.

Unlike most frameworks for hierarchical RL, our proposed ap-
proach does not decompose the policy, only the value function. Hence
the agent never chooses a subtask to solve, and instead uses the sub-
tasks to compose the value function of the high-level task. This avoids
introducing non-stationarity at the higher level when updating the
low-level policies.

Our work makes the following novel contributions:

• Learning low-level and high-level tasks simultaneously in the
average-reward setting, without imposing additional restrictions on
the low-level tasks.

• Two novel algorithms for solving hierarchical RL in the average
reward setting: the first one is based on the eigenvector approach
used for solving LMDPs. The second is an online variant in which
an agent learns simultaneously the low-level and high-level tasks.

• Two main theoretical contributions LMDPs: a converge proofs for
both differential soft TD-learning for (non-hierarchical) LMDPs
and also for the eigenvector approach in the hierarchical case.

To the best of our knowledge, this work is the first that extends the
combination of compositionality and hierarchical RL to the average-
reward setting.

2 Related work

Most research on hierarchical RL formulates problems as a Semi-
Markov Decision Process (SMDP) with options [21] or the MAXQ
decomposition [5].

Fruit and Lazaric [6] and [7] propose algorithms for solving SMDPs
with options in the average-reward setting, proving that the regret of
their algorithms is polynomial in the size of the SMDP components,
which may be smaller than the components of the underlying Markov
Decision Process (MDP). Wan et al. [27] present a version of dif-
ferential Q-learning for SMDPs with options in the average-reward
setting, proving that differential Q-learning converges to the optimal
policy. However, the above work assumes that the option policies are
given prior to learning. Ghavamzadeh and Mahadevan [8] propose a
framework for hierarchical average-reward RL based on the MAXQ
decomposition, in which low-level tasks are also modeled as average-
reward decision processes. However, since the distribution over initial
states can change as the high-level policy changes, the authors restrict
low-level tasks to have a single initial state.

Wen et al. [28] present an approach for partitioning the state space
and exploiting the equivalence of low-level tasks, similar to our work.

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240631

1325

The authors present an algorithm whose regret is smaller than that of
algorithms for solving the high-level task. However, their algorithm
does not decompose the high-level task into low-level tasks, but in-
stead exploits the fact that equivalent subtasks have shared dynamics.
Infante et al. [10] combine the compositionality of LMDPs with the
equivalence of low-level tasks to develop a framework for hierarchical
RL in the finite-horizon setting. Compositionality is also a key idea in
the option keyboard [2], though in the case of MDPs, composition-
ality is not exact, so the resulting policy will only be approximately
optimal. In contrast, our framework based on LMDPs can represent
the globally optimal policy.

3 Background

Given a finite set X , we use Δ(X) to denote the set of all probability
distributions on X .

3.1 First-exit Linearly-solvable Markov Decision
Processes

A first-exit Linearly-solvable Markov Decision Process
(LMDP, Todorov [22]) is a tuple L = 〈S, T ,P,R,J 〉, where
S is a set of non-terminal states, T is a set of terminal states,
P : S → Δ(S+) is the passive dynamics, which describes state
transitions in the absence of controls, R : S → R is a reward
function on non-terminal states, and J : T → R is a reward function
on terminal states. We use S+ = S ∪ T to denote the full set of
states. An agent interacts with the environment following a policy
π : S → Δ(S+). At timestep t, it observes a state st, transitions to a
new state st+1 ∼ π(·|st) and receives a reward

R(st, st+1, π) = rt −
1

η
log

π(st+1|st)
P(st+1|st)

,

where rt is a reward with mean R(st). The agent can modify the
policy π(·|st), but gets penalized for deviating from the passive dy-
namics P(·|st). The parameter η > 0 controls this penalty. Given
η > 0, the value function of a policy π can be defined as follows:

vπη (s) = E

[
T−1∑
t=0

R(St, St+1, π) + J (ST)

∣∣∣∣∣ π, S0 = s

]
, (1)

where T is a random variable representing the length of the episode,
and St, t ≥ 0, are random variables denoting the state at time t.
The interaction ends when the agent reaches a terminal state ST and
receives reward J (ST). The value function of a terminal state τ ∈ T
is simply vπη (τ) = J (τ).

The aim of the agent is to find a policy that maximizes expected
future reward. For that it is useful to define the optimal value function
v∗η : S → R among all policies. For simplicity, in what follows we
omit the subscript and asterisk and refer to the optimal value function
simply as the value function v. Such a value function is known to
satisfy the following Bellman optimality equations [22]:

v(s) =
1

η
log

∑
s′∈S+

P(s′|s) exp(η(R(s) + v(s′))) ∀s ∈ S. (2)

Introducing the notation z(s) = eηv(s), s ∈ S+, results in the follow-
ing system of linear equations:

z(s) = eηR(s)
∑

s′∈S+

P(s′|s)z(s′) ∀s ∈ S. (3)

We abuse the notation and for simplicity refer to z(s) and v(s) in-
terchangeably as the value of s. Given z, an optimal policy is given
by

π(s′|s) = P(s′|s)z(s′)∑
s′′ P(s′′|s)z(s′′) ≡ P(s′|s)z(s′)

G[z](s)
. (4)

The system of linear equations in (3) can then be written in matrix
form when we know the passive dynamics and the reward functions.
We let P ∈ R

|S|×|S+| be a matrix such that P(s,s′) = P(s′|s) and
R ∈ R

|S|×|S| a diagonal matrix such that R(s,s) = eηR(s). We also
let z be the vector form of the value z(s) for all states s ∈ S and z+

an extended vector that also includes the known value z(τ) = eηJ (τ)

for all terminal states τ ∈ T . The problem is then expressed as

z = RPz+. (5)

We can use the power iteration method over (5) to obtain the solution
for z [22]. Power iteration is guaranteed to converge as long as the
diagonal matrix R is not too large, and a common assumption is that
the rewards of non-terminal states are non-positive (i.e. R(s) ≤ 0 for
each s ∈ S). However, we refrain from making any such assumptions,
and later we instead prove convergence in an alternative way.

