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Abstract. Multi-Camera Active Object Tracking is an attractive
technique in the area of intelligent surveillance, where cameras share
their observations via the wireless communication to collaboratively
track the target. Due to the variability in wireless channel, the dy-
namic transmission delay between cameras significantly affects the
collaboration performance, especially when the tracking is time-
sensitive. In this paper, we propose a channel-aware multi-camera
active object tracking (CAMAOT) system, to achieve the stable and
improved tracking performance. Specifically, a communication deci-
sion module is designed in CAMAOT, where the cameras’ commu-
nication graph and communication resource allocation adapt to the
channels. Our experiments demonstrate that for time-varying chan-
nels, CAMAOT has a stable performance improvement over other
systems, particularly when the communication resources are limited.

1 Introduction

With the rapid advancement of artificial intelligence technology, the
multi-agent system has emerged. In the multi-agent system, multiple
agents can collaboratively complete a specific task. Owing to its im-
proved performance and stability, the multi-agent system is applied
as a promising solution in several scenarios, such as smart manufac-
turing and intelligent surveillance. In the area of active object track-
ing (AOT), the collaboration of multiple rotatable cameras is pro-
posed as a new paradigm. By sharing the information, the rotatable
cameras collaborate to adjust their angles and improve the tracking
performance of each camera.

For the initial studies on collaborative active object tracking, the
coverage is a critical performance metric. In [4], the authors designed
a collaborative active object tracking system to maximize the cover-
age, where each camera is regarded as an agent and its rotation is con-
trolled by using Multi-Agent Reinforcement Learning (MARL)[30].
Based on that, the tracking accuracy is proposed as another perfor-
mance metric. To maximize the tracking accuracy, a pose-assisted
collaborative active object tracking system is proposed by [9]. In this
system, the camera can predict the target’s position, which is lost
by the occlusion, from other cameras’ sharing poses, thereby deter-
mining its rotation angle. While sharing pose information provides
an efficient cooperation way, the pose information only indicates the
target’s current position. Due to the inevitable communication delay,
it is difficult for the rotatable camera to follow the target in time,
especially for the high-speed moving target. To address this issue,
a collaborative active object tracking system called Effi-MAOT [29]
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Figure 1: Illustration of Channel-Aware Multi-Camera Active Object
Tracking system. The communication decision module of degraded
cameras dynamically adjusts the communication graph and commu-
nication resource allocation based on channel conditions and match-
ing scores, improving the tracking performance.

was proposed. By sharing observation features, the cameras can pre-
dict the target’s position from the current features and previous ones.
This improves the prediction accuracy and the tracking performance
for the high-speed moving target, especially when taking the com-
munication delay into account. However, the aforementioned studies
assume an ideal communication case, where the communication abil-
ity, e.g., the transmission rate, between any two cameras is homoge-
neous and remains constant. In practice, the time-varying channel re-
sults in heterogeneous and dynamic communication ability between
any two cameras. This may cause intolerantly large delay for a pair
of cameras, thereby deteriorating the overall tracking performance.

In this paper, we propose a channel-aware collaborative active ob-
ject tracking system based on rotatable cameras, called CAMAOT.
In the proposed system, the cameras share compressed features of
their observations via wireless communication, when one camera’s
observation is degraded by the occlusion, as illustrated in Fig. 1. The
wireless channel between any two cameras is time-varying fading.
Based on the channels, each camera dynamically adjusts its com-
munication graph, bandwidth allocation, and compression ratio to
minimize the communication delays, thereby improving the object
tracking performance. In order to verify the performance of the pro-
posed system, we conduct extensive experiments in a high-fidelity
virtual urban street environment. The widely used Rayleigh fading
model is employed for wireless channels among the cameras. The
experiments demonstrate that the proposed system significantly out-
performs baseline systems, in terms of tracking performance and the
amount of communication resource consumption.
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2 Related Works

2.1 Active Object Tracking

AOT refers to the technique where a tracker automatically controls
its motion based on the observation sequence and continuously track
the target.

