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Abstract. We introduce a new method for integrating neural
networks with logic programming in Neural-Symbolic AI (NeSy),
aimed at learning with distant supervision, in which direct labels are
unavailable. Unlike prior methods, our approach does not depend on
symbolic solvers for reasoning about missing labels. Instead, it evalu-
ates logical implications and constraints in a differentiable manner by
embedding both neural network outputs and logic programs into ma-
trices. This method facilitates more efficient learning under distant
supervision. We evaluated our approach against existing methods
while maintaining a constant volume of training data. The findings
indicate that our method not only matches or exceeds the accuracy
of other methods across various tasks but also speeds up the learn-
ing process. These results highlight the potential of our approach to
enhance both accuracy and learning efficiency in NeSy applications.

1 Introduction

Neural-Symbolic AI (NeSy) [14, 15] is a field of research aimed
at combining neural networks with symbolic reasoning. While deep
learning is capable of learning complex representations from input-
output pairs, it requires a large amount of training data and struggles
with tasks that require logical reasoning. On the other hand, learning
with symbolic reasoning can be done with small amounts of data,
but it is sensitive to noise and unable to handle non-symbolic data. In
NeSy, it is crucial to combine the roles of neural networks and sym-
bolic reasoning in a way that leverages their respective strengths.

There are various methods for implementing NeSy, including as-
sociating the continuous-valued parameters of neural networks (NN)
with logical language and using the results of logical reasoning as
the value of the loss function (e.g., semantic loss [27]). Also known
are methods that combine symbolic solvers with neural networks,
e.g., DeepProbLog [16] uses Problog for probabilistic logic program-
ming, and NeurASP [28] uses clingo for answer set programming
(ASP). These methods that internally call solvers often encapsulate
computationally expensive problems such as weighted model count-
ing or enumerating stable models in each iteration during learning.

Alternative methods have been proposed that embed inference tra-
ditionally done by symbolic reasoning solvers into vector spaces
and perform symbolic reasoning using linear algebra [20]. One such
method embeds logic programs into vector spaces and designs appro-
priate loss functions based on the semantics of non-monotonic rea-
soning to compute the results of reasoning in a differentiable manner
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[2, 23]. However, these methods have issues such as not being able
to directly handle logical constraints and not being applicable to neu-
ral network learning as is. Thus, in this paper, we propose a method
that enables learning in neural networks for NeSy tasks using logical
programs that include constraints.

Distant supervision is a method of generating labeled data for
learning using rules, external data, or knowledge bases and was pro-
posed by Mintz et al. [17] as a method to train classifiers for rela-
tion extraction based on information from knowledge bases. In NeSy,
tasks where label information is provided through symbolic reason-
ing are commonly used, with MNIST Addition [16] being a repre-
sentative task. In this task, pairs of handwritten digits are input, and
the goal is to learn the classification of handwritten digits with the
sum of the digits provided as the label (e.g., + = 5). Unlike the
usual MNIST classification, in MNIST Addition, the labels are not
given for each image individually. In this case, the relationship be-
tween the sum given as the label and the digits corresponding to the
images is expected to be provided through symbolic reasoning.

In this paper, we propose a novel architecture for NeSy systems
[16, 28] that integrates differentiable logic programming [2, 23] and
neural networks. This paper makes the following contributions:

1. We propose a novel architecture that integrates neural networks
with logic programming through a differentiable approach. This
method facilitates the direct evaluation of logical implications and
constraints using differentiable operations, thus enabling effective
learning under distant supervision without relying on symbolic
solvers for reasoning about missing labels.

2. We demonstrate through experiments with a constant volume of
training data that our proposed method not only matches but, in
some cases, exceeds the accuracy of existing approaches that uti-
lize symbolic solvers. Moreover, we achieved a significant reduc-
tion in the training time for neural networks, highlighting substan-
tial gains in computational efficiency.

The structure of this paper is as follows. After the preliminaries
in Section 2, Section 3 introduces the logic programming semantics
in vector spaces. Section 4 presents our proposed method for using
differentiable logic programming for distant supervision. Section 5
presents the results of experiments and comparison to the state of the
art NeSy methods. Section 6 covers the related works in the literature.
Finally, Section 7 presents the conclusion.
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2 Preliminaries

A normal logic program P is a set of rules of the form:

A← A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An (1)

where A and Ai(n ≥ m ≥ 0) are atoms. In this paper, the terms
‘normal logic program’, ‘logic program’, and ‘program’ are used in-
terchangeably. An atom is a predicate with some arity, e.g., p(X,Y ),
where variables are represented by upper case characters, and pred-
icates and constants are represented by lower case characters. A lit-
eral is either an atom p, or its negation ¬p. The atom A in (1) is the
head and {A1, . . . , An} is the body of a rule. For each rule Ri of the
form (1), define head(Ri) = A, body+(Ri) = {A1, . . . , Am} and
body−(Ri) = {Am+1, . . . , An}.