Alternatively, when P and R are not known, the agent can learn
an estimate ẑ of the optimal value function in an online manner,
using samples (st, rt, st+1) generated when following the estimated
policy π̂ derived from ẑ using (4). The update rule for the so-called
Z-learning algorithm is given by

ẑ(st) ← (1− αt)ẑ(st) + αte
ηR(st,st+1,π̂t)ẑ(st+1)

← (1− αt)ẑ(st) + αte
ηrt P(st+1|st)

π̂t(st+1|st)
ẑ(st+1). (6)

Here, αt is a learning rate and P(st+1|st)/π̂t(st+1|st) acts as an
importance weight.

In the first-exit case, the solution of a set of component problems
can be combined to retrieve the optimal solution for new composite
problems with no further learning [24]. Assume we have a set of
first-exit LMDPs {Li}Ki=1, which share S, T , P and R, but differ
in the values zi(τ) = eηJi(τ) of terminal states. Let z1, . . . , zK
be the optimal value functions of L1, . . . ,LK . Now consider a new
composite problem L that also shares the aforementioned elements
with the component problems. If the value at terminal states can be
expressed as a weighted sum as follows:

z(τ) =
K∑
i=1

wizi(τ) ∀τ ∈ T ,

then by linearity of the value function, the same expression holds for
non-terminal states [24]:

z(s) =
K∑
i=1

wizi(s) ∀s ∈ S.

3.2 Hierarchical Decomposition for LMDPs

Infante et al. [10] introduce a hierarchical decomposition for LMDPs.
Given a first-exit LMDP L = 〈S, T ,P,R,J 〉, the set of non-
terminal states S is partitioned into L subsets {Si}Li=1. Each subset
Si induces a subtask Li = 〈Si, Ti,Pi,Ri,Ji〉, i.e. an LMDP for
which

• The set of non-terminal states is Si.

G. Infante et al. / Hierarchical Average-Reward Linearly-Solvable Markov Decision Processes1326

• The set of terminal states Ti = {τ ∈ S+ \ Si : ∃s ∈
Si s.t. P(τ |s) > 0} includes all states in S+ \ Si (terminal
or non-terminal) that are reachable in one step from a state in Si.

• Pi : Si → Δ(S+
i) and Ri : Si → R are the restrictions of P and

R to Si, where S+
i = Si ∪Ti denotes the full set of subtask states.

• The reward of a terminal state τ ∈ Ti equals Ji(τ) = J (τ) if
τ ∈ T , and Ji(τ) = v̂(τ) otherwise, where v̂(τ) is the estimated
value in L of the non-terminal state in τ ∈ S \ Si.

Intuitively, if the value zi(τ) of each terminal state τ ∈ Ti equals its
optimal value z(τ) for the original LMDP L, then solving the subtask
Li yields the optimal values of the states in Si. In practice, however,
the agent only has access to an estimate ẑ(τ) of the optimal value. In
this case, the subtask Li is parameterized on the value estimate v̂ (or
ẑ) of the terminal states Ti, and each time the value estimate changes,
the agent can solve Li to obtain a new value estimate ẑ(s) for each
state s ∈ Si.

The set of exit states E = ∪L
i=1Ti is the union of the terminal states

of each subtask in {L1, . . . ,LL}. We let Ei = E ∩ Si denote the
set of (non-terminal) exit states in the subtask Li. Also define the
notation K = maxL

i=1 |Si|, N = maxL
i=1 |Ti| and E = |E|.

Definition 1. Two subtasks Li and Lj are equivalent if there exists
a bijection f : Si → Sj such that the transition probabilities and
rewards of non-terminal states are equivalent through f .

Using the above definition, we can define a set of equivalence
classes C = {C1, . . . , CC}, C ≤ L, i.e. a partition of the set of
subtasks {L1, . . . ,LL} such that all subtasks in a given partition are
equivalent. Each equivalence class can be represented by a single
subtask Lj = 〈Sj , Tj ,Pj ,Rj ,Jj〉. As before, the reward Jj of
terminal states is parameterized on a given value estimate v̂. We
assume that each non-terminal state s ∈ S can be mapped to its
subtask Li and equivalence class Cj .

For each subtask Lj and each terminal state τk ∈ Tj , Infante et al.
[10] introduce a base LMDP Lk

j = 〈Sj , Tj ,Pj ,Rj ,J k
j 〉 that shares

all components with Lj except the reward function on terminal states,
which is defined as J k

j (τ) = 1 if τ = τk, and J k
j (τ) = 0 otherwise.

Let z1j , . . . , z
n
j be the optimal value functions of the base LMDPs for

Lj , with n = |Ti|. Given a value estimate ẑ on each terminal state in
Tj , due to compositionality we can express the value estimate of each
state s ∈ Sj as

ẑ(s) =
n∑

k=1

ẑ(τk)zkj (s).

To solve the original LMDP, we can now define an optimal value
function on exit states as zE : E → R, and construct a matrix G =
R

|E|×|E| whose element G(s,s′) equals zkj (s) if s′ = τk is the k-th
terminal state in the subtask Lj corresponding to the partition Si to
which s belongs, and 0 otherwise. By writing zE in vector form, the
optimal value function satisfies the following matrix equation:

zE = GzE .

The total number of values required to represent the optimal value
function equals E + CKN , since there are C equivalence classes
with at most K states and N base LMDPs.