With the requirement of motion control adaptive to observations,
the reinforcement learning (RL) based end-to-end AOT algorithms
are proposed in [14, 32, 4, 9]. The authors in [14] adopted a ConvNet-
Long Short-Term Memory (LSTM) function approximator to achieve
the direct frame-to-action prediction. The adversarial reinforcement
learning method was exploited to learn a robust tracker in [32], where
the tracker and the target are two opponent agents and they can en-
hance each other during the competition. In [4], the authors extended
the single-camera AOT to a multi-camera setting, where multiple
cameras cooperatively track multiple targets and each camera’s ro-
tation is controlled by using MARL. The authors in [9] designed
a pose-assisted multi-camera collaboration system, which enables a
camera to efficiently cooperate with the others by sharing the pose.
The authors in [33] presented RSPT, a novel active object tracking
framework that innovates by reconstructing environmental structure
and predicting target trajectories, addressing the challenge of gener-
alization in complex and dynamic scenarios. In [11], the authors in-
troduced the KURL model, which leverages knowledge-guided rein-
forcement learning, incorporating state recognition and world mod-
els to enhance tracking accuracy and efficiency in high-altitude envi-
ronments. These previous works assume that the cameras can share
the information in real time. In fact, the camera’s communication de-
lay is not negligible and impacts the collaboration performance of
multi-camera AOT, especially for the high-speed moving target. In
this work, we consider the effect of communication delay and opti-
mize the communication resource allocation to minimize this com-
munication delay.

2.2 Multi-agent Communication

In the multi-agent system, the communication allows agents to share
their local observation information and collaboratively complete a
task. As the number of agents increases, the efficient communication
becomes more essential.

In the earlier works [25, 16, 21, 10], the communication strate-
gies are manually specified, which are less flexible and difficult to
deal with the dynamic tasks. In CommNet [24], a neural network
was designed to allow agents to learn the communication relation-
ship among them alongside their policy for decision-making tasks.
BiCNet in [19] connected all agents with a Bi-directional LSTM to
integrate agent-specific information. ATOC in [7] adopted an atten-
tion mechanism to learn when each agent communicates and how to
integrate the shared information. Furthermore, the multi-agent learn-
ing communication is designed for the perception task. When2com
in [12] exploited the attention mechanism to the construct commu-
nication group via a handshake process. In particular, each agent
first determines whether to require information from others. If it re-
quires, the agent sends a query to determine whom to connect with.
Based on that, where2comm [5] introduced the spatial confidence
map, which allows agents to share more compact perception infor-
mation. This approach reduces the communication overhead while
maintaining the perceptual accuracy. How2comm [28] employed a
flow-guided delay compensation strategy to predict and align fu-
ture features from collaborators, addressing the challenge of tempo-
ral asynchrony caused by transmission delays. Effi-MAOT [29] pro-

posed a learnable communication strategy with a switching mecha-
nism for communication efficient collaborative active object track-
ing. These works only consider the homogeneous and static com-
munication ability between a pair of agents. In practice, the variable
channel results in the heterogeneous and dynamic communication
ability. In this paper, we propose a channel-aware collaborative AOT
system to dynamically adjust the communication resource allocation.

3 Preliminaries

We present some preliminary knowledge in this section, which in-
cludes the system model and the wireless channel model.

3.1 System Model

We consider the system, where N rotatable cameras collaborate to
track a target. The cameras are located in given positions and rotate
their angles with the moving target. To make each camera continu-
ously track the target, the camera has three modules: an observation
sequence encoding module, a communication decision module, and
an action decision module. At a time step, each camera first indepen-
dently captures an image as its local observation. The observation
sequence encoding module extracts the target’s feature information
from the current and historical observations. Then, based on the lo-
cal feature information, each camera decides whether it can track
the target accurately. If not, the camera, called the degraded camera,
broadcasts its query and obtains the matching scores with other cam-
eras by employing the attention mechanism. Based on the match-
ing scores and wireless channels, the degraded camera determines
its communication graph and resource allocation to efficiently ob-
tain features from other cameras. This determination process is per-
formed in the communication decision module. Here, the commu-
nication graph indicates the set of supporting cameras that send fea-
tures to the degraded camera, while the communication resource allo-
cation includes bandwidth allocation and transmitted message com-
pression ratio for each supporting camera. With the determined com-
munication graph and resource allocation, the cameras share their
features via wireless communication. By fusing local observations
and obtained features from other cameras, each camera decides its
rotating angle in the action decision module.

