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Abstract. Biomedical Named Entity Recognition (BioNER) plays a
crucial role in automatically identifying specific categories of entities
from biomedical texts. Currently, region-based methods have shown
promising performance in BioNER. However, existing paradigms
in the region-based methods suffer from inherent limitations, in-
cluding the generation of negative samples, and the ignorance of
token dependencies. To overcome these limitations, we propose a
new paradigm, implemented as Token Cascade Tagger (TCT), which
combines span identification and category classification. The TCT
utilizes category information to enhance the correlation between the
heads and tails of entities, effectively reducing the generation of neg-
ative samples. Additionally, we introduce a Token Dependency Tag-
ger (TDT) that captures token dependencies within entity spans by
identifying the longest span in a sentence. The TDT filters out incor-
rect spans and further improves the accuracy of span detection ob-
tained from the TCT. Furthermore, we employ a multi-task learning
framework to optimize both the TCT and TDT, leading to superior
performance in BioNER. Extensive experiments on publicly avail-
able biomedical datasets demonstrate our method outperforms the
previous state-of-the-art methods, achieving 92.44%, 92.54%, and
81.26% on NCBI-Disease, BC5CDR, and GENIA, respectively, in
terms of F1 score.

1 Introduction

Biomedical Named Entity Recognition (BioNER) aims to automati-
cally identify specific categories of entities from biomedical texts. As
shown in the example in Figure 1, the sentence “ ...NF-IL6 gene in
U937 cells.” contains three entities, i.e., “ NF-IL6 ”, “ NF-IL6 gene
”, and “ U937 cells ”. BioNER is widely applied in bioinformatics,
medical research, and clinical decision support. It aids in construct-
ing biomedical knowledge graphs, supporting drug discovery, gene
research, and expediting disease diagnosis[28, 4].

Recently, region-based methods have been proposed and have
achieved promising performance on bioNER [25, 6, 23]. There are
two primitive operations in region-based methods: span identification
and categorization. According to the execution order of these two op-
erations, the existing region-based methods can be formulated into
two paradigms as illustrated in Figure 1. The first paradigm (referred
to as P1) first enumerates all possible candidate entity spans and then
classifies spans into predefined categories [13, 16], which can be for-
mulated as f(h, t) → c. The second paradigm (referred to as P2)
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Figure 1. Paradigm comparison of region-based methods for Biomedical
NER, where h and t denotes the head and tail of an entity respectively, and c

denotes the category of an entity. The dotted arrow indicates the
dependencies between triple elements.

first predicts the categories mentioned in the sentence and then iden-
tifies all the corresponding entity spans of these categories [19, 22],
which can be expressed as f(c) → (h, t).

Despite their success in bioNER, both paradigms exhibit inherent
shortcomings. Paradigm P1 inevitably generates a large number of
negative samples due to the nature of exhaustive enumeration, hurt-
ing the recognition rate and incurring high computation costs. Addi-
tionally, it has limitations in detecting entities that exceed the prede-
termined maximum span length. While paradigm P2 overcomes the
shortcomings of P1, it also suffers from two drawbacks. Drawback 1
stems from predicting the entity’s head and tail independently, lead-
ing to the generation of a substantial number of negative samples.
Drawback 2 relates to disregarding token dependencies within the
entity span, resulting in numerous false positive samples.

The above analysis suggests that there exists another potential
paradigm. We notice that span detection could be further divided into
two more primitive operations: head index identification and tail in-
dex identification. Furthermore, these two operations could be inter-
leaved with category identification to form a more flexible paradigm
(referred to as P3), expressed as fc(h) → t. We novelly instantiate
paradigm P3 as the token cascade tagger (TCT), which first predicts
the heads(h) of all possible entities in a given sentence. Subsequently,
for each head, it determines the corresponding tails (t) of the entity
within the category c. By utilizing the category information as an ad-
ditional signal to determine the corresponding tail relative to the head
of each entity, the Drawback 1 can be significantly alleviated, given
that the category plays a crucial role in identifying entity spans, as
illustrated in Example 1.
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Example 1. In the case of the entity “IL-2R alpha gene”, TCT ini-
tially predicts “IL-2R” as its head and subsequently identifies “al-
pha” as the corresponding tail within the "Protein" category. Like-
wise, if the category changes to “DNA”, the corresponding tail would
be “gene”.