4 Average-reward Linearly-solvable Markov
Decision Processes

An average-reward Linearly-solvable Markov Decision Process
(ALMDP) is a tuple L = 〈S,P,R〉, where S is a set of states,

P : S → Δ(S) is the passive dynamics, which describes state transi-
tions in the absence of controls, and R : S → R is a reward function.
Since ALMDPs represent infinite-horizon tasks, there are no terminal
states.

Throughout the paper, we make the following assumptions about
ALMDPs.

Assumption 1. The ALMDP L is communicating [19]: for each
pair of states s, s′ ∈ S, there exists a policy π that has non-zero
probability of reaching s′ from s.

Assumption 2. The ALMDP L is unichain [19]: the transition prob-
ability distribution induced by all stationary policies admit a single
recurrent class.

In the average-reward setting, the value function is defined as the
expected average reward when following a policy π : S → Δ(S)
starting from a state s ∈ S. This is expressed as

vπη (s) = lim
T→∞

E

[
1

T

T∑
t=0

R(St, St+1, π)

∣∣∣∣∣ π, S0 = s

]
, (7)

where R(st, st+1, π) is defined as for first-exit LMDPs. Again, we
are interested in obtaining the optimal value function v. Under As-
sumption 2, the Bellman optimality equations can be written as

v(s) =
1

η
log

∑
s′∈S

P(s′|s) exp(η(R(s)− ρ+ v(s′))) ∀s ∈ S,

(8)
where ρ is the optimal one-step average reward (i.e. gain), which is
state-independent for unichain ALMDPs [22]. Exponentiating yields

z(s) = eη(R(s)−ρ)
∑
s′∈S

P(s′|s)z(s′) ∀s ∈ S. (9)

For the optimal value function z, the optimal policy is given by the
same expression as in (4).

4.1 Solving an ALMDP

We introduce the notation Γ = eηρ (exponentiated gain). Similar to
the first-exit case, Equation (9) can be expressed in matrix form as

Γz = RPz, (10)

where the matrices P ∈ R
|S|×|S| and R ∈ R

|S|×|S| are appropi-
ately defined as in (5). The exponentiated gain Γ can be shown to
correspond to the largest eigenvalue of RP [23]. An ALMDP can
be solved using relative value iteration by selecting a reference state
s∗ ∈ S, initializing ẑ0 = 1 and iteratively applying

ẑk+ 1
2
← RP ẑk, ẑk+1 ← ẑk+ 1

2
/ẑk+ 1

2
(s∗).

The reference state s∗ satisfies z(s∗) = 1, which makes the optimal
value z unique (else any constant shift preserves optimality). After
convergence, the exponentiated gain equals Γ = ẑk+ 1

2
(s∗). Under

Assumption 1, relative value iteration converges to the unique optimal
value z [23].

An alternative method for solving an ALMDP L is to transform it to
a first-exit LMDP. Given a reference state s∗, define a first-exit LMDP
L′ = 〈S \ {s∗}, {s∗},P ′,R′,J ′〉, where P ′(s′|s) = P(s′|s) for
all state pairs (s, s′) ∈ (S \ {s∗}) × S, and J (s∗) = 0 (imply-
ing z(s∗) = 1). By inspection of (3) and (9), the Bellman optimal-
ity equation of L′ is identical to that of L if R′(s) = R(s) − ρ.

G. Infante et al. / Hierarchical Average-Reward Linearly-Solvable Markov Decision Processes 1327

Even though the agent has no prior knowledge of the exponenti-
ated gain Γ = eηρ, we can perform binary search to find Γ. For a
given estimate Γ̂ of Γ, after solving L′, we can compare Γ̂z(s∗) with
eηR(s∗) ∑

s P(s|s∗)z(s). If Γ̂z(s∗) is greater, then Γ̂ is too large,
else it is too small.

Alternatively, when P and R are not known, we can obtain an
estimate v̂ of the optimal value v and an estimate ρ̂ of the optimal
gain ρ using differential soft TD-learning, similar to differential Q-
learning [26]. We collect samples (st, rt, st+1) generated by the
estimated policy π̂ derived from v̂ as in (4), and derive update rules
for v̂ and ρ̂ from (8) as follows:

v̂t+1(st) ← v̂t(st) + αtδt, (11)

ρ̂t+1 ← ρ̂t + λαtδt. (12)

Here, the TD error δt is given by

δt = rt − ρ̂t −
1

η
log

π̂t(st+1|st)
P(st+1|st)

+ v̂t(st+1)− v̂t(st)

= rt − ρ̂t +
1

η
log

∑
s′∈S

P(s′|st)eηv̂t(s
′) − v̂t(st).

Note that both updates use the same TD error. At any time, we can
retrieve estimates of ẑ and Γ̂ by exponentiating v̂ and ρ̂, respectively.

Theorem 3. Under mild assumptions, differential soft TD-learning
in (11) and (12) converges to the optimal values of v and ρ in L.

Proof sketch. The proof is adapted from the proof of convergence
of differential Q-learning [1, 26], which requires the ALMDP to be
communicating (Assumption 1). Define a Bellman operator T as

T (v)(s) = R(s) +
1

η
log

∑
s′∈S

P(s′|s)eηv(s
′).

To adapt the previous proof, it is sufficient to show that T is a non-
expansion in the max norm, i.e. ‖T (x)− T (y)‖∞ ≤ ‖x− y‖∞ for
each x, y ∈ R

|S|, and that T satisfies T (x + c�) = T (x) + c� for
each x ∈ R

|S| and constant c ∈ R, where � is the vector of |S| ones.
To see the full proof we refer the reader to the Appendix in [11].