3.2 Communication Channel

The cameras are connected to share features via a wireless communi-
cation network. In a wireless network, the camera’s transmission rate
depends on many factors, such as the allocated bandwidth, transmit
power, and channel. According to the Shannon capacity of wireless
channel[26], the transmission rate from camera j to camera i is given
by

Ri,j = Bi,j log2

(
1 +

Pi,j ∗ |hi,j |2
N0

)
, (1)

where Bi,j is the allocate bandwidth (Hz), Pi,j is the transmit
power (W) from camera j to camera i, N0 is the additive white
Gaussian noise. Here, hi,j is the channel fading coefficient from
camera j to camera i. We model the channel fading coefficient as
hi,j =

√
βi,jgi,j , where βi,j is the large-scale fading component

and gi,j ∼ CN (0, 1) is the Rayleigh block fading component. The
large-scale fading component βi,j is relative to the distance between
camera j and camera i. The communication delay is

dj→i =
sj→iε

t
j→i

Ri,j
, (2)
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where sj→i is the size of original transmitted message in bits and
εtj→i is the compression ratio from camera j to camera i.

Due to the variability in channel fading coefficients, the cameras’
transmission rates are dynamic and heterogeneous. Thus, it is cru-
cial to carefully construct the communication graph, design band-
width allocation, and the feature compression ratio, thereby improv-
ing the collaborative tracking performance. The qualitative relation-
ship among communication graph, resource allocation and collabora-
tive tracking performance is illustrated in Fig. 2. Both allocated band-
width and feature compression ratio affects the communication de-
lay for a pair of cameras. Combined with the communication graph,
this determines the communication delays for all connected cameras,
thereby leading to different tracking performance.

Bandwidth 

Allocation

Communication

Graph

Link Comm Delay

System Comm Delay

Collaborative Tracking Performance

Compression 

Ratio

Figure 2: The qualitative relationship among communication graph,
resource allocation and collaborative tracking performance.

4 Problem Formulation

In the considered system model, N rotatable cameras collaboratively
track the target during T time steps. Denote Ct

i and Ot as the obser-
vation of camera i and the target position at time step t, respectively.
The objective of multi-camera active object tracking is to maximize
the average tracking success rate over T time steps under the total
bandwidth budget B, given by

argmax
θ,p

1

T

T∑
t=1

ASR(Ct, Ot)

s.t.
N∑

j=1

btj→i � B, ∀i ∈ {1, 2, 3, . . . , N}
(3)

where Ct = {Ct
1, ..., C

t
N} and ASR(Ct, Ot) is expressed as

ASR(Ct, Ot) (4)

=
1

N

N∑
i=1

g
(
fθ,p

(
Ct

i ,
{
(mt

j→i, d
t
j→i)

}N

j=1

)
, Ot

)
,

where mt
j→i is the camera i’s received packet from camera j, dtj→i is

the transmission delay from camera j to camera i, f(·, ·) is the rota-
tion action decision-making network and g(·, ·) is the tracking accu-
racy. Here, the optimized parameters include the trainable parameter
θ of rotation action decision-making network and the resource allo-
cation parameter set pt

j→i = {εtj→i, b
t
j→i}, ∀i, j ∈ {1, ..., N} and

∀t ∈ {1, ..., T}, where εtj→i and btj→i represent the compression ra-
tio and the allocated bandwidth of transmitted packet from camera j

to camera i at time step t, respectively. By optimizing the network
parameter and resource allocation, the average tracking success rate
is maximized for a given bandwidth budget.

Note that, when obtaining the optimized parameters εtj→i =
btj→i = 0, it indicates no collaboration from camera j to camera
i. Thus, optimizing the parameters εtj→i and btj→i implies the op-
timization of both collaboration relationship and allocated transmis-
sion resources. Moreover, apart from the observation complementary
employed in the most studies on multi-camera AOT, the system de-
sign in this paper considers the effect of wireless channel fading on
the communication delay, thereby improving the collaborative track-
ing performance. In particular, the resource allocation, including the
bandwidth and compression rate, affects the communication delay
between two cameras, while the collaboration relationship affects the
delay distribution in the network. As the communication delay varies
with the channel, as given by (1) and (2), this system design can adapt
to varying channels by dynamically adjusting allocated resources and
collaboration relationship.