To address drawback 2, we design a token dependency tagger
(TDT) that captures token dependencies within entity spans by iden-
tifying the longest span among all possible entities in a sentence.
Furthermore, the TDT filters out incorrect spans by determining if
each entity span identified by the TCT falls within the longest span
determined by the TDT, thereby improving the detection accuracy of
spans obtained from the TCT. Additionally, we employ a multi-task
learning framework to jointly optimize the TCT and the TDT, lead-
ing to superior performance. The main contributions of this paper are
as follows:

• We introduce a novel paradigm for bioNER and implement it as a
token cascade tagger. The token cascade tagger utilizes categories
as supervisory signals to enforce constraints on the correlation be-
tween the head and tail of entities, effectively mitigating the gen-
eration of negative samples caused by separate predictions of the
head and tail of an entity.

• We propose a token dependency tagger that identifies the longest
span among all potential entities, capturing the dependencies be-
tween tokens within the entity span and effectively addressing the
ignorance of token dependencies. Furthermore, we apply a multi-
task learning framework that optimizes the token cascade tagger
and the token dependency tagger, aiming to improve the perfor-
mance of bioNER.

• We conduct extensive experiments on publicly available biomed-
ical datasets. The experimental results show that our method out-
performs the previous state-of-the-art methods, achieving 92.44%,
92.54%, and 81.26% on NCBI-Disease, BC5CDR, and GENIA,
respectively, in terms of F1 score.

2 Related Works

BioNER has attracted considerable attention for its ability to improve
downstream tasks. Prior studies [21, 5] employ a sequence labeling
to identify biomedical entities, but these methods are prone to error
propagation. To address these challenges, other studies [14, 23] em-
ploy the seq2seq model to directly generate various entities from the
text. However, they may suffer from the decoding efficiency problem
and exposure bias. Alternative studies [15, 24, 8] use various strate-
gies to represent tokens and construct graphs or transition actions to
represent all entities in a sentence. However, these methods suffer
from spurious structure and structural ambiguity during inference.

Currently, region-based methods have achieved state-of-the-art
performance and attracted much attention. Some approaches [13, 29,
16] first locate candidate entity spans from a text and then classify
the candidate entity span into predefined categories. However, these
approaches are subjected to maximal span lengths and lead to con-
siderable computation costs due to their enumeration nature. On the
other hand, other approaches [22, 7, 27] first enumerate the entity
categories and then locate the candidate entity span. However, they
detect the entity spans and categories separately and independently,
which leads to error propagation.

In contrast to the existing region-based methods, we propose a new
paradigm, implemented as Token Cascade Tagger, which utilizes cat-
egory information to enhance the correlation between the heads and

tails of entities, effectively reducing the generation of negative sam-
ples. Additionally, we introduce the Token Dependency Tagger, de-
signed to recognize token dependencies within entity spans, thus en-
hancing span detection accuracy. Consequently, our method outper-
forms existing baseline methods, establishing a more effective means
of identifying bioNER.

3 Problem Formulation

Given a sentence S = (w1, w2, ..., wn) with n tokens and k pre-
defined categories C = {c1, c2, ..., ck}, the task of our method
is to recognize all entity spans and their corresponding categories,
i.e., E = {(hi, ti, ci)}Mi=1, in S, where M is the number of enti-
ties. hi, ti are the head and tail index of the i-th entity consisting
of several consecutive tokens, i.e., entity.span = whi:ti , where
whi:ti (hi, ti ∈ [1, n]) denotes the concatenation of whi to wti .

4 Model Architecture

Figure 2 illustrates the overall workflow of our framework. Our
framework adopts a multi-task learning approach, comprising an en-
coder, a token dependency tagger, and a token cascade tagger. The
encoder generates a shared vector representation for each word in
sentences, which is utilized by both TCT and TDT. TCT identifies the
span and category of all possible entities in a sentence, while TDT
identifies the longest spans among all possible entities and serves to
filter out incorrect entity spans detected by TCT.