5 Hierarchical Average-Reward LMDPs

In this section we present our approach for hierarchical average-
reward LMDPs. The idea is to take advantage of the similarity of
the value functions in the first-exit and average-reward settings, and
use compositionality to compose the value functions of the subtask
LMDPs without additional learning.

5.1 Hierarchical Decomposition

Consider an ALMDP 〈S,P,R〉. Similarly to Infante et al. [10],
we assume that the state space S is partitioned into subsets
{Si}Li=1, with each partition Si inducing a first-exit LMDP Li =
〈Si, Ti,Pi,Ri,Ji〉. The components of each such subtask Li are
defined as follows:

• The set of states is Si.
• The set of terminal states Ti = {τ ∈ S \ Si : ∃s ∈ Si,P(τ |s) >

0} contains states not in Si that are reachable in one step from any
state inside the partition.

• The transition function Pi and reward function Ri are projections
of P and R− ρ̂ onto Si, where ρ̂ is a gain estimate.

• Ji is defined for each τ ∈ Ti as Ji(τ) = v̂(τ), where v̂ is a
current value estimate (hence zi(τ) = eηv̂(τ) = ẑ(τ) is defined
by a current exponentiated value estimate ẑ).

The Bellman optimality equations of each subtask Li are given by

zi(s) = eηRi(s)
∑
s′

Pi(s
′|s)zi(s′) ∀s ∈ Si. (13)

By inspection of the Bellman optimality equations in (9) and (13),
they are equal if Ri(s) = R(s)− ρ. Thus, if zi(τ) = z(τ) for each
τ ∈ Ti then the solution of the subtask Li corresponds to the optimal
solution for each s ∈ Si. However, in general neither ρ nor z(τ) are
known prior to learning and, therefore, we have to use estimates ρ̂
and ẑ(τ). Each subtask Li can be seen as being parameterized on the
value estimates ẑ(τ) for each τ ∈ Tj and the gain estimate ρ̂. Every
time that ẑ(τ), τ ∈ Ti, and ρ̂ change, we obtain a new value estimate
for each s ∈ Si by solving the subtask for the new parameters.

5.2 Subtask Compositionality

It is impractical to solve each subtask Li every time the estimate
ẑ(τ) changes for τ ∈ Tj . To alleviate this computation we leverage
compositionality for LMDPs. The key insight is to build a basis of
value functions that can be combined to obtain the solution for the
subtasks.

Consider a subtask Li = 〈Si, Ti,Pi,Ri,Ji〉 and let n = |Ti|. We
introduce n base LMDPs {L1

i , . . . ,Ln
i } that are first-exit LMDPs and

terminate in Ti. These base LMDPs only differ from Li in the reward
of each terminal state τk ∈ Ti. For all s ∈ Si, the reward for each Lk

i

is by definition Ri(s) = R(s)− ρ̂ for all s ∈ Si, while at terminal
states τ ∈ Ti we let the reward function be zki (τ ; ρ̂) = 1 if τ = τk

and zki (τ ; ρ̂) = 0 otherwise. Thus, the base LMDPs are parameterized
by the gain estimate ρ̂. This is equivalent to setting the reward to
J k

i (τ) = 0 if τ = τk and J k
i (τ) = −∞ otherwise. Intuitively, each

base LMDP solves the subtask of reaching one specific terminal state
τk ∈ Ti.

Let us now assume that we have the solution z1i (·; ρ), . . . , zni (·; ρ)
for the base-LMDPs (for the optimal gain ρ) as well as the optimal
value z(τk) of the original ALMDP for each terminal state τk ∈ Ti.
Then by compositionality we could represent the value function of
each terminal state as a weighted combination of the subtasks:

z(τ) =
n∑

k=1

wkz
k
i (τ ; ρ) =

n∑
k=1

z(τk)zki (τ ; ρ) ∀τ ∈ Ti. (14)

Clearly, the RHS in the previous expression evaluates to z(τ) since
z(τk)zki (τ ; ρ) = z(τ) · 1 when τ = τk, and z(τk)zki (τ ; ρ) =
z(τk) · 0 otherwise.

Thanks to compositionality, we can also represent the value func-
tion for each subtask state s ∈ Si as

z(s) =

n∑
k=1

z(τk)zki (s; ρ) ∀s ∈ Si. (15)

We remark that the base LMDPs depend on the gain ρ by the definition
of the reward function. This parameter is not known prior to learning.
The subtasks in practice are solved for the latest estimate ρ̂ and must
be re-learned for every update of this parameter until convergence.

G. Infante et al. / Hierarchical Average-Reward Linearly-Solvable Markov Decision Processes1328

G

3T

1B
4T

2B

2L

4L

1R

3R

G

L R

B

T

a) b)

Figure 1: a) An example 4-room ALMDP; b) a single subtask with 5 terminal states G,L,R, T,B that is equivalent to all 4 room subtasks.
Rooms are numbered 1 through 4, left-to-right, then top-to-bottom, and exit state 1B refers to the exit B of room 1, etc.

5.3 Efficiency of the value representation

Similar to previous work [28, 10] we can exploit the equivalence of
subtasks to learn more efficiently. Let C = {C1, . . . , CC}, C ≤ L,
be a set of equivalence classes, i.e. a partition of the set of subtasks
{L1, . . . ,LL} such that all subtasks in a given partition are equivalent.
As before, we also define a set of exit states as E = ∪L

i=1Ti. Due to
the decomposition, we do not need to keep an explicit value estimate
ẑ(s) for every state s ∈ S. Instead, it is sufficient to keep a value
function for exit states ẑE : E → R and a value function for each
base LMDP of each equivalence class. This is enough to represent
the value for any state s ∈ S using the compositionality expression
in (15).

