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Abstract. Clifford algebras are a natural extension of division al-
gebras, including real numbers, complex numbers, quaternions, and
octonions. Previous research in knowledge graph embeddings has fo-
cused exclusively on Clifford algebras of a specific type, which do
not include nilpotent base vectors—elements that square to zero. In
this work, we introduce a novel approach by incorporating nilpo-
tent base vectors with a nilpotency index of two, leading to a more
general form of Clifford algebras named degenerate Clifford alge-
bras. This generalization to degenerate Clifford algebras does allow
for covering dual numbers and as such include translations and ro-
tations models under the same generalization paradigm for the first
time. We develop two models to determine the parameters that define
the algebra: one using a greedy search and another predicting the pa-
rameters based on neural network embeddings of the input knowl-
edge graph. Our evaluation on seven benchmark datasets demon-
strates that this incorporation of nilpotent vectors enhances the qual-
ity of embeddings. Additionally, our method outperforms state-of-
the-art approaches in terms of generalization, particularly regarding
the mean reciprocal rank achieved on validation data. Finally, we
show that even a simple greedy search can effectively discover opti-
mal or near-optimal parameters for the algebra.

1 Introduction

Knowledge graphs (KGs) are used in an increasing number of appli-
cations and domains [24]. While several formalizations of KGs exist
[12], we consider knowledge graphs K ⊆ E×R×E , where E and R
represent a set of entities and relations respectively. The elements of
a knowledge graph are called assertions (sometimes also facts), and
are triples 〈x,y,z〉 where x is called the head (also called subject),
y the relation (also called predicate) and z the tail (also called ob-
ject) of the assertion [12]. For example, a KG may contain the triple
〈Berlin,capitalOf,Germany〉, which states that Berlin is the
capital of Germany. This triple can be used to answer questions such
as "What is the capital of Germany?" or "What is Berlin?" [6]. While
knowledge graphs have existed since for decades [12], the term was
popularized by Google in 2012 [20], and its use has since surged
[6, 12].

KGs are often embedded into vector spaces to make them
amenable to classical machine learning [24]. While initial ap-
proaches operated in R [14], it is evident from the existing litera-
ture that other division algebras facilitate the modelling of complex

relations patterns, e.g., symmetry, and asymmetry. For example, the
ability to model symmetric and asymmetric relations is conferred to
ComplEx [22] by its use of complex numbers. Recent embedding
models have hence moved from real numbers to more complex num-
ber systems such as C, H, multi-vectors [26] and even Clifford Alge-
bras Clp,q(R) [9].

In particular, embeddings in Clifford algebras Clp,q(R) have re-
cently been shown to achieve a significant improvement over the state
of the art when used in combination with dimension scaling thanks to
their ability to generalize over all normed division algebras [9] (see
Table 1 for more details). The resulting approach, KECI, was shown
to be a strict generalization of existing multiplicative embeddings
approaches such as DistMult and ComplEx. However, none of the
approaches based on dual numbers (e.g., [3]) could be generalized
by this approach. This paper addresses this weakness by discarding
the assumption of a non-degenerate quadratic form Q, which under-
pins KECI (see Section 4 for more details). In contrast, we assume
that the quadratic form Q that underpins our algebra can be degen-
erate, thus leading to r base vectors being degenerate (e.g., nilpotent
vectors ek with e2k = 0). Our novel embedding approach, dubbed
DECAL (Embedding in degenerate Clifford algebras), thus computes
embeddings in Clp,q,r(R).

2 Related Work

Knowledge graph embeddings (KGE) models typically map an input
KG K into a low-dimensional and continuous vector space. Accord-
ing to the review in [6], the plethora of KGE methods existing in
the literature can be categorized into two main groups: translational
models and multiplicative models. One of the first translational mod-
els is TransE [2]: Given an assertion 〈x,y,z〉 ∈ K, TransE’s idea
boils down to optimizing for x + y ≈ z if 〈x,y,z〉 holds, where
x,y, z ∈ R

d and represent the embeddings of x,y and z respec-
tively. The publication of TransE led to the development of several
other similar models (e.g., TransH, TransR, TransD and RotatE) that
address some of its main shortcomings, e.g., its poor modeling of re-
flexive, one-to-many, many-to-one and many-to-many relationships
[6, 13, 25]. TransH [25] embeds knowledge graph by projecting en-
tities and relations onto a hyperplane that is specific to each relation.
Doing so allows TransH to effectively capture the mapping properties
of relations, such as one-to-many and many-to-one, which TransE
cannot handle [6, 25]. TransR [18] introduces separate spaces for en-
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tities and relations, connected by a shared projection matrix. TransD
[13] uses independent projection vectors for each entity and relation,
which reduces the amount of computation compared to TransR. Ro-
tatE [21] embeds the entities and relations into complex space and
replaces the addition in TransE with the complex multiplication.