Take the sentence in Figure 2 as an example, we show how our
framework identifies entities in a sentence. The token dependency
tagger tags the longest spans of entities in the sentence, like “NF-IL6
gene” and “U937 cells” are tagged as entity spans. The token cascade
tagger tags the head(s) in the sentence using the head tagger, such as
“NF-IL6” and “U937”. The category-specific tail tagger recognizes
possible tail(s) under the category-specific; or returns no head, indi-
cating that there is no entity with the given tail and category. Specif-
ically, for the head “NF-IL6”, the PRO-specific tail tagger can find
a tail “NF-IL6”, indicating the existence of an entity with the span
“NF-IL6” and the category “PRO”. while the CELL LINE-specific
tail tagger fails to find a suitable tail, indicating the absence of an
entity for that category. The same decoding process is applied for the
head “U937”. Finally, entities are recognized by combining the re-
sults obtained from both the token dependency tagger and the token
cascade tagger.

4.1 Encoder

The encoder converts the input sentence into a fixed-length vector
and effectively captures both the semantic and syntactic informa-
tion. The vector is then passed to subsequent modules, i.e., TCT and
TDT. Considering that pre-trained language models trained on gen-
eral corpora are insensitive to biomedical domain knowledge, we em-
ploy multi-granularity textual features to represent sentences. To cap-
ture the multi-granularity features of the input sentence, we employ
various levels of embeddings to represent the semantics of tokens,
including, character embeddings, word embeddings, and contextual
embeddings. For the character embeddings xc, we apply CNN [26]
to extract the character features of tokens. For the word embeddings
xw, we employ pre-trained word embeddings to encode the seman-
tics features of tokens. For contextual embeddings xp, we employ a
pre-trained language model to represent the contextual features of to-
kens, and apply max pooling to produce word representations based
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Figure 2. The architecture of our framework.

on the word piece representations. The sentence embeddings are ob-
tained as follows,

X = [x1, x2, ..., xn] (1)

, where, xi = [xw
i ;x

c
i ;x

p
i ], i ∈ [1, n], [;] means additive concatena-

tion operator.

4.2 Token-Dependency Tagger

This module aims to identify the longest span of entities and to filter
the spans predicted by TCT. Following the method suggested by [19],
we redefine two labels, “I” and “O”, and employ the sequence label-
ing method to identify the longest span of entities, i.e., tokens within
the entity span are all assigned “I” and tokens beyond the entity span
are assigned “O”. As shown in Figure 2, “NF-IL6 gene” and “U937
cells” are identified as the longest span of entities.

Specifically, the sentence representation X is fed to a BiLSTM to
obtain an effective sentence feature representation for token cascade
tagger, which is expressed as follows,

HTDT = BiLSTM [
−→
X;

←−
X] (2)

Subsequently, the sentence feature representation is passed through
a fully connected layer to determine if the token is part of an entity.
We calculate the probability of i-th token in the input sequence as a
part of an entity:

ptsmi = σ(Wtsmhi + btsm) (3)

, where hi denotes the embeddings of i-th index in HTDT , i.e., hi =
HTDT [i]. Wtsm denotes the trainable weight, btsm represents the
bias and σ represents the sigmoid activation function. ptsmi indicates

the score of recognizing the i-th token in the input sequence as a part
of an entity.

TDT is optimized as follows:

�tsm = −
n∑

i=1

[ptsm_label
i logptsmi + (1− ptsm_label

i )log(1− ptsmi )]

(4)
, where ptsm_label

i is “I” if the i-th token is determined to be in the
entity span or “O” otherwise.

4.3 Token Cascade Tagger

This module aims to identify the span of all possible entities and their
corresponding categories in a sentence. The module tags the head(s)
in the sentence using the head tagger, such as “NF-IL6” and “U937”.
The category-specific tail tagger recognizes possible tail(s) under the
category-specific; or returns no head, indicating that there is no entity
with the given tail and category.