Letting K = maxL
i=1|Si|, N = maxL

i=1|Ti| and E = |E|,
O(KN) values are needed to represent the base LMDPs of a subtask,
and we can thus represent the value function with O(CKN + E)
values. The decomposition leads to an efficient representation of the
value function whenever CKN + E � |S|. This is achieved when
there are few equivalence classes, the size of each subtask is small (in
terms of the number of states) and there are relatively few exit states.

Example 1: Figure 1a) shows an example 4-room ALMDP. When
reaching the state marked G, separate from the room but reachable
in one step from the highlighted location, the system transitions to
a restart state (top left corner) and receives reward 0. In all other
states the reward is −1. The rooms are connected via doorways, so
the subtask corresponding to each room has two terminal states in
other rooms, plus the terminal state G in the top right room. The 9 exit
states in E are highlighted and correspond to states next to doorways,
plus G. Figure 1b) shows a single subtask that is equivalent to all four
room subtasks, since the dynamics is shared inside rooms and the set
of terminal states is the same. There are five base LMDPs with value
functions zG, zL, zR, zT and zB , respectively. Given an initial value
estimate ẑE for each exit state in E , a value estimate of any state in
the top left room is given by ẑ(s) = ẑE(1B)zB(s) + ẑE(1R)zR(s),
where we use ẑE(G) = ẑE(L) = ẑE(T) = 0 to indicate that the
terminal states G, L and T are not reachable in the top left room. The
total number of values needed to store the optimal value function is
E + CKN = 9 + 125 = 134, and the base LMDPs are faster to
learn since they have smaller state space.

6 Algorithms

We now propose two algorithms for solving hierarchical ALMDPs.
The first is a two-stage eigenvector approach that relies on first solving
the subtasks. The second is an online algorithm in which an agent
simultaneously learns the subtasks, the gain and the exit values from
samples (st, rt, st+1). Once again we recall that we do not explicitly
represent the values for states s /∈ E .

6.1 Eigenvector approach

In previous work, the base LMDPs are only solved once, and the
solutions are then reused to compute the value function zE on exit
states. However, in the case of ALMDPs, the reward functions of
base LMDPs depend on the current gain estimate ρ̂, which is initially
unknown.

Our proposed algorithm appears in Algorithm 1. The intuition is
that in each iteration, we first solve the subtasks for the latest estimate
of the exponentiated gain Γ̂. For this, we use (13) with the current
value of ρ̂ to solve the base LMDPs. We then apply (15) restricted to
E to obtain an estimate of the value for the exit states. This yields the
system of linear equations

zE = GEzE . (16)

Here, the matrix GE ∈ R
|E|×|E| contains the optimal values of the

base LMDPs and has elements defined as in (15). We use the pre-
viously introduced idea to transform the ALMDP L to a first-exit
LMDP L′ parameterized on the estimated gain ρ̂, and find the optimal
exponentiated gain Γ using binary search. We keep a reference state
s∗ ∈ S (which is by definition an exit state) and use the test described
above to decide how to update the search interval.

Theorem 4. Algorithm 1 converges to the optimal value function z
of L as ε → 0.

First note that the optimal value function z of L exists and is unique
due to Assumption 1. Due to the equivalence between L and the
corresponding first-exit LMDP L′, this implies that L′ has a unique
solution z(·; ρ) when the estimated gain ρ̂ equals ρ, and that this
solution equals z(·; ρ) = z, the optimal solution to L.

Lemma 5. Given a first-exit LMDP L′ parameterized on ρ̂, the
optimal value z(s; ρ̂) of each non-terminal state s ∈ S is strictly
monotonically decreasing in ρ̂.

G. Infante et al. / Hierarchical Average-Reward Linearly-Solvable Markov Decision Processes 1329

Figure 2: Results in N-room when varying the number of rooms and the size of the rooms.

Proof. Strict monotonicity requires that there exists ε > 0 such that
z(s; ρ̂− ε) > z(s; ρ̂) > z(s; ρ̂+ ε) when ε → 0. We prove the first
inequality by induction; the second is analogous. The base case is
given by the terminal states τ ∈ T , for which z(τ ; ρ̂− ε) = z(τ ; ρ̂).
The inductive case is given by

z(s; ρ̂− ε) = eη(R(s)−(ρ̂−ε))
∑
s′∈S

P(s′|s)z(s′; ρ̂− ε)

≥ eηεeη(R(s)−ρ))
∑
s′∈S

P(s′|s)z(s′; ρ̂)

= eηεz(s; ρ̂) > z(s; ρ̂).

This concludes the proof.

As a consequence of Lemma 5, L′ has a unique solution z(·, ρ̂)
for each ρ̂ ≥ ρ, since the values z(·, ρ̂) decrease as ρ̂ increases. In
contrast, there may be values of ρ̂ > ρ for which power iteration does
not converge.

Lemma 6. Given a subtask Li, if the optimal value of each terminal
state τ ∈ Ti equals its optimal value in L, i.e. zi(τ) = z(τ), and
the optimal gain ρ in L is known, then the optimal value of each
non-terminal state s ∈ Si is unique and equals zi(s) = z(s).

Proof. Since Ri and Pi are restrictions of R−ρ and P , respectively,
to Si, we have

zi(s) = eηRi(s)
∑
s′

Pi(s
′|s)zi(s′) = eη(R(s)−ρ)

∑
s′

P(s′|s)zi(s′),

which is the same Bellman equation as for z(s). Assuming that
zi(τ) = z(τ) for each τ ∈ T , directly yields that zi(s) = z(s)
for each non-terminal state s ∈ Si.

Corollary 7. If the optimal gain ρ in L is known, each base LMDP
Lk

j has a unique solution zkj (·; ρ).

Algorithm 1 Eigenvector approach to solving a hierarchical ALMDP.