The Herbrand universe of a logic program P is the set of all
ground terms in the language of P , i.e., terms composed of function
symbols and constants that appear in P . The Herbrand base BP is
the set of atoms that can be formed from the relations of the program
and terms in the Herbrand universe. We assume that the Herbrand
base BP of a program to be lexicographically ordered.

A rule with an empty body is a fact. A program P is definite if no
rule in P contains negation as failure. A program, a rule, or an atom
is ground if it is variable free. A program P is semantically identified
with its ground instantiation, ground(P ), by substituting variables
in P by elements of its Herbrand universe in every possible way.

An interpretation I ⊆ BP satisfies a rule Ri of the form (1) if
body+(Ri) ⊆ I and body−(Ri) ∩ I = ∅ imply A ∈ I . An inter-
pretation that satisfies every rule in a program P is a model of the
program. A model of a program is supported if for each atom p ∈ I ,
there exists a ground rule such that I satisfies its body [1]. A model
M is minimal if there is no model J of P such that J ⊂ M . A defi-
nite program has a unique minimal model, which is the least model.

Given a normal logic program P and an interpretation I , the reduct
P I , which is a ground definite program, is constructed as follows: a
ground rule A ← L1, . . . , Lm is in P I iff there is a ground rule of
the form (1) such that body−(Ri) ∩ I = ∅. If the least model of P I

is identical to I , then I is a stable model of P [13]. For a definite
program, the stable model coincides with the least model. A stable
model is always supported, but the converse does not hold in general.

Supported models can be computed as the models of Clark’s com-
pletion [5]. Let heads(P, a) be the set of rules in P whose head is
a. The completion of P , denoted comp(P ), is the set of clauses

a↔
∨

Ri∈heads(P,a)

body(Ri) (2)

for all a ∈ BP . A model of comp(P ) is a supported model of P [1].
Let I ⊆ BP be an interpretation of P . The relation |= is defined

as follows: for a rule Ri of the form (1), I satisfies Ri if head(Ri)∩
I �= ∅ whenever body(Ri) ⊆ I , and denoted as I |= Ri; for a
program P , I satisfies P if I |= Ri for all Ri ∈ P ; for a formula
F = F1 ∨ · · · ∨ Fk (k ≥ 0), I |= F iff there is a Fi (k ≥ i ≥ 1)
such that I |= Fi, i.e., the empty disjunction is false. Let comp(Rp)
denote the completed rule (p↔ body(Rp1) ∨ · · · ∨ body(Rpj)) for
the atom p, then p ∈ I iff I |= comp(Rp).

3 Semantics

In this section, we consider the semantics of ground normal logic
programs in vector spaces. First, we introduce the necessary nota-
tions. Matrices are denoted using bold uppercase letters (M), and

vectors are denoted using bold lowercase letters (v). The element in
the i-th row and j-th column of a matrix is denoted by Mij , and the
i-th element of a vector is denoted by vi. The slice of the i-th row of a
matrix is denoted by Mi:, and the slice of the j-th column is denoted
by M:j . Variables are denoted by upper case letters, and constants
and predicates are denoted by lower case letters; e.g., in sum(L), L
is a variable and sum/1 is a predicate with arity 1.

3.1 Embedding Normal Logic Programs

Given a ground normal logic program P , we introduce two matrices
that jointly represent the program. The program matrix represents
the bodies of the rules in the program, and the head matrix represents
their disjunctions. This is an alternative formulation to the embed-
ding approach described by Sakama et al. [20].

Definition 1 (Program Matrix). Let P be a ground normal logic pro-
gram with R rules and the size of its Herbrand base be |BP | = N .
Then P is represented by a binary matrix Q ∈ {0, 1}R×2N such
that i-th row corresponds to the body of the i-th rule Ri: Qij = 1 if
aj ∈ body+(Ri), Qi(N+j) = 1 if aj ∈ body−(Ri), and Qij = 0
otherwise.

Definition 2 (Head Matrix). Let D ∈ {0, 1}(N×R) be the head ma-
trix associated with P . Then the element Dji = 1 if the head of rule
Ri(1 ≤ i ≤ R) is aj(1 ≤ j ≤ N), and 0 otherwise.

Example 1. Consider the following program P1 with 3 rules:

(R1) a← c ∧ ¬b (R2) a← a (R3) b← ¬a (3)

P1 is encoded into a pair of matrices (Q,D):

Q =

⎛
⎝

a b c ¬a ¬b ¬c
R1 0 0 1 0 1 0
R2 1 0 0 0 0 0
R3 0 0 0 1 0 0

⎞
⎠ D =

⎛
⎝

R1 R2 R3

a 1 1 0
b 0 0 1
c 0 0 0

⎞
⎠ (4)

Q represents the bodies of the rules, which are the conjunctions
of the literals appearing in the bodies. For example, Q1: represents
the body of R1, (c ∧ ¬b). D represents the disjunctions of the bodies
of the rules sharing the same head. For example, D1: represents the
disjunction body(R1)∨ body(R2) = (c ∧ ¬b)∨ a. Together, Q and
D represent the logic program P .