Multiplicative models like RESCAL, DistMult, ComplEx, QuatE,
and OctE use bilinear transformations to score triples. RESCAL [19]
employs a scoring function xTAyz, where x and z are entity em-
beddings, and Ay is the relation matrix. DistMult [27] simplifies this
by using a diagonal relation matrix, Dy = diag(y), which is effec-
tive for symmetric relations but struggles with anti-symmetric ones.
ComplEx [23] addresses this by embedding entities and relations in
the complex space C, using the real part for symmetry and the imag-
inary part for anti-symmetry. QuatE [28] extends these capabilities
to the quaternion space H, allowing for the modeling of complex re-
lationships such as inversion. OctE builds on QuatE by operating in
the octonion space O. However, both QuatE and OctE can face scal-
ing challenges inherent to quaternion and octonion spaces. QMult
and OMult [10] address this limitation through batch normalization,
effectively mitigating the bottleneck.

In addition to translational and multiplicative models, the literature
also features hyperbolic embedding methods such as RotH [5] and
MuRP [1], which maps entities and relations from a knowledge graph
onto a hyperbolic space, leveraging the properties of hyperbolic ge-
ometry to capture hierarchical structures in KGs. Dual quaternion
methods like DualE [4] use dual quaternions [15] to embed enti-
ties and relations, offering a representation that combines the advan-
tages of both hyperbolic and complex spaces. Rotational methods
like RotE [5] focus on learning rotation operations to capture rela-
tional patterns, while Euclidean methods such as MuRE [1], which
is a variant of MuRP, operate in Euclidean space, offering a simpler
alternative for certain types of knowledge graphs.

3 Motivation and Contribution

The choice of the sub-algebra or space for embedding given any in-
put knowledge graph plays a crucial role in computing an accurate
representation of the input data as indicated in [9]. For instance, if a
KG does not contain anti-symmetric relations, employing a complex-
valued approach like ComplEx is likely to be less effective than us-
ing a simpler real-valued approach like DistMult. To address this,
Demir et al. [9] proposed incorporating the sub-algebra selection into
the learning process by performing embeddings in Clifford Algebras
Clp,q(R) via the KECI model. Thanks to parameters p and q, the
KECI model is able to determine which space is appropriate to em-
bed an input knowledge graph. As shown in Table 1, KECI can decide
or not if the embeddings will be carried out in R, C, H, O and even
beyond (for instance by setting p = 3 and q = 4).

We build upon this idea via two main contributions:
• We drop KECI’s assumption that the quadratic form underlying

our Clifford algebra must not be degenerate and show how to em-
bed even in degenerate Clifford algebras. Therewith, we can gen-
eralize over approaches based on dual numbers in addition to gen-
eralizing over KECI itself giving rise to more degree of freedom
for our approach.

• Moreover, we address the main weakness of dimension scaling:
low dimension weights mean that particular dimensions barely
contribute to the total score of KECI. Instead of learning p and
q concurrently to the optimizing of the embeddings—hence effec-
tively discarding dimensions without replacement—we present 2
approaches to predict p, q, and r before we run DECAL, and hence

Table 1: Relation between Clifford algebras and division algebras.
N/A indicates no possible relationship between the spaces.

Space ⊆ Clp,q(R) ≡ Clp,q,0(R)

R Cl0,0(R) Cl0,0,0(R)
C Cl0,1(R) Cl0,1,0(R)
H Cl0,2(R) Cl0,2,0(R)
O Cl1,3(R) Cl1,3,0(R)

R(ε) N/A Cl0,0,1(R)
R4(ε) N/A Cl0,3,1(R)

make full use of all dimensions available.
• Our implementation of DECAL is publicly available to ensure that

all results and experiments presented herein can be replicated. 1

In the following sections, we present the technical details of DECAL

and provide evidence of its efficacy in link prediction of KG tasks.