1: Input: L,S1, . . . ,SL, E , ε, η
2: lo ← 0, hi ← 1
3: while hi − lo > ε do

4: Γ̂ ← (hi + lo) / 2
5: Solve base LMDPs L1

j , . . . ,Ln
j for each equivalence class Cj

6: Form the matrix GE from the optimal value functions
7: Solve the system of equations ẑE = GE ẑE
8: if Γ̂ẑE(s∗) > eηR(s∗) ∑

s∈S P(s|s∗)ẑE(s) then

9: hi ← Γ̂
10: else

11: lo ← Γ̂
return value functions of all base LMDPs, ẑE

Proof. From (15), the optimal values of subtask states satisfy

z(s) =

n∑
k=1

z(τk)zki (s; ρ) ∀s ∈ Si.

Due to Lemma 6, the optimal value z(s) is unique, which is only
possible if zki (s; ρ) is unique for each τk ∈ Ti.

Combined with Lemma 5, Corollary 7 implies that each base LMDP
Lk

j has a unique solution zkj (·; ρ̂) whenever ρ̂ ≥ ρ.

Lemma 8. For ρ̂ ≥ ρ, the equation ẑE = GE ẑE has a unique
solution that equals zE(τ) = z(τ ; ρ̂) for each exit τ ∈ E , where
z(·; ρ̂) is the unique value of the first-exit LMDP L′ for ρ̂.

Proof. At convergence, due to (15) it has to hold for each non-
terminal exit τ ∈ E that

zE(τ) =
n∑

k=1

zE(τ
k)zki (s; ρ̂) ∀s ∈ Si,

where each τk is also an exit and zki (s; ρ̂) is well-defined and unique
since ρ̂ ≥ ρ. This equation is satisfied when zE(τ) = z(τ ; ρ̂) for
each exit. Since z(·; ρ̂) is unique, this is the only solution.

We now have all the ingredients to prove Theorem 4. When ρ̂ ≥ ρ
(or equivalently, Γ̂ ≥ Γ), each base LMDP has a unique solution, and
zE is also unique. Moreover, when ρ̂ > ρ, the condition on line 8 is
true, which causes binary search to discard all values greater than ρ̂.
If the base LMDPs or zE do not have a unique solution, we know that
ρ̂ is too small, and we can hence discard all values less than ρ̂. Since
the solution z(·; ρ̂) is monotonically decreasing in ρ̂, binary search is
guaranteed to find the optimal gain ρ within a factor of ε.

6.2 Online algorithm

In the online case (see Algorithm 2), the agent keeps an estimate of
the exponentiated gain Γ̂ = eηρ̂ which is updated every timestep.
It also keeps estimates of the value functions of the base LMDPs
ẑ1i (·; ρ̂), . . . , ẑni (·; ρ̂) for each equivalence class Ci, and estimates of
the value function on exit states ẑE . All the base LMDPs of the same
equivalence class can be updated with the same sample using intra-
task learning with the appropriate importance sampling weights [12].
For the estimates of the exit states, we only update them upon visita-
tion of such states. In that case, we use the compositionality expression
in (15) to derive the following update:

ẑE(s) ← (1− α�)ẑE(s) + α�

n∑
k=1

ẑE(τ
k)ẑki (s; ρ). (17)

G. Infante et al. / Hierarchical Average-Reward Linearly-Solvable Markov Decision Processes1330

Here, α� is the learning rate. Each of the learned components (i.e.,
gain, base LMDPs and exit state value estimates) maintain indepen-
dent learning rates.

Algorithm 2 Online algorithm.

1: Input: L,S1, . . . ,SL, E , s0, ε, η
2: t ← 0, Γ̂ ← 1
3: while not terminate do

4: Observe (st, rt, st+1) ∼ π̂t

5: Update ẑ1j (·; ρ̂), . . . , ẑnj (·; ρ̂) using Equation (11)
6: Compute ẑ(st) and

∑
s′ P(s′|st)ẑ(s′) using Equation (15)

7: Update Γ̂ using Equation (12)
8: if st ∈ E then

9: Update ẑE(st) using Equation (17)

7 Experiments

In this section we compare experimentally Algorithm 2 with dif-
ferential soft TD-learning in the flat representation of the ALMDP
(code available at [11]). We measure the Mean Absolute Error (MAE)
between the estimated value function ẑ and the true optimal value
function z. For each algorithm, we report mean and standard deviation
on five seeds. The learning rates have been optimized independently
for each of the instances. We adapt two episodic benchmark tasks [10]
and transform them into infinite-horizon tasks as follows:
N-room domain, cf. Example 1. As in the episodic case, there are
some ‘goal’ states with high reward (i.e. 0). When the agent enters a
goal state, the next action causes it to receive the given reward and
transition to a restart location. We vary the number rooms as well as
the size of the rooms.
Taxi domain. In this variant of the original domain [5], once the
passenger has been dropped off, the system transitions to a state in
which the driver is in the last drop-off location, but a new passenger
appears randomly at another location.

Figures 2 and 3 show the results. Our algorithm is able to speed
up learning and converges to the optimal solution faster than flat
average-reward reinforcement learning (note the log scale). This is in
line with previous results for the episodic case [10]. The difference
in the error scale in the figures is due to the initialization of the base
LMDPs. The average reward setting poses an extra challenge since the
‘sparsity’ of the reward can make the estimates of the gain oscillate.
This ultimately has an impact on the estimates of the base LMDPs
and the value estimates of the exit states, and it is likely the reason
why in Figure 3 the error increases before decreasing down to zero.

8 Conclusion

In this paper we present a novel framework for hierarchical average-
reward reinforcement learning which makes it possible to learn the
low-level and high-level tasks simultaneously. We propose an eigen-
vector approach and an online algorithm for solving problems in
our framework, and show that the former converges to the optimal
value function. As a by-product of our analysis, we also provide a
convergence theorem in the non-hierarchical case for average-reward
LMDPs, which to the extent of our knowledge, was not previously
done. In the future we would like to prove convergence also for the
proposed online algorithm.