3.2 Evaluating Embedded Normal Logic Programs

We consider the conjunction appearing in the bodies of the rules as
the negation of disjunctions of negated literals using De Morgan’s
law, i.e., L1 ∧ · · · ∧ Ln = ¬ (¬L1 ∨ · · · ∨ ¬Ln). This means that
when evaluating the body of a rule, instead of checking whether all
literals hold (as in [23]), we can count the number of false literals
and check whether the count exceeds 1. To this end, we introduce a
piecewise linear function min1(x) = min(x, 1) = ReLU(1 − x),
which gives 1 for x ≥ 1. This function is almost everywhere differ-
entiable (except at x = 1), which allows gradient-based optimization
to be applied effectively.

To evaluate normal logic programs in vector spaces, we introduce
the vectorized counterparts of interpretation and model.

Definition 3 (Interpretation Vector). Let P be a ground normal logic
program. An interpretation I ⊆ BP is represented by a binary vector
v = (v1, . . . ,vN )ᵀ ∈ Z

N where each element vi (1 ≤ i ≤ N)
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represents the truth value of the proposition ai such that vi = 1
if ai ∈ I , otherwise vi = 0. We assume propositional variables
share the common index such that vi corresponds to ai, and we write
idx(vi) = ai.

Definition 4 (Complementary Interpretation Vector). The comple-
mentary interpretation vector w ∈ Z

2N is a binary vector, which is
a concatenation of the interpretation vector v and its complement:
w = [v;1N − v].

Proposition 1. (Embedding Models of Normal Logic Programs) Let
P = (Q,D) be an embedding of a ground normal logic program
P , dist(·, ·) be a distance function in a metric space, v be an inter-
pretation vector representing I ⊆ BP , and w be its complementary
interpretation vector. Then, for an interpretation vector v,

I |= comp(P ) iff dist

(
v,min1

(
D
(
1−min1

(
Q(1−w)

))))
= 0

Proof. (Sketch; full proof in the Appendix [24].) A row slice of the
program matrix Qi: corresponds to the body of a rule Ri, so the
matrix-vector products Qi:w and Qi:(1−w) computes the number
of true and false literals in I , respectively. The conjunctions can be
computed as the negation of disjunctions of negated literals using De
Morgan’s law, i.e., 1−min1(Qi:(1−w)).

Let {Rai} = {ai ← Bj , . . . , ai ← Bt} be the set of rules that
share the same head atom ai, where Bj denote the rule bodies, and
Bj ∨ · · · ∨Bt be the disjunction of the rule bodies. By construction
of the head matrix D, Di:(1 − min1(Q(1 − w))) computes the
number of true rule bodies that share the same head. Thus, hi =

min1

(
Di:

(
1 − min1

(
Q(1 − w)

)))
= 1 if there is at least one

rule body that is true in I and in the disjunction Bj ∨ · · · ∨ Bt,
and 0 otherwise. Then computing hi corresponds to the evaluation
of I |= comp(Rai). This can be generalized to the entire matrix.

Let hI = min1

(
D
(
1 −min1

(
Q(1 −w)

)))
, then the second

part of the iff relation is simplified to dist(v,hI)) = 0.

• If I |= comp(P ), then dist(v,hI) = 0.
Suppose I |= comp(Rai), then there is at least one rule body
that is true in I , so hI

i = 1. Otherwise, when we have I �|=
comp(Rai), h

I
i = 0. Therefore, it holds that hI

i = vi, and since
the index i is arbitrary, we have v = hI

i , i.e., dist(v,hI) = 0.
• If dist(v,hI) = 0, then I |= comp(P ).

Consider dist(v,hI) = 0. For hI
i = 1, there is at least one rule

body that is true in I , and for hI
i = 0, there is no rule body

that is true in I . Since we have vi = hI
i , for vi = hI

i = 1,
ai ↔ ∨

Rj∈heads(P,ai)
body(Rj) is satisfied and denote I |=

comp(Rai), and for vi = hI
i = 0 denote I �|= comp(Rai).

Since the index i is arbitrary, we conclude I |= comp(P ).

Example 2. (Example 1 contd.) Consider the program P1 and cor-
responding matrices Q and D from Example 2. This program has
2 supported models {{a}, {b}}. Let v{a} = (1 0 0)� represent
the interpretation {a}, and w be its complementary interpretation
vector. We have hI = (1 0 0)� = v, and take the Euclidean dis-

tance: dist(v,hI) =
√∑3

i=1(vi − hI
i ) = 0. Therefore, according

to Proposition 1, I |= comp(P1).