4 Clifford Algebras

4.1 Definition

A Clifford Algebra, denoted as Cl(V,Q) [8, 7], is generated by a
vector space V and a quadratic form Q. When V is a real vector
space and Q is a non-degenerate quadratic form, Cl(V,Q) can be
represented as Clp,q(R) (where p and q are natural integers), signi-
fying that V possesses an orthogonal basis with p+ q vectors. Here,
p vectors ei satisfy e2i = 1, and q vectors ej satisfy e2j = −1. The
space Clp,q(R) thereby extends traditional spaces such as the real
and the complex space (see Table 1). In this paper, we refrain from
assuming that the quadratic form Q is non-degenerate. Then, the
orthogonal basis of our algebra consists of p + q + r vectors, of
which p vectors (denoted ei) are such that e2i = 1, q vectors (de-
noted ej) are such that e2j = −1, and r vectors (denoted ek) are such
that e2k = 0. Hence, the space Cl(V,Q) is now denoted Clp,q,r(R).
Clearly, the algebra Clp,q,r(R) is a super-algebra of Clp,q(R) for
any p, q, r ≥ 0.

4.2 Norm

We consider x ∈ Clp,q,r(R
d) that we represent using p + q + r

orthogonal vectors as x = x0 +
∑p

i=1 xiei +
∑p+q

j=p+1 xjej +
∑p+q+r

k=p+q+1 xkek, where x(·) ∈ R
� d
1+p+q+r

�. The norm of x, de-
noted ‖x‖, is defined using the quadratic form Q that govern Clp,q,r .
Since Q is degenerate, the norm only operates on non-degenerate
vectors [17] , i.e.

‖x‖2 = Q(x) = x2
0 +

p∑
i=1

x2
i e

2
i −

p+q∑
j=p+1

x2
je

2
j =

p+q∑
i=0

x2
i . (1)

4.3 Inner Product and Clifford Product

If we take also y ∈ Clp,q,r(R
d) such that

y = y0 +

p∑
i=1

yiei +

p+q∑
j=p+1

yjej +

p+q+r∑
k=p+q+1

ykek, (2)

the inner product x · y between x and y is given by

x0 · y0 +
p∑

i=1

xi · yi +
p+q∑

j=p+1

xj · yj +
p+q+r∑

k=p+q+1

xk · yk.

1 https://github.com/dice-group/dice-embeddings
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The Clifford product x◦y between vectors x and y involves element-
wise multiplication of their components across different basis ele-
ments (see supplementary material [16] for mathematical details).

5 Approach

To ensure comparability with standard approaches, we address the
embedding problem in a d-dimensional vector space. Consequently,
DistMult performs embeddings into R

d, ComplEx into C
d/2, QMult

(which has demonstrated slightly better results than QuatE) and
OMult (which has shown slightly better results than OctE) [10]
into H

d/4 and O
d/8 respectively ). Additionally, KECI embeds into

Clp,q(R
m′

), where m′ = 
 d
1+p+q

�, and DECAL into Clp,q,r(R
m),

with m = 
 d
1+p+q+r

� (see Table 3).

5.1 Embedding in Degenerate Clifford Algebras

Considering a triple 〈x,y,z〉 ∈ K, we represent the embeddings x
and y of x and y in the space Clp,q,r(R

m) as:

x = x0 +

p∑
i=1

xiei +

p+q∑
j=p+1

xjej +

p+q+r∑
j=p+q+1

xkek (3)

y = y0 +

p∑
i=1

yiei +

p+q∑
j=p+1

yjej +

p+q+r∑
j=p+q+1

ykek, (4)

with x(·), y(·) ∈ R
m and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e2i = 1, ∀i ∈ {1, · · · , p}
e2j = −1, ∀j ∈ {p+ 1, · · · , p+ q}
e2k = 0, ∀k ∈ {p+ q + 1, · · · , p+ q + r}
e�en = −ene�, ∀n = �.

(5)

Using Equations 5 and adopting the notations from [9] the Clifford
multiplication between the head and relation representation is:

x ◦ y = σ0 + σp + σq + σr + σp,p + σq,q + σr,r + σp,q+

σp,r + σq,r.