Specifically, for the head “NF-IL6”, the PRO-specific tail tagger
can find a tail “NF-IL6”, indicating the existence of an entity with
the span “NF-IL6” and the category “PRO”. while the CELL LINE-
specific tail tagger fails to find a suitable tail, indicating the absence
of an entity for that category. The same decoding process is applied
for the head “U937”. As shown in Figure 2, “NF-IL6”: “PRO”, “NF-
IL6 gene”: “DNA”, and “U937 cells”: “CELL LINE” are identified,
The former denotes the entity span and the latter denotes the entity
category. Each tagger is described in detail next.

4.3.1 Head tagger

The head tagger aims to recognize the head index of all possible enti-
ties from the sentence. We first apply BiLSTM to generate a sentence
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representation for head tagger, denoted as follows,

Hmix = BiLSTM [
−→
Ht;

←−
Ht] (5)

, where Ht = [X;HTDT ]. Considering that different tokens in
a sentence play different roles in entity recognition, we employ the
multi-head attention to generate auxiliary features for the head index
and tail index of an entity span, i.e., Ha, T a, respectively. For more
details of multi-head attention, refer to [17]. Note that in our setting,
Q = K = V = Hmix, 1/

√
dk is the scaling factor.

Then, we concatenate the contextual representation Hmix and
the auxiliary features of entity’s head index Ha as Uhead =
[Hmix;Ha]. The score of i-th token is calculated according to the
head index of an entity with a specific category g ∈ G.

pheadi = σ(Wheadxi + bhead) (6)

, where pheadi denotes the probability of identifying the i-th token
in the input sequence as the head index of an entity. xi is the en-
coded representation of the i-th token in the input sequence, i.e.,
xi = Uhead[i], Whead is the trainable weight, and bhead denotes
the bias.

The optimization of the head tagger is optimized below:

�head = −
n∑

i=1

[phead_label
i logpheadi +(1−phead_label

i )log(1−pheadi )]

(7)
, where phead_label

i is 1 if the i-th token is determined to be the head
token or 0 otherwise.

4.3.2 Tail tagger

The tail tagger aims to simultaneously recognize the tail index and
the related categories with respect to the tagged head index by the
head tagger. As Figure 2 shows, it is composed of a set of category-
specific tail taggers for all possible categories. All tail taggers will
identify the corresponding tail index for each tagged head index at
the same time. In order to enhance the correlation between the head
and tail index of an entity, we apply Conditional Layer Normaliza-
tion (CLN) [20] to generate a normalized embedding. The core idea
of CLN is to insert conditional information, so that the normalized
embedding is closely related to the conditional information. In this
way, the model is able to better capture the features of the entity span
and improve the accuracy of entity recognition. It is expressed as
CoR:

CoR = CLN(Hmix,Hmix) (8)

We can obtain a new hidden vector for the tail tagger, which is
represented as Htt = [Hmix;T a;CoR]. Then, the hidden vector
is fed into the fully connected layer to judge whether the token is a
tail index of an entity. We calculate the probability of i-th token in
the input sequence as a tail index of an entity:

ptaili = σ(Wtail(xi + vk
hd) + btail) (9)

, where Wtail is a trainable weight, and btail denotes the bias. ptaili

represents the probability of identifying the i-th index as the tail in-
dex of an entity, and vk

hd represents the embedding of the k-th index
in Uhead. For each head index detected in the head tagger, we it-
eratively apply the same decoding process on it. The tail tagger is
optimized as follows:

�tail = −
n∑

i=1

[ptail_labeli logptaili + (1− ptail_labeli )log(1− ptaili )]

(10)

, where ptail_labeli is 1 if the i-th token is determined to be the tail
token or 0 otherwise.

4.4 Training and Inference

During the training phase, we apply multi-task loss to optimize TCT
and TDT simultaneously:

�total = �tsm + �head + �tail, (11)

During the inference phase, given an input sentence, we initially
obtain the probabilities of the head and tail index, pheadi and ptaili ,
respectively, as predicted by TCT. A span is recognized as an en-
tity with a specific category if (pheadi × ptaili ) exceeds the fine-tuned
threshold λ on the development set, and if and only if all the to-
kens within the span are tagged “I” by TDT. Otherwise, the span is
not an entity. For instance, the spans, “NF-IL6” and “NF-IL6 gene”,
identified by TCT, are within the longest span, “NF-IL6 gene”, iden-
tified by TDT, confirming the correctness of “NF-IL6” and “NF-IL6
gene”. The final output format is “NF-IL6”: “PRO”, “NF-IL6 gene”:
“DNA”, where “PRO” and “DNA” indicate the entity category as pre-
dicted by TCT.