The vector h = min1

(
D
(
1 − min1

(
Q(1 − w)

)))
serves as

the head vector, which is an indicator vector representing true atoms
following the evaluation of rule bodies in the logic program. This
will be used later to define the loss function in Section 4.1.4.

3.3 Embedding and Evaluating Constraints

A constraint is a rule with an empty head, e.g.,← a ∧ b represents a
constraint where a and b must not both be true simultaneously. Since
constraints are rules in a program, we embed them into a constraint
matrix C in the same manner as the program matrix P. Note that we
do not require the head matrix because constraints have empty heads.

Definition 5 (Constraint Matrix). Let C = {C1, . . . , Ck} = {←
B1, . . . ,← Bk} be the set of constraints in a program P with
|BP | = N . Then the matrix corresponding to the constraints is
C ∈ {0, 1}(k×2N) such that i-th row corresponds to the body of
the i-th constraint Ci: Cij = 1 if aj ∈ body+(Ci), Ci(N+j) = 1 if
aj ∈ body−(Ci) and Cij = 0 otherwise.

To evaluate the constraints, we check whether the bodies of the
constraint rules are in I: given a constraint Ri, if body(Ri) ⊆ I then
the constraint is violated; otherwise it is satisfied.

Proposition 2. (Evaluating Constraints) Let C be an embedding of
constraints C, dist(·, ·) be a distance function in a metric space, v
be an interpretation vector representing I ⊆ BP , and w be its com-
plementary interpretation vector. Then, for an interpretation vector
v, it holds that I �|= C iff dist(1,min1(C(1−w))) = 0.

Proof. Proved similarly to Proposition 1. Let cI = min1(C(1 −
w)). Consider the i-th constraint Ci and the corresponding row slice
Ci:. The existence of at least one false literal in the body is computed
by cIi = min1(Ci:(1 −w)), where cIi = 1 if there is a false literal
and cIi = 0 otherwise, i.e., when cIi = 0, the body is satisfied and
the constraint is violated.

Suppose I �|= Ci, then there is at least one false literal in the body
of Ci, so min1(Ci:(1 −w))) = 1. Repeat this for all Ci ∈ C, we
obtain a 1-vector, which means there is at least one false literal in the
bodies of all constraints. By definition, dist(1,1) = 0. The converse
can be proved similarly.

Example 3. Consider the constraint← a ∧ b. Then we have:

C =
( a b c ¬a ¬b ¬c

C1 1 1 0 0 0 0
)

(5)

We examine two scenarios: in the first, the constraint is violated, and
in the second, it is not. Let cI = min1(C(1 − w)) and dist(·, ·)
denote the Euclidean distance, then, for the following cases,

• v{a,b} = (1 1 0): we obtain c{a,b} = (0), and dist(1, c{a,b}) =
1, so we conclude that the constraint is violated.

• v{a} = (1 0 0): we obtain c{a} = (1), and dist(1, c{a,b}) = 0,
so we conclude I �|= C.

For later use in the loss function (Section 4.1.4), we define the
constraint violation vector c′ as c′ = 1−c = 1−min1(C(1−w)).
Intuitively, this modification turns c into an indicator vector, where
each element c′i = 1 means that the i-th constraint is violated.
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4 Learning with Differentiable Logic Program

In this section, we show how the aforementioned differentiable logic
program semantics can be used to train neural networks. Although
our method supports both implication and constraint rules, it is not
always necessary to use both of them for learning, as we shall show
later in the experimental section. Specifically, for the NeSy tasks
we studied, using exclusively either one of implication or constraint
rules is enough to achieve competitive accuracy. On the other hand,
in NeurASP [28] for example, the observation atoms are typically
given as integrity constraints in ASP rules to compute stable models,
and implication rules are defined similarly to ours. Consequently, we
included a combination of both implication rules and constrains in
our experiments to provide a thorough evaluation.

4.1 Example: MNIST Addition

The MNIST digit addition problem [16] is a simple distant supervi-
sion task that is commonly used in neural-symbolic literature. The
input consists of two images, and the output is their sum (e.g., ,

, 9). The goal is to learn digit classification from the sum of dig-
its, rather than from images with individually labeled digits, as in the
usual MNIST digit classification. For brevity, we shall focus on the
single digit additions in this section.

We first introduce neural predicates [16], which act as an interface
between the neural and logic programming parts. More concretely,
a neural predicate is a predicate which can take references to ten-
sorized objects as arguments. A neural atom is an instance of a neural
predicate, representing a specific combination of values or variables.
For example, in MNSIT Addition, we define two neural predicates,
obs/4 and label/3. obs(i1, D1, i2, D2) represents a situation where
images i1 and i2 were classified as digits D1 and D2 ranging from
0 to 9, respectively. label(i1, i2, S) represents the two images and
their sum S ranging from 0 to 18. Thus, we obtain 100 obs and 19
label neural atoms.