The terms σ0, σp, σq , σp,p, σq,q , and σp,q are as in [9], with new
terms derived in supplementary material [16] and defined as follows:

σr =

p+q+r∑
k=p+q+1

(x0yk + xky0) ek (6)

σr,r =

p+q+r−1∑
k=p+q+1

p∑
k′=k+1

(xkyk′ − xk′yk)ekek′ (7)

σp,r =

p∑
i=1

p+q+r∑
k=p+q+1

(xiyk − xkyi)eiek (8)

σq,r =

p+q∑
j=p+1

p+q+r∑
j=p+q+1

(xjyk − xkyj)ejek. (9)

5.2 Scoring Function Derivation

The scoring function of DECAL consists of taking the Clifford mul-
tiplication between the embeddings of the head and the relation, fol-
lowed by a scalar product with the tail embeddings z i.e.

DECAL
(〈x,y,z〉) = (x ◦ y) · z. (10)

Since the Clifford multiplication x ◦ y generate multi-vectors coor-
dinates, we represent z in order to perform the above scalar product
as

z = z0 +

p∑
i=1

ziei +

p+q∑
j=p+1

zjej +

p+q+r∑
j=p+q+1

zkek + �Cte (11)

where z(·) ∈ R
m and �Cte represent a unitary multi-vector [16].

That is, in the tail representation, all coefficients of the multi-vectors
involved in the scalar product are set to one. Hence, the scoring func-
tion of DECAL can be deduced from the score of KECI as,

DECAL
(〈x,y,z〉) = KECI

(〈x,y,z〉)+ σ∗
r,r + σ∗

p,r + σ∗
q,r

+

p+q+r∑
k=p+q+1

(x0ykzk + xky0zk) ,

where σ∗
r,r, σ

∗
p,r and σ∗

q,r represents the sum of the coordinates of
the multi-vectors σr,r, σp,r and σq,r respectively.

6 Embedding Space Search

Finding adequate values for p, q, and r is bound to be of central im-
portance when embedding using DECAL. An exhaustive search over
these parameters results in 1

6
(d+ 1)(d+ 2)(d+ 3) ∈ O(d3) possi-

ble combinations, where d represents the embedding dimension. For
instance, with d = 16, the model would need to be run 969 times,
proving an inefficient and time-consuming approach. To address this
challenge, we developed four strategies to navigate the parameter
space defined by p, q, and r. While two of these serve as baseline
approaches, the other two represent our key contributions, focusing
on finding configurations that yield the highest mean reciprocal rank
on the validation data by learning from the training set and applying
this combination on the test set.

Local Exhaustive Search (LES) The local exhaustive search in-
volves systematically exploring all potential parameter (without con-
straint) combinations for DECAL in a subspace of the parameter
space {0, 1, · · · , d}3 with 0 ≤ p+ q + r ≤ d.

Global Search with Divisibility Criterion (GSDC) This ap-
proach subsamples the space covered by the local exhaustive search
by only visiting spaces where (1 + p + q + r) divides d. The moti-
vation behind this approach is to only consider configuration which
fully exploits the total number of dimensions available to DECAL.
For d = 16, the approach visits 186 Clifford algebras.

Greedy Search (GS) Our first approach to optimize the hyperpa-
rameters p, q and r of DECAL consists of the greedy search algorithm
described in Algorithm 1. The Algorithm starts with the initial con-
figuration (p, q, r) = (1, 1, 1) and iteratively generates new config-
urations (unseen configurations) in a local neighbourhood by adding
1, -1 or 0 to p, q, and r. Then, we evaluate the mean reciprocal rank
(short: MRR) for each unseen configuration and append these scores
to a queue which is then sorted in descending order based on the
MRR. The next configuration to evaluate is then selected from the
highest-scoring configurations. This process is repeated until conver-
gence or the maximum number of iterations is reached. The algo-
rithm terminates if the best configuration remains unchanged, indi-
cating a local maximum.