5 Experiments Settings

In this section, we first present the dataset, then describe the evalua-
tion metrics and implementation details, and finally list the baseline
methods.

5.1 Datasets

We select three English corpora from the biomedical field, namely
NCBI-Disease, BC5CDR, and GENIA, to evaluate the effectiveness
of our method in identifying bioNER.

• NCBI-Disease is a disease corpus annotated by 14 experts spe-
cializing in the field of diseases. It consists of 6871 disease names
annotated from 793 abstracts of PubMed papers.

• BC5CDR is specifically created to facilitate the identification of
disease and chemical names. It consists of 1500 PubMed abstracts
annotated with 4409 chemical names and 5818 disease names.

• GENIA is a specialized biomedical dataset designed specifically
for nested NER. The dataset encompasses five distinct categories
of entities, i.e., “PROTEIN”, “CELL LINE”, “DNA”, “CELL
TYPE”, “RNA”. It includes a total of 54,935 annotated entities,
with 11,359 exhibiting nested structures.

To maintain experimental consistency, we follow the experimental
setups outlined in KaNER [2] for the NCBI-Disease, BC5CDR and
GENIA datasets. Under this configuration, we split the dataset into
the training dataset, development dataset, and testing dataset with a
ratio of 8.1:0.9:1. The development dataset is used to fine-tune the
hyperparameters.

5.2 Evaluation Metric and Implementation Details

To ensure a comprehensive evaluation of our method, we report
three metrics, i.e., Precision (P), Recall (R), and F1 scores (F1).
These metrics are consistent with existing baseline methods, such
as KaNER [2], UGF [23], and so on. It is important to note that enti-
ties are only considered correct if and only if their span and category
match the golden entity.
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Table 1. Comparison results with the baseline methods.

Model NCBI-Disease BC5CDR GENIA

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

AutoNER [12] 79.42 71.98 75.52 88.96 81.00 84.80 – – –
DEM [13] – – – – – – 96.4 66.8 78.4
Seq2Seq [14] 87.65 89.21 88.42 88.43 88.93 88.70 – – 76.44
MTM-CW [18] 85.86 86.42 86.14 89.10 88.47 88.78 70.91 76.34 73.52
LM-NER [5] 88.22 91.25 89.71 88.10 88.71 88.40 – – –
BENSC [16] 85.80 84.80 85.30 83.80 83.90 83.90 79.20 77.40 78.30
UGF [23] 89.32 90.59 89.95 90.58 90.86 90.72 78.87 79.60 79.23
BNER [15] 89.67 90.43 90.04 – – – – – –
MHSA [22] – – – – – – 80.30 78.90 79.10
BidH [21] 87.01 88.76 87.88 89.76 90.56 90.16 73.6 78.0 75.7
LLCP [9] 88.32 89.21 88.76 89.43 91.02 90.22 78.39 78.50 78.44
BUCP [24] 90.55 91.57 91.06 91.08 91.56 91.31 78.08 78.26 78.16
BANM [29] - - - - - - 75.90 73.60 74.70
NRL [1] 88.07 89.17 88.61 89.47 91.19 90.32 – – –
AIONER [10] – – 89.55 – – 89.40 – – –
TEDC [8] 85.23 75.17 79.88 89.16 84.96 87.01 – – –
KaNER [2] 90.43 92.07 91.24 91.73 90.95 91.34 79.47 78.51 78.99

Our method 91.36 93.55 92.44 92.20 92.88 92.54 80.87 81.66 81.26

Table 2. Comparison results with ChatGPT.