Acknowledgements

Anders Jonsson is partially funded by TAILOR (EU H2020 #952215),
AGAUR SGR and Spanish grant PID2019-108141GB-I00. This
publication is part of the action CNS2022-136178 financed by
MCIN/AEI/10.13039/501100011033 and by the European Union
Next Generation EU/PRTR.

References

[1] J. Abounadi, D. Bertsekas, and V. S. Borkar. Learning algorithms for
markov decision processes with average cost. SIAM Journal on Control
and Optimization, 40(3):681–698, 2001.

[2] A. Barreto, D. Borsa, S. Hou, G. Comanici, E. Aygün, P. Hamel,
D. Toyama, J. J. Hunt, S. Mourad, D. Silver, and D. Precup. The option
keyboard: Combining skills in reinforcement learning. In H. M. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
13031–13041, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/251c5ffd6b62cc21c446c963c76cf214-Abstract.html.

[3] A. Barto and S. Mahadevan. Recent Advances in Hierarchical Rein-
forcement Learning. Discrete Event Dynamic Systems: Theory and
Applications, 13:41–77, 2003.

[4] P. Dayan and G. E. Hinton. Feudal Reinforcement Learning. In Ad-
vances in Neural Information Processing Systems, volume 5. Morgan-
Kaufmann, 1992. URL https://proceedings.neurips.cc/paper/1992/hash/
d14220ee66aeec73c49038385428ec4c-Abstract.html.

[5] T. G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ
Value Function Decomposition. Journal of Artificial Intelligence Re-
search, 13:227–303, Nov. 2000. ISSN 1076-9757. doi: 10.1613/jair.639.
URL https://www.jair.org/index.php/jair/article/view/10266.

[6] R. Fruit and A. Lazaric. Exploration-exploitation in mdps with options.
In A. Singh and X. J. Zhu, editors, Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-
22 April 2017, Fort Lauderdale, FL, USA, volume 54 of Proceedings
of Machine Learning Research, pages 576–584. PMLR, 2017. URL
http://proceedings.mlr.press/v54/fruit17a.html.

[7] R. Fruit, M. Pirotta, A. Lazaric, and E. Brunskill. Regret Minimiza-
tion in MDPs with Options without Prior Knowledge. In Advances
in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://papers.nips.cc/paper_files/paper/2017/
hash/90599c8fdd2f6e7a03ad173e2f535751-Abstract.html.

Figure 3: Results for 5× 5 (top) and 8× 8 (bottom) grids of the Taxi
domain.

G. Infante et al. / Hierarchical Average-Reward Linearly-Solvable Markov Decision Processes 1331

https://proceedings.neurips.cc/paper/2019/hash/251c5ffd6b62cc21c446c963c76cf214-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/251c5ffd6b62cc21c446c963c76cf214-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/d14220ee66aeec73c49038385428ec4c-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/d14220ee66aeec73c49038385428ec4c-Abstract.html
https://www.jair.org/index.php/jair/article/view/10266
http://proceedings.mlr.press/v54/fruit17a.html
https://papers.nips.cc/paper_files/paper/2017/hash/90599c8fdd2f6e7a03ad173e2f535751-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/90599c8fdd2f6e7a03ad173e2f535751-Abstract.html

[8] M. Ghavamzadeh and S. Mahadevan. Hierarchical average reward re-
inforcement learning. Journal of Machine Learning Research, 8(87):
2629–2669, 2007. URL http://jmlr.org/papers/v8/ghavamzadeh07a.html.

[9] J. Hunt, A. Barreto, T. Lillicrap, and N. Heess. Composing Entropic
Policies using Divergence Correction. pages 2911–2920. PMLR, May
2019. URL https://proceedings.mlr.press/v97/hunt19a.html.

[10] G. Infante, A. Jonsson, and V. Gómez. Globally optimal hierarchical
reinforcement learning for linearly-solvable markov decision processes.
volume 36, pages 6970–6977, Jun. 2022. doi: 10.1609/aaai.v36i6.20655.
URL https://ojs.aaai.org/index.php/AAAI/article/view/20655.

[11] G. Infante, A. Jonsson, and V. Gómez. Hierarchical average-
reward linearly-solvable markov decision processes. arXiv preprint
arXiv:2407.06690, 2024. URL https://arxiv.org/abs/2407.06690.

[12] A. Jonsson and V. Gómez. Hierarchical Linearly-Solvable Markov
Decision Problems. Proceedings of the International Conference on
Automated Planning and Scheduling, 26:193–201, Mar. 2016. ISSN
2334-0843. doi: 10.1609/icaps.v26i1.13750. URL https://ojs.aaai.org/
index.php/ICAPS/article/view/13750.

[13] H. J. Kappen, V. Gómez, and M. Opper. Optimal control as a graphical
model inference problem. Machine Learning, 87(2):159–182, May
2012. ISSN 1573-0565. doi: 10.1007/s10994-012-5278-7. URL https:
//doi.org/10.1007/s10994-012-5278-7.

[14] S. Levine. Reinforcement learning and control as probabilistic inference:
Tutorial and review. arXiv preprint arXiv:1805.00909, 2018.

[15] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-Efficient
Hierarchical Reinforcement Learning. In Advances in Neural
Information Processing Systems, volume 31. Curran Associates,
Inc., 2018. URL https://papers.nips.cc/paper_files/paper/2018/hash/
e6384711491713d29bc63fc5eeb5ba4f-Abstract.html.