The problem in (3) is transformed to a Decentralized Partially Ob-
servable Markov Decision Process (Dec-POMDP)[2, 18]. Define a
tuple MDecP = 〈N,S,A, P,R,O, Z, γ〉, where N is the number of
agents, S is the state space, A = ×i∈NAi is the set of joint actions,
P is the transition probability function, R is the reward function,
O = ×i∈NOi is the set of joint observations, Z is the observation
probability function, and γ is the discount factor. At time step t, the
set of joint actions is denoted by at =< a1,t, a2,t...aN,t >, where
ai,t is the action of agent i. Similarly, ot =< o1,t, o2,t...oN,t > is
the set of joint observations at time step t, where oi,t is the observa-
tion of agent i.

Based on the observation oi,t, agent i decides its strategy based
on the policy πi(ai,t|oi,t), which implies a probability distribution
over the action ai,t. When agents execute their actions based on their
policies, the state becomes st+1 and the observation is obtained as
st+1 according to the state transition function P (st+1 | st, at) and
the observation likelihood function O (ot+1 | st+1, at), respectively.
The global reward at time step t is given by Rt = R (st, at). For
a cooperative task, the goal is to maximize the cumulative global
reward by optimizing each agent’s policy, that is

Eπ1,...,πN

[
T∑

t=1

Rt

]
. (5)

5 CAMAOT: Channel-Aware Multi-Camera
Active Object Tracking System

CAMAOT is designed to solve the formulated optimization problem.
As shown in Fig. 3, the network of each camera is comprised of an
observation sequence encoding module, a communication decision
module, and an action decision module. The camera extracts fea-
tures from its local observation in the observation sequence encod-
ing module. Based on local features and received information from
other cameras, the camera determines its communication graph and
resource allocation in the communication decision module. With this
communication graph and resource allocation, the agent receives fea-
tures from its collaborators and decides the rotation action via the
action decision module.

5.1 Observation Sequence Encoding Module

In this module, we develop an observation encoder fo and a sequence
encoder fs. The observation encoder processes the local observation
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Figure 3: The architecture of our channel-aware multi-camera AOT system. Cameras initially determine the need for assistance based on
their local observations. Subsequently, degraded cameras broadcast queries and, upon receiving matching scores and channel conditions,
their communication decision modules construct communication graphs and determine communication resource allocation. Based on these
decisions, they receive and integrate features from selected cameras. Finally, all cameras select rotational actions based on the integrated
features to track the target.

oti to extract features φt
i at the current time step. Subsequently, the

observation history Ht
i =

{
φ1
i , φ

2
i , ...φ

t
i

}
is input into the sequence

encoder to obtain the timing feature ψt
i , characterising the target’s

temporal dynamics, such as velocity and trajectory. We employ Con-
volutional Neural Network (CNN) and LSTM networks to construct
the encoder fo (·) and fs (·), respectively.

5.2 Communication Decision Module

To achieve the wireless channel-aware collaboration among cameras,
the communication decision module determines the communication
graph and allocated resources of corresponding collaborators. First,
we design a switch based on a binary classification neural network,
whose input is the timing feature ψn,t, to determine whether the cam-
era requires information from other cameras.

When it requires information from other cameras, the camera de-
cides the collaborators and resource allocation via a handshake pro-
cess. This process consists of querying, matching, and decision-
making stages. In the querying stage, camera i generates a Q-
dimensional query at time step t, given by

μt
i = Gq

(
ψt

i , θq
) ∈ R

Q, (6)

and a K-dimensional key κt
i , given by

κt
i = Gk

(
ψt

i , θk
) ∈ R

K , (7)

where Gq(·) is the query generator and Gk(·) is the key generator.
Based on that, the camera broadcasts its query to other cameras.

In the matching stage, by exploiting the scaled general attention[3,
15, 27], the camera obtains a matching score between the received

query and its own key, calculated as

mi,j = Φ(μi, κj) =
μt
iWgκj√

K
, (8)

where Wg ∈ R
Q×K is a learnable parameter. Then, the camera sends

its matching score to the querying camera. It is noteworthy that when
camera i does not broadcast its query, we have mi,i = 1 and mi,j =
0 for ∀k 	= n. Once all the matching scores have been calculated, the
matrix M is formed, whose element in row i and column j is mi,j .