Model NCBI-Disease BC5CDR GENIA

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

ChatGPT

1-shot 21.82 56.14 31.43 16.48 61.25 25.98 57.54 33.78 42.57

3-shot 24.91 64.87 35.99 19.73 60.97 29.81 59.12 34.37 43.47

5-shot 28.28 65.94 39.58 19.89 59.97 29.87 61.01 34.89 44.39

Our Method 91.36 93.55 92.44 92.20 92.88 92.54 80.87 81.66 81.26

We implement our method using PyTorch, a widely used neural
network framework. For character embeddings, we employ a CNN
with kernel sizes of 2, 3, and 4 to capture character-level features
for each token. As for word embeddings, we utilize a pre-trained
word embedding model trained on MEDLINE abstracts [3], which
is applied across all datasets. For contextual embeddings, we ap-
ply SciBERTbase for all datasets. To avoid overfitting, we apply
a dropout rate of 0.5 for word embeddings and 0.3 for character em-
beddings. The dimensions for character embeddings, word embed-
dings, and contextual embeddings are set as 50, 300, and 768, re-
spectively. AdamW is selected as the optimizer, and the learning rate
is set from 1e−5 to 5e−5. Moreover, the threshold is set as 0.3.

5.3 Baseline Methods

We select four categories of methods as baseline methods for com-
parison, as follows. Label-based methods, which leverage label
relationships for entity decoding, include AutoNER [12], MTM-
CW [18], LM-NER [5], BidH [21]. Seq2seq-based methods, uti-
lizing the seq2seq model for direct entity generation, comprise
Seq2Seq [14], UGF [23], KaNER [2]. Region-based methods, fo-
cusing on span detection and classification, encompass DEM [13],
MHSA [22], LLCP [9], BUCP [24]. Other-based methods, em-
ploying diverse strategies for performance enhancement, include
BNER [15], NRL [1], AIONER [10], TEDC [8].

6 Experimental Results and Analysis

6.1 Comparison with Baseline Methods

We conduct an evaluation on three bioNER datasets to validate the ef-
fectiveness of our method in identifying biomedical entities. The ex-
perimental results are presented in Table 1. In comparison to state-of-
the-art baseline methods, our method achieves superior performance
across all three bioNER datasets. Specifically, our method outper-
forms KaNER [2] by 1.20%, 1.20% and outperforms UGF [23]
by 2.03% absolute F1 on NCBI-Disease, BC5CDR, and GENIA
datasets, respectively. This robust performance substantiates the ef-
fectiveness of our proposed method for the bioNER.

We attribute the reason to the reformulation of the relationship be-
tween span detection and entity categories as a mapping function.
This reformulation significantly reduces the occurrence of erroneous
samples resulting from the amalgamation of head and tail within
spans. Furthermore, this reformulation employs a one-to-one decod-
ing strategy, in which each head precisely corresponds to the tail of
a category-specific entity span. The one-to-one decoding strategies
operate independently, mitigating the accumulation of errors.

6.2 Comparison with ChatGPT

In order to explore the gap in performance between ChatGPT and our
method, we conduct experiments on the NCBI-Disease, BC5CDR,
and GENIA datasets, respectively. Since ChatGPT’s capabilities are
accessed via instructions, we design a specialized task instruction
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Table 3. Performance on different types of entities.

Category KaNER [2] ChatGPT [11] Our method

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

DNA 76.25 77.08 76.66 53.77 49.07 51.31 76.04 77.51 76.77
RNA 84.36 83.51 83.93 35.90 80.77 49.71 89.02 90.87 89.94
PROTEIN 80.21 81.23 80.72 54.39 61.40 57.68 81.45 81.34 81.39
CELL LINE 78.55 78.22 78.38 50.21 54.44 52.24 78.56 80.16 79.35
CELL TYPE 78.56 78.64 78.60 20.95 68.64 32.10 81.24 81.27 81.25

Table 4. Performance on span detection

Model NCBI-Disease BC5CDR GENIA

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

MTM-CW [18] 87.23 88.12 87.67 90.67 90.12 90.39 72.45 77.21 74.75
UGF [23] 91.45 93.04 92.24 92.45 93.01 92.73 80.12 81.56 80.83
BidH [21] 88.76 89.56 89.16 91.56 90.78 91.17 75.12 79.98 77.47
LLCP [9] 89.89 91.34 90.61 90.78 93.01 91.88 79.87 80.56 80.21
BUCP [24] 92.14 93.06 92.60 92.78 92.90 92.84 79.12 79.89 79.50
KaNER [2] 91.56 92.89 92.22 93.67 91.58 92.61 81.23 80.78 81.00