4.1.1 Implication rules

In general, we expect the label atoms to appear in the heads of the
implication rules so that we can compare the output of the logic pro-
gramming component with the label using a loss function such as
binary cross entropy. For a single digit MNIST Addition, the label is
the integer values between 0 and 18 represented by the label/3 pred-
icate. As for the individual rules, we enumerate the possible combi-
nations of digits that sum to the given label, e.g.,

label(i1, i2, 0)← obs(i1, 0, i2, 0).

label(i1, i2, 1)← obs(i1, 0, i2, 1).

label(i1, i2, 1)← obs(i1, 1, i2, 0).

. . .

label(i1, i2, 18)← obs(i1, 9, i2, 9). (6)

In this way, 100 rules with label/3 in the heads can be instantiated,
which results in the embedded program Pimpl. = (Qimpl.,Dimpl.)
where Qimpl. ∈ {0, 1}(100×200) and Dimpl. ∈ {0, 1}(19×100).

4.1.2 Constraints

In the case of MNIST Addition, constraints can be represented with
smaller number of rules compared to the implication rules, e.g.,

← label(i1, i2, 0) ∧ ¬obs(i1, 0, i2, 0).
← label(i1, i2, 1) ∧ ¬obs(i1, 0, i2, 1) ∧ ¬obs(i1, 1, i2, 0).
. . .

← label(i1, i2, 18) ∧ ¬obs(i1, 9, i2, 9). (7)

Intuitively, one can read the first rule as “when the label is 0, both
of the digits must be 0”. This essentially amounts to enumerating all
possible combinations of digits that sum to the label and adding them
as negative literals to the rule bodies. Preparing constraints for each
label results in a constraint matrix C ∈ {0, 1}(19×238).

4.1.3 Handling Neural Network Outputs

Here, the outputs of the neural network combined with facts evident
from the problem and labels are treated as a continuous interpreta-
tion. Facts evident from the problem refer to, for example, the three
digits (d1, d2, d3) in the Apply2x2 task or the given digit number in
the Member task. The details of the Apply2x2 and Member tasks will
be explained later in the experiment section. The label information is
also incorporated into this continuous-valued interpretation vector.

Definition 6 (Continuous-valued Interpretation Vector). Let x ∈
[0, 1]N be the output passed through the last layer of the neural net-
work. Let f ∈ {0, 1}N represent facts from the problem that are
not dependent on NN’s output, and lb ∈ {0, 1}N represent the la-
bel information available from the instance. If the number of ele-
ments in x, f or lb is less than N , pad appropriately with zeros.
The continuous-valued interpretation vector z is computed as fol-
lows: z = x+ f + lb.

In MNIST Addition, facts are not available from the problem set-
tings, so we only focus on the neural network outputs and labels. In
this task, the inputs to the (convolutional) neural network are two im-
ages (i1, i2). After passing through the Softmax activation, we obtain
two output vectors x1,x2 ∈ [0, 1]10 as (probabilistic) outputs. To
map these vectors to 100 obs neural atoms, we compute their Carte-
sian product and obtain x ∈ [0, 1]100: x = x1×x2. Depending on
the problem, the dimension of the continuous-valued interpretation
vector may be different for implication and constraints. In MNIST
Addition, for implication rules it is not necessary to have label in the
interpretation vector, as they are the heads of the rules. On the other
hand, it is necessary to include label in the interpretation vector for
evaluating constraints, as they are present in the rule bodies. It is im-
perative that the indexing remain consistent across all vectors and
matrices; otherwise we risk neural network outputs being mapped to
incorrect neural atoms.

The learning pipeline is shown in Figure 1. Firstly, the input im-
ages are classified using the CNN, and we associate its probabilistic
output with neural atoms obs/4. Then, using the neural atoms and
label information, we obtain the logical loss which can be used to
train the CNN with gradient backpropagation.
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CNN

10

Implications
label(i1,i2,0) :- obs(i1,0,i2,0).

 label(i1,i2,1) :- obs(i1,0,i2,1). ...

Constraints
:- label(i1,i2,0), not obs(i1,0,i2,0).
 :- label(i1,i2,1), not obs(i1,0,i2,1), not obs(i1,1,i2,0). ...

(D1)

0
1
...
9

(D2)

0
1
...
9

obs(i1,0,i2,0)
obs(i1,0,i2,1)
...
obs(i1,9,i2,9)
label(i1,i2,1)
...
label(i1,i2,18)

Probabilistic
Output Neural

atoms

Program matrix

Constraint matrix

Embed

Embed

Logical Loss

Gradient
Backpropagation

Label

Inputs

+

=

Figure 1. The learning pipeline for MNIST Addition.