After receiving the matching scores and channel fading coeffi-
cients from all other cameras, the camera determines its collaborators
and their allocated resources by solving the optimization problem in
(3). Due to the optimization over a time sequence, it is non-trivial to
solve this problem via conventional optimization methods. Thus, we
employ multi-agent reinforcement learning to solve this optimiza-
tion problem in this paper, where each camera corresponds to an
agent and learns the optimal resource allocation strategy by inter-
acting with the environment.

5.3 Action Decision Module

With the determined communication graph and resource allocation,
the cameras share their features via wireless communication. Af-
ter receiving features from the collaborators, camera i concatenates
these received features and its own features, given by

fi,t =
[
ψi,t;ψ

int
i,t

]
(9)

where [·; ·] is the concatenation operator and ψint
i,t is obtained by

ψint
i,t =

N∑
j=1, �=i

m̄i,jψ
′
j,t. (10)
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where weight m̄i,j is the element of the ith row and jth column in
a sparse representation of matrix M . The sparse representation M̄ is
obtained by using the Softmax function in matrix M . ψ′

j,t represents
the compressed feature of ψj,t according to ratio εtj→i.

The concatenated feature fi,t of camera i is fed into the actor net-
work and the critic network in the action decision module. The actor
network outputs a policy distribution πn(an,t|fn,t), which is used
for sampling tracking decisions. The critic network outputs a value
function V (fn,t) for the corresponding action. Based on two outputs,
the network parameters is updated until reaching the convergence.

5.4 Training CAMAOT

Reward function. For the multi-camera cooperative tracking task,
the aim is to keep the target within the field of view of each cam-
era. Thus, the tracking reward function of camera i at time step t is
defined as:

Ra
i,t =

⎧⎪⎨
⎪⎩
2− Δαt

αmax
− Δβt

βmax
(a)

0 (b)

−1 (c)

(11)

where Δαt and Δβt are the absolute pitch angle error and the
absolute yaw angle error between the camera’s direction and the tar-
get’s direction, respectively. Here, αmax and βmax are the maximum
control bound of corresponding angle errors. In Equation (11), (a)
means that the target is visible in the image, (b) means that obstacles
occlude the target, and (c) means that the target is outside the view.

Furthermore, to mitigate the effect of intolerantly long commu-
nication delay on the tracking performance, a maximum communi-
cation delay threshold Dmax is introduced. In this case, the camera
can only receive features from the cameras whose transmission time
is smaller than this threshold. To receive more features within the
duration Dmax, a penalty is defined to the communications whose
delays are larger than Dmax, given by

Rb
i,t =

{
1− qi,t

Qi,t
(a)

0 (b)
(12)

where Qi,t is the number of camera i’s collaborators at time step
t. Among these collaborators, qi,t collaborators’ communication de-
lays are larger than Dmax. Similarly to (11), (a) in (12) indicates that
the target is visible in the image and (b) indicates that the target is
outside the image. Therefore, the cumulative global reward at time
step t is obtained as

Rt =
N∑
i=1

(Ra
i,t +Rb

i,t). (13)

Training strategy. To optimize each agent’s policy to maximize
the cumulative global reward, we modify the conventional RL al-
gorithm, i.e., A3C[17], by adding the communication module. For
the modified RL algorithm, we adopt a centralized training and de-
centralized inference paradigm[13, 6]. In particular, during the train-
ing phase, we consider that each camera can be connected to all
other cameras. The global observation is obtained by concatenat-
ing received features with weights, where the weights are obtained
by using (8). The concatenated features are fed into the actor net-
work and the critic network, to obtain the action distribution and
the corresponding values, respectively. These values are used to up-
date the network parameters. Note that, the switch in the communi-
cation module is trained by using the binary cross entropy loss. A

Figure 4: Example scene in Urban City.

well-trained switch accurately implies the camera observation sta-
tus. In other words, when the camera’s observation is well enough,
its switch is closed. Otherwise, its switch is open for receiving other
cameras’ features.