Our method 93.24 95.45 94.33 93.56 94.12 93.84 82.45 83.13 82.79

that aligns with ChatGPT’s input format. Figure 3 shows an example
of instruction applied on the GENIA dataset. The instruction con-
sists of four parts: (1) Task Description, marked by an orange box,
prompts ChatGPT to identify all the entities in the given sentence. (2)
Options, marked by a green box, prompts ChatGPT to generate a set
of possible outputs for a given input.(3) Few-shot Demonstrations,
marked by a purple box, provides ChatGPT with few-shot examples
for reference.(4) Output Description, marked by a red box, specifies
the format of the ChatGPT’s output.

The comparative performance between ChatGPT and our method
is presented in Table 2. As illustrated in the table 2, our method con-
sistently outperforms ChatGPT across the NCBI-Disease, BC5CDR,
and GENIA datasets. Several factors may contribute to this discrep-
ancy: (1) Discrepancies in sample labeling, which may not fully cor-
respond with ChatGPT’s interpretations. For instance, entities like
“H2.0” are recognized by ChatGPT but are not labeled in the pro-
vided data. (2) The entity boundaries identified by ChatGPT may not
precisely match those of the manual annotations. Additionally, it is
worth noting that increasing the number of reference examples does
not lead to a significant improvement in ChatGPT’s performance.

Identify all entity mentions and their corresponding categories from the following text.

The predefined entity categories are 'CELL_TYPE', 'PROTEIN', 'RNA', 'DNA', and 
'CELL_LINE'.

Input: IL-2 gene expression and NF-kappa B activation through CD28 requires reactive

oxygen production by 5-lipoxygenase .

Output: {'IL-2 gene' : 'DNA', 'NF-kappa B' : 'PROTEIN', 'CD28' : 'PROTEIN', '5-

lipoxygenase' : 'PROTEIN'}.

Task Description

Options

Few-shot Demonstrations

Please identify all entities from the following given text in the format{mention1:category1,

mention2:category2}.

Input: Activation of the CD28 surface receptor provides a major costimulatory signal for T cell

activation resulting in enhanced production of interleukin-2 ( IL-2 ) and cell proliferation .

Output: {'CD28 surface receptor': 'PROTEIN', 'interleukin-2': 'PROTEIN', 'IL-2': 'PROTEIN'}

Output Description

……

Figure 3. An example of the task instruction of ChatGPT.

6.3 Performance of Various Categories of Entities

To assess the recognition performance of our method across var-
ious entity categories, we conduct a comparison experiment with
KaNER [2], ChatGPT [11] on the GENIA dataset. The results are
shown in Table 3. Table 3 demonstrates that our method outperforms
KaNER [2] and ChatGPT [11] in recognizing diverse entity cate-
gories. This superiority may stem from the entity category as a priori
information that constrains the detection of entity spans, rather than
as a supervised signal for span classification. Notably, our method
demonstrates exceptional performance in identifying entities within
the RNA category, likely due to distinctive markers in the dataset,
such as suffixes like “mRNA” or “RNA”. However, all methods ex-
hibit poor performance in identifying entities in the DNA category.
This can be attributed to the significant ambiguity in the dataset con-
cerning DNA.

Table 5. Ablation study on NCBI-Disease, BC5CDR and GENIA

Model NCBI-Disease BC5CDR GENIA

Our Method 92.44 92.54 81.26
w/o Context embeddings 91.08 90.96 80.06
w/o Word embeddings 90.73 90.53 79.83
w/o Char embeddings 90.49 90.24 79.71
w/o CLN 88.60 88.39 78.18
w/o Multi-head attention 88.38 88.18 78.03
w/o TDT 87.14 87.08 77.29

6.4 Performance of span Detection

To demonstrate the effectiveness of our model in detecting entity
span, we conduct experiments on three bioNER datasets. The ex-
perimental results are shown in Table 4. Table 4 demonstrates that
our method achieves superior performance in span detection, which
indicates that our method is more effective than existing methods in
span detection.
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Table 6. Three examples for case study.