4.1.4 Loss Function

Using the embedded program, continuous-valued interpretation vec-
tor and label information, the loss function is defined as follows:

h = min1

(
D
(
1−min1

(
Q(1−wz)

)))
(8)

c′ = 1−min1(C(1−wz)) (9)

L = Limpl. + Lcons. = BCE(h, lb) +BCE(c′,0) (10)

where BCE stands for binary cross-entropy, lb corresponds to the
label vector, and 0 is a zero vector with the same dimension as c′.
Note that wz here is the complementary interpretation vector based
on the continuous-valued interpretation vector z which contains neu-
ral atoms, facts and labels: wz = [z;1N − z]. When the continuous
valued interpretation vector is a binary one, h corresponds to the in-
terpretation I . If all atoms that are supposed to be true in I are true,
then the BCE loss will be 0. c′ corresponds to an indicator vector for
the violated constraints. Thus, c′ should be all 0 when all constraints
are satisfied. Combining the aforementioned BCE’s, the loss function
will be 0 iff all implied neural atoms are true, and all constraints are
satisfied.

The difference between programs (6) and (7) lies in their struc-
ture: implication rules may contain label neural atoms in the head,
whereas constraints always contain label neural atoms in the body.
Implication rules present a more straightforward approach for rep-
resenting partial information in the form of logical rules, especially
in scenarios where employing intermediate predicates is necessary
or enumerating constraints is time-consuming. In the context of the
NeSy tasks examined in this study, we observed a consistent pattern
where implication rules are typically comprised of straightforward
forward inference rules, and constraints are formed from a fewer
number of rules. Each of these constraints contains a label neural
atom alongside a series of negated observation atoms in their body.

Based on the definition of the combined loss function, it is clear
that only one is necessary for accomplishing the MNIST Addition
task. The first BCE is essentially the same as the one for a 19-label
multiclass classification task (labels spanning from 0 to 18), while
the second BCE corresponds to a multiclass classification with an
all-0 label.

The evaluation of implication rules ensures that if the correct la-
bel’s corresponding atom is derived as the head, Limpl. becomes
0. Similarly, if all constraints are satisfied, then Lcons. becomes 0.
Since both the evaluation of implication rules and constraints are de-
fined in a (almost-everywhere) differentiable manner, it is possible to

train the neural network using this loss function through backpropa-
gation.

5 Experiments

5.1 Task Description

We studied the learning performance on the following NeSy tasks.

MNIST Addition [16]

The input consists of two MNIST images of digits (i1, i2), and the
output is their sum (e.g., , , 9). The goal is to learn image clas-
sification from the sum of digits, rather than from images with in-
dividually labeled digits, as in the usual MNIST classification. This
paper deals with two types: single-digit additions (two images), and
two-digit additions (four images).

ADD2x2 [12]

The input is four MNIST images of digits (i11, i12, i21, i22) arranged
in a 2x2 grid, and the output is four sums (s1, s2, s3, s4) calculated
from each row and column of the grid (e.g., , , , , 1, 8, 3, 6).
The goal is to learn the classification problem of MNIST images from
the four sums provided as labels.

APPLY2x2 [12]

The input consists of three numbers (d1, d2, d3) and four handwrit-
ten operator images (o1, o2, o3, o4) arranged in a 2x2 grid, with
the output being the results (r1, r2, r3, r4) of operations performed
along each row and column of the grid. The operators are one of
{+,−,×}. For example, the result for the first row is calculated
as r1 = (d1 op11 d2) op12 d3 (e.g., 1, 2, 4, , , , ,
6,−4,−2, 12). The goal is to learn the classification of handwritten
operators from the four results and three numbers given as labels.

MEMBER(n) [25]

For n=3, the input consists of three images (i1, i2, i3) and one num-
ber (d1), with the output being a boolean indicating whether d1 is
included in the three images (e.g., , , , 4, 0). For n=5, the
input includes five images (i1, ..., i5). The goal is to learn the clas-
sification problem of MNIST images from the numbers provided as
labels. This paper deals with two types: n=3 and n=5.
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5.2 Implementation and Experimental Setup

The methods introduced in the previous section were implemented
in PyTorch. The convolutional neural network (CNN) used in the
experiments is the same as those in [16] and [28]. The experimental
environment is an AMD Ryzen 7950X (16c/32t), 128GB RAM, and
an NVIDIA A4000 (16GB), with settings to utilize the GPU as much
as possible. The number of training data was 30,000 and 15,000 for
Addition 1 and 2, respectively, and 10,000 for other tasks. Unless
otherwise noted, the number of epochs and batch size for all tasks
were set to 1, and Adam was used with a learning rate of 0.001. Each
experiment consisted of 5 repeated trials, and the average is reported.
The timeout was set to 30 minutes per trial.

5.3 Results

Table 1 shows the dimensions of the program matrix P, head matrix
D, and constraint matrix C. In terms of the number of rules in re-
spective programs, the constraint matrix is usually smaller than the
implication matrix, because each constraint rule (row) is often an
enumeration of conditions for the target atom, whereas in the impli-
cation matrix, multiple rules (rows) can share the same head. The rate
of growth of the program matrix is highly task dependent; for exam-
ple, adding two digits to the MNIST Addition task result in adding
10,000 elements to the matrix, whereas adding two digits to the set
in the Member task results in adding a few thousand elements.