A major limitation of this approach is that its can only detect local
maxima close to its starting point. While it performs well in practice
(see Section 7), we devise another approach able to optimize p, q,
and r using global information.
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Algorithm 1 GreedySearch

1: function OPTIMAL_PARAMS(max_iterations)
2: p0, q0, r0 ← 1, 1, 1 � Initialization
3: seen_conf ← []
4: prior_query ← []
5: for i ∈ [0,max_iterations) do

6: to_score ← GENERATECONF(seen_conf, p, q, r)
7: prior_query ← SCORE(to_score, prior_query)
8: prior_queue ← sort(prior_query)
9: p, q, r,max_MRR ← prior_queue[0]

10: if (p, q, r) = (p0, q0, r0) then

11: break � Local maximum found
12: else

13: p0, q0, r0 ← p, q, r � Update parameters
14: seen_conf = seen_conf ∪ to_score
15: end if

16: end for

17: return (p, q, r,max_MRR)
18: end function

19: function GENERATECONF(queue, p, q, r)
20: � ← []
21: for pi, qi, ri ∈ [−1, 0, 1] do

22: if (p+ pi, q + qi, r + ri) /∈ queue then

23: � = � ∪ {(p+ pi, q + qi, r + ri)}
24: end if

25: end for

26: return �
27: end function

28: function SCORE(queue, prior)
29: for (p, q, r) ∈ queue do

30: if (p ≥ 0) ∧ (q ≥ 0) ∧ (r ≥ 0) then

31: prior = prior ∪ {(p, q, r,MRR(p, q, r))}
32: end if

33: end for

34: return prior_queue
35: end function

36: function MRR(p, q, r)
37: return DECAL.MRR(p,q,r) � MRR Evaluation
38: end function

Vector Space Prediction (VSP) Given an input knowledge graph
K, this approach aims to predict the optimal values of p, q, and r
for K w.r.t. the MRR. To achieve this goal, our approach begins by
computing an embedding of K in Cl1,1,1. The embedding of each
triple 〈x,y,z〉 ∈ K is the concatenation of the embedding of x, y
and z. The embeddings of all triples in K are finally used as input
for a pre-trained recurrent neural network, which predicts the values
of p, q and r for K.

7 Results and Discussion

7.1 Datasets and Experimental Setup

We evaluate our model on seven benchmark datasets, comprising
five large datasets (WN18-RR, FB15k-237, NELL-995-h100, NELL-
995-h50, and NELL-995-h75) and two smaller datasets (UMLS, and
KINSHIP). For detailed statistics on these datasets, please refer to
Table 2.

We conducted two series of experiments. First, we wanted to quan-
tify how the different approaches for determining p, q and r per-
formed. To this end, we evaluated the combination of DECALwith

(a) KINSHIP (b) UMLS

(c) NELL-995-h100 (d) NELL-995-h75

(e) NELL-995-h50 (f) FB15k-237

(g) WN18-RR

Figure 1: GS convergence speed to LES across benchmark datasets.
Table 2: Overview of benchmark datasets.

Dataset |E| |R| |GTrain| |GValidation| |GTest|
WN18-RR 40,943 22 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

NELL-995-h50 34,667 86 72,767 5,440 5,393
NELL-995-h75 28,085 114 59,135 4,441 4,389

NELL-995-h100 22,411 86 50,314 3,763 3,746

UMLS 135 46 5,216 652 661
KINSHIP 104 25 8,544 1,068 1,074

the approaches presented in Section 6. For the vector space predic-
tion (VSP), we used a leave-one-out training setting, where we used
1000 subgraphs containing 5000 triples from 6 benchmark datasets
for training and the remaining dataset for testing. We trained three
distinct models: LSTM (Long Short-Term Memory), GRU (Gated
Recurrent Unit), and a concatenation of both [11].

In our second series of experiments, we conducted a comparison
between DECAL and state-of-the-art algorithms. we reported the per-
formance of each algorithm on the test data, and for results on train
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Table 3: Embedding spaces and model time complexity comparison.
GSDC serves as the reference method, with relative times indicat-
ing the efficiency of each model compared to GSDC. Note that the
recorded time of VSP reflects only its prediction phase.