Example 1: Here we demonstrate that the [[c–myb proto-oncogene product]protein]protein, which is itself a
[[DNA-binding]protein]protein and [[transcriptional transactivator]protein]protein , can interact synergistically
with [[Z]protein]protein in activating the [[BMRF1 promoter]DNA]DNA in [[Jurkat cells]cell_line]cell_line ( a
[[T-cell line]cell_line]cellline ) or [[Raji cells]cell_line]cell_line (an [[EBV-positive B - cell]cell_line]cell_line ), whereas the
[[c-myb gene product]protein]protein by itself has little effect.

Example 2: [2[2[1[1Tax1]cell_line
1]cell_line expressing T cell lines2]cell_line

2]cell_line contained a constitutive level
of [[NF-kappa B]protein]protein binding activity, detectable by mobility shift assay and uv cross-linking using
a [2[2palindromic[1[1NF-kappa B1]DNA

1]DNAprobe
2]DNA

2]DNA homologous to the [[interferon]DNA]DNA beta
[[PRDII site]DNA]DNA .

Example 3: Nuclear extracts assayed for the presence of [[ISRE binding factors]DNA]protein by electrophoretic mobility shift
assays show that [[ISGF3]protein]protein is induced by [[IFN-alpha]protein]protein within 6 h from undetectable basal levels in
untreated U937 cells [[U937 cells]cell_line]cell_line .

We attribute the superior performance to the following reasons.
Span detection is divided into head identification and tail identifica-
tion. Initially, we predict all possible heads within a sentence. Subse-
quently, for each predicted head, we simultaneously identify all pos-
sible categories and the corresponding tails. Our approach not only
utilizes categories to locate an entity’s span but also considers the
mapping of the head and tail of an entity within a particular entity
category.

6.5 Ablation Study

To explore the contribution of various components of the method to
the task, we conduct an ablation experiment on three datasets, NCBI-
Disease, BC5CDR, and GENIA, respectively. The results of the ab-
lation experiment are shown in Table 5. We observe three compo-
nents that substantially contribute to the performance of the NER
task, Context embeddings, CLN, and TDT. As we observed, on the
NCBI-Disease, BC5CDR, and GENIA datasets, the ablation of the
pre-trained language model led to a decrease in F1 scores by 1.36%,
1.58%, and 1.22%, respectively. the ablation of CLN led to a de-
crease in F1 scores by 1.89%, 1.85%, and 1.53%, respectively. For
the ablation of TDT, the F1 scores decreased by 1.24%, 1.10, and
0.89%, respectively.

We note that TDT has a limited impact on the performance im-
provement of the task, probably because it reduces the recall while
improving the correctness. In addition, components, such as word
embeddings, char embeddings, and multi-head attention, contribute
less to the performance of tasks, probably because the pre-trained
language model contains the information they represent.

6.6 Case Study

Table 6 presents three examples of our model’s predictions. The first
example illustrates that our model can correctly identify all enti-
ties from a long text with about ten entities. The second example
highlights that our model can correctly distinguish various entities
with nested strictures. We can observe that two nested entities are
correctly identified. However, our model is prone to misidentifying
entity categories due to deficiencies in semantic understanding, as
shown in the third example. The entity category “protein” of the en-
tity “ISRE binding factors” is mistaken for “DNA”. It is worth men-
tioning that our model can accurately locate the entity spans, demon-
strating the effectiveness of our model in entity span detection.

7 Conclusions and Future Work

BioNER aims to identify entities in the text within the biomedical
field. In this paper, we propose a multi-tagger collaboration frame-
work, which could greatly alleviate the existing drawbacks of the
region-based methods. We conduct extensive experiments on pub-
licly available biomedical datasets. The experimental results demon-
strate that our method outperforms the previous state-of-the-art meth-
ods. Specifically, the ablation study highlights the substantial contri-
butions of three key components: Context embeddings, CLN, and
TDT, to the overall performance of the method. For further work, we
will explore the correlation between entity category and entity span
in vector space, and design a more generalized decoding scheme to
eliminate threshold constraints and further improve the performance.
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