Table 1. Dimensions of program matrices

P (implication) D (head) C (constraint)
Addition 1 100× 200 19× 100 19× 238
Addition 2 10000× 20000 199× 10000 199× 20398
Add2x2 400× 800 76× 400 76× 952
Apply2x2 11979× 2680 10597× 11979 10597× 23874
Member 3 40× 60 20× 40 40× 100
Member 5 60× 100 20× 60 60× 140

The accuracy and training time are reported in tables 2 and 3, re-
spectively. In the tables, I indicates training using only implication
rules, C indicates training using only constraints, and I+C indicates
training using both implication rules and constraints. DPL, DSL and
NASP are abbreviations for DeepProbLog [16], DeepStochLog [26]
and NeurASP [28], respectively.

Table 2 shows the average accuracy of MNIST digit classifica-
tion and math operator classification. It can be seen that while the
proposed method achieved comparable accuracy to the comparison
methods in MNIST Addition and Add2x2, it significantly outper-
formed the comparison methods in Apply2x2. However, in Member
3, the accuracy was lower. Comparing the use of implication rules,
constraints, or both, there was no significant difference except for
Member(n), where using either implication rules or constraints alone
tended to result in higher accuracy than using both. In particular,
for Member 5 tasks, combining implication rules and constraints led
to significantly worse performance compared to individual applica-
tions. This suggests that we might need to modify the combination
loss or consider introducing a scheduler for improving training per-
formance.

Table 3 shows the average training times of each method. Except
for Apply2x2, it is evident that the proposed method can learn faster
than existing methods. Especially in Member 5, where comparison
methods timed out, the proposed method processed 10,000 training
instances in about 13 seconds, showing a significant speed difference.
The long training time for Apply2x2 can be attributed to the rather

Table 2. Accuracy on digit and operator classification. The numbers in
parentheses indicate timeouts (30 min).

Accuracy (%) Comparisons Ours
DPL DSL NASP I C I+C

Addition 1 97.8 95.8 97.7 97.7 97.5 97.4
Addition 2 97.7 97.8 97.8 97.5 97.9 97.8
Add2x2 T/O(5) 98.0 97.5 97.7 97.6 97.9
Apply2x2 87.8 87.8 80.9 99.5 99.4 99.4
Member 3 92.3(3) 92.9 91.7 87.8 87.0 84.6
Member 5 T/O(5) T/O(5) T/O(5) 86.3 86.4 69.5

naive implementation used in this experiment. In our implementa-
tion, Apply2x2 required a more fine-grained control over indexing,
necessitating the use of less efficient ’for-loops’ to avoid neural net-
work outputs being mapped to incorrect neural atoms. In contrast,
in other tasks, the more efficient vectorized operations were used to
compute the Cartesian product.

Table 3. Learning times of each method. The numbers in parentheses
indicate timeouts (30 min).

Time (sec) Comparisons Ours
DPL DSL NASP I C I+C

Addition 1 470.7 20.8 84.7 31.4 31.4 35.9
Addition 2 1120 33.6 283.5 83.5 19.9 87.4
Add2x2 T/O(5) 35.8 131.1 16.9 16.2 18.0
Apply2x2 323.3 127.7 25.5 154.4 228.5 359.5
Member 3 1782(3) 398.4 191.9 10.3 10.3 11.9
Member 5 T/O(5) T/O(5) T/O(5) 11.6 11.7 13.4

Figure 2. Test accuracy (%) during training.

Figure 2 shows the test accuracy during training.1 We see that
1 This is from a different set of experiments, as such, the results presented

in this figure do not necessarily match those in Table 2 and Table 3. The
timeout was set to 2 hours per trial.
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the addition tasks (MNIST Addition and Add2x2) can be handled
equally well by our method, NeurASP and DeepStochLog. The dif-
ference is more pronounced for Apply2x2 and Member3, and in
Apply2x2, we observe that DeepStochLog plateaus quickly while
NeurASP fluctuates around 80%. In Member 3, NeurASP leads in
terms of accuracy up to 5,000 iterations, other methods catch up after
9,000 iterations. Finally, it is interesting that the implication rule only
method performs well in Member 5 compared against constraint only
or the combination of both. This suggests that there might be tasks
that can be learned better by certain types or combinations of pro-
grams, although it is difficult to know beforehand which one would
perform the best.

6 Related Work

Xu et al. [27] introduced the semantic loss that leverages sentential
decision diagrams for efficient loss calculation, enabling effective
learning in both supervised and semi-supervised settings. LTN [4]
and LNN [18] embed first-order logic formulas using fuzzy logic
within neural network architectures. Our approach is similar to the
semantic loss, in the sense that we evaluate the neural output using a
differentiable loss function to train the neural network by backprop-
agation. On the other hand, our approach does not require weighted
model counting, nor direct embedding of logical operations, and the
logic programming semantics is kept separate from the perception
neural network.