Models Embedding Space Relative Time2

GSDC

Clp,q,r(Rm), m = � d
1+p+q+r

�
100 %

LES 67.6%
GS 24.3%
VSP 5.2%

Keci Clp,q(Rm), m = � d
1+p+q

� 56.7%

DistMult

Rd

10.1%
RotE 12.5%
MuRE 20.2%
MuRP 22.4%

CompEx Cd/2 10.9%

QMult Hd/4 11.4%

DualE Rd(ε) 12.5%

OMult Od/8 11.6%

and validation data, refer to the supplementary material [16]. We
used the same set of parameters for all approaches: d = 16, num-
ber of epochs = 250, batch size = 1024, learning rate = 0.1, Adam
optimizer and the KvsAll training technique. Like previous works
[24, 9], we used the Mean Reciprocal Rank (MRR) and hits at 1,
3, and 10 as performance measures. All experiments presented in
this paper were conducted on a virtual machine equipped with two
NVIDIA H100-80C GPUs, each with 80 GB of memory.

7.2 Comparison of Different Variants

We evaluated the performance of DECAL in combination with dif-
ferent strategies for discovering p, q, and r. An overview of these
results can be found in the four bottom lines of Tables 5 and 4. The
found Clifford space as well as the computational time of the dif-
ferent search algorithms of DECAL and KECI on all data sets can
be found in Table 1 of the supplementary material [16]. The com-
binations of DECAL with LES and GSDC can be regarded as upper
bounds of the performance of our algorithm. Our approach outper-
formed all other variants (as well as the state of the art) when com-
bined with GSDC except on UMLS, where DECAL + LES performed
best. We conclude that GSDC is the approach of choice when aim-
ing to determine useful values for p, q and r. However, the number
of combinations of these parameters that need to be checked can be
prohibitively large, especially if d is a highly composite number.

In our experiments, using GS was less time-consuming than
GSDC (see Table 3) but led to slightly worse results w.r.t. the MRR
on the benchmark datasets. For example, GS outperformed GSDC
on the UMLS dataset, achieved the same performance as GSDC on
KINSHIP, and reached over 91.6% of GSDC’s performance on aver-
age. This suggests that GS can indeed be used for configuring DECAL

if the number of combinations of p, q, r to explore is to be kept low.
Note that GS only needed at most three iterations in our experiments
to find a local maximum (see Figure 1). This strength of GS is also
its main weakness as the convergence of this method depends sig-
nificantly on the initial starting point. The MRR function as shown
in Figure 1 in the supplementary material [16], shows multiple lo-
cal maxima, making the search for the global maximum challeng-
ing. Still, our results indicate that local maxima generally suffice to
achieve a state-of-the-art performance.

Figure 2 illustrates the loss evolution during the training phase for

Figure 2: Loss function curves.
Table 4: Link prediction results on WN18-RR at the test time. Bold
and underlined results indicate the best and second-best results re-
spectively.

Models WN18-RR

MRR H@1 H@3 H@10

DistMult 0.231 0.191 0.249 0.305

ComplEx 0.274 0.233 0.295 0.349

QMult 0.242 0.199 0.262 0.318

OMult 0.121 0.080 0.135 0.203

MuRE 0.259 0.202 0.280 0.366

MuRP 0.212 0.160 0.234 0.309

RotH 0.230 0.177 0.247 0.332

RotE 0.258 0.203 0.280 0.357

DualE 0.157 0.118 0.174 0.228

KECI 0.285 0.245 0.302 0.357

DECAL + LES 0.291 0.249 0.313 0.364
DECAL + GSDC 0.296 0.250 0.323 0.381
DECAL + GS 0.295 0.252 0.317 0.372
DECAL + VSP 0.285 0.245 0.302 0.357

each model on all datasets with FB15k-237 left out. On the test data,
the LSTM, GRU, and concatenated models achieved a prediction ac-
curacy of 44.5%, 42.0%, and 35.5%, respectively, where a prediction
was considered correct if it returned the (p, q, r) combination sug-
gested by LES. Employing an ensemble approach with weights of
0.75, 0.2, and 0.05 for the LSTM, GRU, and concatenated models,
our predictor achieved a superior performance of 45.0%. The com-
bination of the concatenated model of VSP and DECAL turned out
to achieve approximately 84.5% of the MRR of DECAL + GDSC on
average. The results are not surprising given that the approach was
trained on a small number of samples. We hypothesize that the per-
formance of the approach can be much improved with the availability
of more diverse training data. Still, the leave-one-out strategy we em-
ployed for learning suggests that a universal predictor can indeed be
trained to predict suitable values of the Clifford algebra parameters.
This will be the subject of future works.