6 Experimental Results

In this section, we conduct the experiments in a high-fidelity sim-
ulation based on Unreal Engine 4. By comparing to the considered
baselines, we demonstrate the performance gain from CAMAOT.

6.1 Experimental Settings

We adopt Unreal Engine 4[23, 8] to construct a high-fidelity simu-
lation environment of Urban City and use gym-unrealcv[20, 31] to
provide a convenient interface with reinforcement learning, as shown
in Fig. 4. In this environment setting, the target moves around a
flower bed at a given speed and four rotatable cameras are placed at
fixed positions to perform active tracking. Each camera captures an
RGB image as its observation and extracts features from this image.
By sharing features and pose information via wireless communica-
tion, the cameras decide their actions. The objective of this task is
to continuously track the target for each camera. The camera’s dis-
crete action space includes nine components, i.e., turn left, turn right,
turn up, turn down, turn top-left, turn top-right, turn bottom-left, turn
bottom-right, and keep still. The wireless channel between any pair
of cameras follows a Rayleigh fading, as described in Section 3.2.
According to the 3GPP standard [1], the large-scale fading compo-
nent of wireless channel between camera i and camera j is given by

βi,j = 10 ∗ 3.76 ∗ log10

li,j
1000

+ 128.1, (14)

where li,j is the distance between camera i and camera j. The noise
power density over the channel is −196 dBm/Hz. Each camera’s
transmit power is 20dBm.

Note that, in order to learn a good feature representation of
each camera’s observation at the training process, the randomization
method is employed as environment augmentation[22]. In particular,
both the target’s initial position and movement speed are random.
We also note that the well-trained CAMAOT system can be applied
in the real-world environment, which needs to be further investigated
as the future work.
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Figure 5: Comparison results under different communication resources.

6.2 Evaluation Metrics and Baselines

We define Success Rate to evaluate the tracking performance of each
camera, given by

Ps,i =
1

T

T∑
t=1

Di,t, (15)

where Di,t indicates whether the target is located within camera i’s
view at time step t. When it is within the view, Di,t equals one. Oth-
erwise, Di,t equals zero. It is shown that Ps,i represents the proba-
bility that the target is located within camera i’s view at a time step.
Based on that, we define the success rate averaged over all cameras,
named as Average Success Rate (ASR), to evaluate the system per-
formance, i.e.,

Ps =
1

N

N∑
i=1

Ps,i. (16)

We consider an independent perception system and several col-
laborative perception systems with distributed communication as our
baselines.

• Independent Perception (SV): Each camera only relies on its own
observation to determine the rotation angle. There is no commu-
nication among cameras.

• When2com: Each camera employs the attention mechanism to se-
lect a set of other cameras as collaborators. The camera fuses its
observation and those received from collaborators for perception.

• Where2comm: The camera has a spatial confidence map, which
reflects the spatial heterogeneity of its observation. Based on that,
the camera obtains spatially sparse but critical information for
sharing, thereby improving the communication efficiency.

• Effi-MAOT: The camera needs to determine whether to receive
information from other agents or use its own observation alone,
before selecting collaborators. Moreover, the camera extracts fea-
tures from both the current observation and historical observa-
tions.

6.3 Quantitative Evaluation

Benchmark comparison. Table 1 compares the success rate of
the proposed CAMAOT and that of baselines, when the target’s
movement speed is 3m/s and each camera’s available bandwidth is
0.1MHz. It can be seen that the proposed CAMAOT achieves a sig-
nificant improvement over all the considered baselines, in terms of

the single camera’s success rate and ASR. In particular, compared
to Where2comm and Effi-MAOT, CAMAOT improves ASR by
16.33% and 7.2%, respectively. This performance gain is achieved
by the careful design of resource allocation for dynamic wireless
channels.

Table 1: Success rate comparison for the given movement speed and
bandwidth.