Parallel to direct integration strategies, significant work has been
conduced on coupling neural outputs with symbolic solvers. For in-
stance, DeepProbLog [16], DeepStochLog [26], NeurASP [28], and
NeuroLog [25] facilitate inference by integrating the neural out-
puts as probabilities or weighted models within a symbolic solver.
While these approaches can utilize logical constraints and back-
ground knowledge represented by logical programs, the computa-
tional cost of symbolic reasoning can become a bottleneck during
learning. Distinct from the aforementioned coupling approaches, the
focus shifts more towards reasoning rather than simultaneous learn-
ing in neural-symbolic systems proposed by Eiter et al. [8] and Em-
bed2Sym [3]. In the pipeline proposed by Eiter et al. [8], the neural
network is trained separately, and predictions that pass a predefined
confidence threshold are then translated into logic programs for rea-
soning with ASP.

Various neural-symbolic approaches have been developed for
symbolic rule learning, with varying degree of integration between
logical reasoning and neural computation. Neural Theorem Provers
[19] and ∂ILP [9] allow end-to-end differentiable learning of ex-
planatory rules from data. Similarly, frameworks like NeuroLog
[25], NSIL [6], and the Apperception Engine [10] integrate sym-
bolic solvers to enhance the reasoning processes, utilizing the out-
put from neural networks represented as logical constructs. Addition-
ally, αILP [22] and DFORL [11] extend the capabilities of inductive
logic programming (ILP) by making the learning process differen-
tiable. In particular, αILP is designed for visual scene understand-
ing, while DFORL focuses on relational data, demonstrating the ver-
satility of differentiable ILP in handling diverse data types. In Neu-
ral Logic Machines [7], the architecture of the neural network itself
is designed to mimic logical reasoning processes, thereby learning
to approximate symbolic rules. In contrast to these methods, which
predominantly focus on enhancing the logic programming aspects
within neural frameworks, our approach focuses more on enhancing
the training of neural networks themselves, and we leave the induc-
tive learning of logic programs for future work.

Recent advancements have explored various methods for repre-
senting logic programming semantics in vector spaces, each with dis-
tinct embedding strategies and computational techniques. Notably,
Sakama et al. [20] proposed a method to embed logic programs into
vector spaces, and compute logic programming semantics using lin-
ear algebra. More specifically, their method allows for the compu-
tation of stable models as fixpoints through repeated tensor mul-
tiplications. However, a significant limitation from the standpoint
of neural-symbolic integration is the non-differentiability of their
method, which complicates direct integration with neural networks.
Other matrix-based approaches by Sato et al. [21] and Takemura and
Inoue [23] use binary program matrices to represent logic programs.
While Sato et al. [21]’s method is non-differentiable, the one pro-
posed by Takemura and Inoue [23] is based on a differentiable loss
function, where the interpretation vector is treated as the input to
this loss function, and the loss is minimized by updating the inter-
pretation vector using the gradient of the loss function. Similarly,
Aspis et al. [2] proposed a method based on a root-finding algorithm,
which presents yet another computational strategy in this domain. In
contrast to these existing methods, our approach computes supported
models in vector spaces without imposing restrictive conditions on
program structures that require the rewriting of same head rules, for
example. The method presented in this paper does not minimize the
loss function by updating the interpretation vector using the gradient
information, and the loss is reduced by updating the parameters of the
neural network to predict the correct intermediate labels in a distant
supervision setting. To the best of our knowledge, no other imple-
mentation exists that utilizes the differentiable logic programming
semantics for training neural networks in neural-symbolic settings.

7 Conclusion

We proposed a method to assist the learning of neural networks with
logic programs and verified its effectiveness in NeSy tasks. This
method is based on a differentiable logic programming semantics,
where continuous-valued interpretation vectors contain outputs of
neural networks, and evaluation of implication rules and constraints
are incorporated into a loss function, enabling the learning of neu-
ral networks under the distant supervision settings. The experimental
results showed that it is possible to achieve comparable accuracy to
those based on symbolic solvers, and with an exception, the proposed
method completed the neural network training much faster than the
existing methods.

The findings of this study demonstrate the effectiveness of the ap-
proach based on the differentiable logic programming semantics for
enabling high-accuracy and fast learning in NeSy. Future work in-
cludes applying the proposed method to more complex NeSy tasks.
Additionally, a more detailed analysis of the balance between con-
straints and implication rules is necessary. In the tasks addressed in
this study, there was little difference between using constraints and
implication rules, but this might vary by task. Another limitation is
that the semantics as presented currently is only valid for crisp 0-
1 interpretations, so other continuous-valued interpretations do not
necessarily have natural meanings associated with them. To this end,
it might be interesting to seek connections between the differentiable
logic programming semantics and fuzzy logic.
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