7.3 Comparison with other Approaches

Tables 5 and 4 present link prediction results on the datasets pre-
sented in Table 2. In the following, we mainly focus on the perfor-
mance of DECAL + GSDC and DECAL + GS when comparing our
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Table 5: Link prediction results on UMLS, KINSHIP, NELL-995-h100, NELL-995-h75, NELL-995-h50 and FB15k-237 on the test data. Bold
and underlined results indicate the best and second-best results respectively.

Models UMLS KINSHIP NELL-995-h100

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DistMult 0.756 0.647 0.834 0.952 0.514 0.346 0.606 0.878 0.185 0.120 0.205 0.320

ComplEx 0.835 0.728 0.939 0.976 0.725 0.594 0.821 0.963 0.168 0.109 0.187 0.285

QMult 0.859 0.773 0.936 0.980 0.624 0.481 0.715 0.911 0.125 0.079 0.135 0.214

OMult 0.827 0.756 0.874 0.954 0.488 0.365 0.536 0.747 0.137 0.088 0.151 0.237

MuRE 0.876 0.782 0.964 0.990 0.664 0.526 0.754 0.933 0.236 0.167 0.261 0.374

MuRP 0.874 0.824 0.908 0.970 0.676 0.532 0.779 0.946 0.237 0.161 0.261 0.395

RotH 0.802 0.689 0.899 0.981 0.592 0.427 0.689 0.932 0.192 0.132 0.214 0.310

RotE 0.866 0.766 0.962 0.994 0.709 0.569 0.814 0.967 0.225 0.157 0.250 0.361

DualE 0.866 0.774 0.955 0.985 0.591 0.443 0.675 0.905 0.173 0.113 0.188 0.295

KECI 0.875 0.798 0.944 0.983 0.743 0.621 0.830 0.964 0.252 0.174 0.288 0.408

DECAL + LES 0.883 0.799 0.962 0.991 0.743 0.621 0.830 0.964 0.256 0.184 0.280 0.399
DECAL + GSDC 0.878 0.799 0.947 0.989 0.743 0.621 0.830 0.964 0.270 0.196 0.299 0.417
DECAL + GS 0.879 0.797 0.951 0.987 0.743 0.621 0.830 0.964 0.256 0.184 0.280 0.399
DECAL + VSP 0.843 0.732 0.944 0.986 0.674 0.540 0.766 0.942 0.235 0.167 0.259 0.374

Models NELL-995-h75 NELL-995-h50 FB15k-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DistMult 0.163 0.104 0.179 0.282 0.151 0.097 0.168 0.256 0.147 0.093 0.158 0.260

ComplEx 0.139 0.085 0.156 0.245 0.163 0.107 0.183 0.275 0.137 0.087 0.147 0.239

QMult 0.158 0.106 0.171 0.261 0.101 0.0596 0.114 0.185 0.122 0.077 0.128 0.208

OMult 0.129 0.082 0.142 0.223 0.119 0.076 0.131 0.210 0.086 0.059 0.089 0.138

MuRE 0.229 0.163 0.256 0.357 0.215 0.151 0.237 0.345 0.209 0.147 0.224 0.333

MuRP 0.230 0.161 0.255 0.370 0.217 0.151 0.239 0.348 0.204 0.141 0.220 0.329

RotH 0.163 0.104 0.184 0.279 0.154 0.098 0.169 0.270 0.144 0.097 0.151 0.233

RotE 0.208 0.144 0.230 0.335 0.218 0.152 0.243 0.349 0.197 0.133 0.211 0.324

DualE 0.178 0.120 0.196 0.291 0.176 0.116 0.195 0.298 0.185 0.125 0.199 0.299

KECI 0.237 0.172 0.260 0.365 0.250 0.177 0.281 0.392 0.235 0.164 0.255 0.376

DECAL + LES 0.245 0.177 0.274 0.374 0.232 0.166 0.253 0.368 0.235 0.164 0.258 0.375
DECAL + GSDC 0.251 0.178 0.281 0.396 0.250 0.177 0.281 0.392 0.241 0.171 0.263 0.380
DECAL + GS 0.230 0.170 0.268 0.376 0.163 0.106 0.183 0.273 0.217 0.150 0.236 0.349
DECAL + VSP 0.202 0.136 0.225 0.335 0.203 0.138 0.229 0.333 0.144 0.091 0.156 0.251

approach with the state of the art.
The prediction results on the WN18RR datasets are shown in Ta-

ble 4. The findings indicate that all variations of our approach outper-
formed the state-of-the-art model in all metrics, except for DECAL +
VSP, which predicted the same space for embeddings as KECI, re-
sulting in similar performance.