Cam_id
Success Rate(%)

SV When2com Where2comm Effi-MAOT Ours

Cam_1 44.12 54.01 55.82 55.65 61.33

Cam_2 63.93 64.14 64.92 65.73 72.61

Cam_3 32.89 46.18 49.96 68.16 77.56

Cam_4 40.30 45.83 50.01 67.70 74.54

ASR 45.31 52.54 55.18 64.31 71.51

Robustness to target’s movement speed. We compare ASR of
the proposed CAMAOT with that of baselines for various target’s
movement speeds, as shown in Table 2. We see that the proposed
CAMAOT enhances ASR significantly across all the target’s speed
choices. When the target’s speed is 4m/s, CAMAOT achieves the
ASR enhancement of 9.38%, compared to Effi-MAOT. Moreover,
it can be seen from the table that CAMAOT is more robust to the
change of target’s movement speed, while the tracking performance
of all the models degrades with an increase of the target’s movement
speed. For example, when the target’s movement speed increases
from 1m/s to 4m/s, ASR of the proposed CAMAOT decreases by
5.66%, while ASR of Where2comm and Effi-MAOT reduces by
17.12%, and 10.55% respectively. This is because that the optimized
resource allocation in CAMAOT, which is adaptive to the wireless
channel, decreases the overall transmission time, thereby mitigat-
ing the impact of cameras’ delayed rotation, especially for the large
movement speed.

Robustness to communication resources. Fig. 5 shows the ef-
fect of different available communication resources, i.e., bandwidth
and transmit power, on the tracking performance. For SV, there is no
communication among cameras. Then, the tracking performance of
SV is constant for the varying amount of communication resources.

The effect of available bandwidth B on the tracking performance
is shown in Fig. 5(a). We see that compared to the baseline systems,
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Table 2: Comparison results of average success rate at different target
movement speeds.

Models 1m/s 2m/s 3m/s 4m/s

SV 58.31 49.70 45.31 43.74
When2com 69.47 62.26 52.54 50.91

Where2comm 68.58 62.17 55.18 51.46
Effi-MAOT 71.84 65.08 64.31 61.29

Ours 76.33 72.45 71.51 70.67

the proposed CAMAOT achieves a superior ASR over all the avail-
able bandwidth choices. Moreover, this superiority is more obvious
for the low to medium amount of available bandwidth. In particu-
lar, for B = 0.6MHz and B = 0.2MHz, the proposed CAMAOT
improves ASR by 3.13% and 8.52%, respectively, compared to Effi-
MAOT. This is because that a small amount of bandwidth results in
the long transmission time, thereby seriously deteriorating the track-
ing performance. In this case, the optimized bandwidth allocation in
CAMAOT can reduce the transmission time of some critical informa-
tion and mitigate the impact of small amount of bandwidth. Further-
more, it is shown from Fig. 5(a) that in order to obtain a given ASR,
the proposed CAMAOT requires the least bandwidth. When obtain-
ing the ASR of 70%, the required bandwidth of CAMAOT is reduced
by 66.7% and 75%, compared to Effi-MAOT and Where2com, re-
spectively.

Fig. 5(b) shows the effect of transmit power on the tracking perfor-
mance. It can be seen that the proposed CAMAOT achieves a perfor-
mance improvement for all the transmit powers. Similarly to the ef-
fect of available bandwidth, this improvement is more significant for
the low to medium transmit power. Moreover, as the amount of trans-
mit power reduces, the decrease of ASR in the proposed CAMAOT
is much slower than that of baseline systems. It implies the better
robustness to the reduced transmit power. For example, When the
transmit power reduces from 0.5W to 0.1W, ASR of When2comm,
Where2comm, and Effi-MAOT decrease by 9.54%, 12.84%, and
9.07% respectively. The ASR reduction of the proposed system is
only 2.04%. In addition, the proposed CAMAOT can achieve the
same tracking performance with much smaller transmit power than
the baseline systems, which is very beneficial for the cameras with
limited battery capacity. When the tracking performance target is
71%, CAMAOT reduces the transmit power by 5 times, compared
to Effi-MAOT.

6.4 Ablation Studies

To investigate the necessity of different designs in CAMAOT, we per-
form thorough ablation studies. In particular, three following ques-
tions require to be answered: 1) Is dynamic bandwidth allocation
necessary? 2) Is it crucial to dynamically modify the information
compression rate? 3) Is concurrent adjustment of both bandwidth al-
location and information compression rates necessary? To this end,
we present three resouce allocation systems:

• FixedE&EqualB: Cameras select their collaborators as the pro-
cess in CAMAOT. Then, they share information with collaborators
under a given compression ratio and an equally allocated band-
width.