[16] O. Nachum, H. Tang, X. Lu, S. Gu, H. Lee, and S. Levine. Why does
hierarchy (sometimes) work so well in reinforcement learning? arXiv
preprint arXiv:1909.10618, 2019.

[17] G. Nangue Tasse, S. James, and B. Rosman. A Boolean Task Al-
gebra for Reinforcement Learning. In Advances in Neural Informa-
tion Processing Systems, volume 33, pages 9497–9507. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
6ba3af5d7b2790e73f0de32e5c8c1798-Abstract.html.

[18] R. Parr and S. Russell. Reinforcement Learning with Hierarchies of
Machines. In Advances in Neural Information Processing Systems,
volume 10. MIT Press, 1997. URL https://proceedings.neurips.cc/paper/
1997/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html.

[19] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley Series in Probability and Statistics. Wiley,
1994. ISBN 978-0-47161977-2. doi: 10.1002/9780470316887. URL
https://doi.org/10.1002/9780470316887.

[20] A. M. Saxe, A. C. Earle, and B. Rosman. Hierarchy Through Composi-
tion with Multitask LMDPs. In Proceedings of the 34th International
Conference on Machine Learning, pages 3017–3026. PMLR, July 2017.
URL https://proceedings.mlr.press/v70/saxe17a.html.

[21] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artif.
Intell., 112(1-2):181–211, 1999. doi: 10.1016/S0004-3702(99)00052-1.

[22] E. Todorov. Linearly-solvable markov decision problems. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances
in Neural Information Processing Systems, volume 19. MIT
Press, 2006. URL https://proceedings.neurips.cc/paper/2006/file/
d806ca13ca3449af72a1ea5aedbed26a-Paper.pdf.

[23] E. Todorov. Efficient computation of optimal actions. Proceedings of
the national academy of sciences, 106(28):11478–11483, 2009.

[24] E. Todorov. Compositionality of optimal control laws. In Advances
in Neural Information Processing Systems, volume 22. Curran Asso-
ciates, Inc., 2009. URL https://papers.nips.cc/paper_files/paper/2009/
hash/3eb71f6293a2a31f3569e10af6552658-Abstract.html.

[25] B. van Niekerk, S. D. James, A. C. Earle, and B. Rosman. Compos-
ing value functions in reinforcement learning. In K. Chaudhuri and
R. Salakhutdinov, editors, Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Re-
search, pages 6401–6409. PMLR, 2019. URL http://proceedings.mlr.
press/v97/van-niekerk19a.html.

[26] Y. Wan, A. Naik, and R. S. Sutton. Learning and planning in average-
reward markov decision processes. In M. Meila and T. Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 10653–
10662. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
wan21a.html.

[27] Y. Wan, A. Naik, and R. S. Sutton. Average-reward learning and plan-
ning with options. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin,

P. Liang, and J. W. Vaughan, editors, Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 22758–22769, 2021. URL https://proceedings.neurips.cc/paper/
2021/hash/c058f544c737782deacefa532d9add4c-Abstract.html.

[28] Z. Wen, D. Precup, M. Ibrahimi, A. Barreto, B. Van Roy, and S. Singh.
On Efficiency in Hierarchical Reinforcement Learning. In Advances in
Neural Information Processing Systems, volume 33, pages 6708–6718.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/4a5cfa9281924139db466a8a19291aff-Abstract.html.

G. Infante et al. / Hierarchical Average-Reward Linearly-Solvable Markov Decision Processes1332

http://jmlr.org/papers/v8/ghavamzadeh07a.html
https://proceedings.mlr.press/v97/hunt19a.html
https://ojs.aaai.org/index.php/AAAI/article/view/20655
https://arxiv.org/abs/2407.06690
https://ojs.aaai.org/index.php/ICAPS/article/view/13750
https://ojs.aaai.org/index.php/ICAPS/article/view/13750
https://doi.org/10.1007/s10994-012-5278-7
https://doi.org/10.1007/s10994-012-5278-7
https://papers.nips.cc/paper_files/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6ba3af5d7b2790e73f0de32e5c8c1798-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6ba3af5d7b2790e73f0de32e5c8c1798-Abstract.html
https://proceedings.neurips.cc/paper/1997/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/1997/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.1002/9780470316887
https://proceedings.mlr.press/v70/saxe17a.html
https://proceedings.neurips.cc/paper/2006/file/d806ca13ca3449af72a1ea5aedbed26a-Paper.pdf
https://proceedings.neurips.cc/paper/2006/file/d806ca13ca3449af72a1ea5aedbed26a-Paper.pdf
https://papers.nips.cc/paper_files/paper/2009/hash/3eb71f6293a2a31f3569e10af6552658-Abstract.html
https://papers.nips.cc/paper_files/paper/2009/hash/3eb71f6293a2a31f3569e10af6552658-Abstract.html
http://proceedings.mlr.press/v97/van-niekerk19a.html
http://proceedings.mlr.press/v97/van-niekerk19a.html
https://proceedings.mlr.press/v139/wan21a.html
https://proceedings.mlr.press/v139/wan21a.html
https://proceedings.neurips.cc/paper/2021/hash/c058f544c737782deacefa532d9add4c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c058f544c737782deacefa532d9add4c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4a5cfa9281924139db466a8a19291aff-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4a5cfa9281924139db466a8a19291aff-Abstract.html

	Introduction
	Related work
	Background
	First-exit Linearly-solvable Markov Decision Processes
	Hierarchical Decomposition for LMDPs

	Average-reward Linearly-solvable Markov Decision Processes
	Solving an ALMDP

	Hierarchical Average-Reward LMDPs
	Hierarchical Decomposition
	Subtask Compositionality
	Efficiency of the value representation

	Algorithms
	Eigenvector approach
	Online algorithm

	Experiments
	Conclusion