The prediction results for all other datasets are given in Table 5.
In the upper part of the table, we display the link prediction results
for UMLS, KINSHIP, and NELL-995-h100. On UMLS, DECAL +
GS showed the second-best MRR, trailing behind DECAL + LES.
MuRP, MuRE and RotH achieved the highest performance for Hits
at 1, 3 and 10 respectively. Notably, DECAL + GSDC performed less
effectively than DECAL+LES only on UMLS data.

For the KINSHIP dataset, nearly all variations of our approach—
except for DECAL + VSP— find the embedding space Cl0,1,0(R

8)
to be the most fitting. Due to the relationship between Cl0,1,0, Cl0,1,
and C (refer to Table 1), the performances of DECAL + GSDC,
DECAL + GS, and KECI were similar. However, the scaling effect

used by KECI [9] resulted in slightly superior performance, making
ComplEx the second-best. Similar observations can be made for the
NELL-995-h50 dataset in the bottom part of the table, where DECAL

+ GSDC performed embeddings into Cl13,2,0(R) which is theoret-
ically isomorphic to Cl13,2(R), resulting in similar performance to
KECI. Surprisingly, we remark that this is the only dataset where
DECAL + GS performed less than DECAL + VSP, showing very close
performance to Complex and better results than DistMult, OMult,
QMult and DualE.

Moving on to NELL-995-h100, DECAL + GSDC achieved the
highest performance, surpassing KECI by over 6% in MRR. The
second-best results were shared between DECAL + LES and DECAL

+ GS, which had similar performances.
On FB15k-237, DECAL + GSDC demonstrated superior perfor-

mance across all metrics. Remarkably, its Mean Reciprocal Rank
(MRR) score is, on average, 40% better than that of other ap-
proaches. While DECAL + LES and KECI exhibited identical per-
formance in Hits at 1 and MRR, DECAL + LES took second place
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overall. This is attributed to its outperformance of KECI by more
than 1% in Hits at 3, despite KECI being only 0.2% better in Hits
at 10. Additionally, it’s noteworthy that this is the only dataset in the
study where DistMult outperformed one variant of DECAL (DECAL

+ VSP) across all metrics. This suggests that nilpotent vectors help
capture the embeddings better on this dataset.

8 Conclusion and Future Work

In this paper, we introduce DECAL, the first model specifically de-
signed for embeddings in degenerate Clifford algebras. As a result,
DECAL emerges as the most comprehensive divisional algebra in the
literature for computing such embeddings.

We implemented four variants of DECAL for optimal parameter
search. The first two variants, DECAL+LES and DECAL+GSDC,
considered as baselines use exhaustive searches and serve as upper
bounds for our approach, yielding the best possible results. The third
variant, DECAL+GS, optimizes parameters within a subdomain of
the parameter space, while the fourth variant, DECAL+VSP, employs
neural networks to predict parameters based on input data.

Evaluation in link prediction tasks across seven benchmark
datasets consistently demonstrates the superiority of DECAL over
state-of-the-art models on all datasets. This underscores the potential
of leveraging nilpotent vectors in Clifford algebras to enhance repre-
sentation learning and inference capabilities in knowledge graphs.

Among the DECAL variants, VSP generally yields slightly infe-
rior results; however, its predicted results are consistently superior to
most of the state-of-the-art models. We believe that this performance
could be significantly improved with additional training data, thereby
motivating future work.

Furthermore, in this study, we used only single base vectors (i.e.
1 + p + q + r vectors) for entities and relations representation in
Clp,q,r(R) Clifford Algebras. Future work will explore the incor-
poration of multi-vectors, aiming to capture more intricate interac-
tions in entities and relations by considering the full spectrum of the
2p+q+r base vectors within a Clifford space Clp,q,r(R).
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