• FixedE: Cameras share information with their selected collabora-
tors under a given compression ratio and an optimally allocated
bandwidth.

• EqualB: Cameras share information with their selected collabora-
tors under an optimal compression ratio and an equally allocated
bandwidth.

Table 3: Ablation study results of the proposed CAMAOT.

Cam_id
Success Rate(%)

FixedE&EqualB FixedE EqualB CAMAOT

Cam_1 45.65 54.91 53.48 61.33

Cam_2 53.82 58.49 58.25 72.61

Cam_3 57.41 62.77 62.87 77.56

Cam_4 60.36 64.67 62.47 74.54

ASR 54.31 60.21 59.27 71.51

Effect of bandwidth allocation optimization. By comparing the
tracking performance of FixedE and FixedE&EqualB in Table3, we
can see that FixedE achieves a higher ASR. This is because that the
optimal bandwidth allocation can mitigate the effect of varying wire-
less channels on the transmission time, especially for the critical in-
formation, so as to improve the tracking performance.

Effect of compression ratio optimization. In Table3, we see
that EqualB improves the tracking performance, compared to
FixedE&EqualB. This verifies the necessity of compression ratio op-
timization. The compression ratio optimization can be adaptive to the
importance of information, to reduce the bandwidth requirement of
less important information transmissions.

Effect of joint bandwidth allocation and compression ratio op-

timization. In Table3, we see that the proposed CAMAOT achieves
the highest ASR, compared to other three systems. In particular, the
proposed CAMAOT achieves an ASR improvement of 11.3% and
12.24% over FixedE and EqualB, respectively. This gain is from
the joint bandwidth allocation and compression ratio optimization in
CAMAOT. By taking the effects of wireless channels and informa-
tion importance into account, this joint optimization can be adaptive
to the environment dynamics.

The results presented in Table 3 demonstrate the performance ad-
vantage of the proposed CAMAOT. In particular, the design of com-
munication graph, information compression, and bandwidth alloca-
tion strategies in the communication decision module can ensure that
the critical information is transmitted with a low delay for varying
wireless channels, to improve the tracking performance.

7 Conclusion

This paper proposed a novel multi-camera active object tracking
system, to overcome the challenges associated with time-varying
communication environments encountered in the practical intelli-
gent surveillance. The proposed channel-aware multi-camera AOT
(CAMAOT) system enhanced collaborative tracking by dynamically
adjusting the communication graph and resource allocation in re-
sponse to changing channel conditions. The RL based implemen-
tation of this communication decision module enabled the system
to efficiently manage communication among cameras, ensuring that
essential tracking information is promptly shared even under band-
width limitations. Extensive experiments in environments that sim-
ulate real-world conditions, have confirmed that CAMAOT consis-
tently outperforms existing systems, in terms of the tracking per-
formance and the communication resource consumption. These re-
sults verified the effectiveness of our proposed system in address-
ing the complexities of real-time, multi-camera tracking in intelligent
surveillance systems.
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[30] K. Zhang, Z. Yang, and T. Başar. Multi-agent reinforcement learning: A
selective overview of theories and algorithms. Handbook of reinforce-
ment learning and control, pages 321–384, 2021.

[31] F. Zhong, W. Qiu, T. Yan, Y. Alan, and Y. Wang. Gym-unrealcv: Real-
istic virtual worlds for visual reinforcement learning. Web Page, 2017.
URL https://github.com/unrealcv/gym-unrealcv.

[32] F. Zhong, P. Sun, W. Luo, T. Yan, and Y. Wang. Ad-vat+: An asym-
metric dueling mechanism for learning and understanding visual active
tracking. IEEE transactions on pattern analysis and machine intelli-
gence, 43(5):1467–1482, 2019.

[33] F. Zhong, X. Bi, Y. Zhang, W. Zhang, and Y. Wang. Rspt: reconstruct
surroundings and predict trajectory for generalizable active object track-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 3705–3714, 2023.

M. Yin et al. / CAMAOT: Channel-Aware Multi-Camera Active Object Tracking System1324


