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Abstract. In this work we consider a new interpretation of fairness
in decision making problems. Building upon existing fairness for-
mulations, we focus on how to reason over fairness from a temporal
perspective, taking into account the fairness of a history of past de-
cisions. After introducing the concept of temporal fairness, we pro-
pose three approaches that incorporate temporal fairness in decision
making problems formulated as optimization problems. We present a
qualitative evaluation of our approach in four different domains and
compare the solutions against a baseline approach that does not con-
sider the temporal aspect of fairness.

1 Introduction

Automated decision making is an important part of artificial intelli-
gence with a variety of application areas, from scheduling and re-
source allocation, to robotics and autonomous vehicles. Decision
making processes typically aim to optimize an overall benefit or
cost. However, as we strive to make our algorithms and agents more
intelligent, it is important to ensure that they also account for eth-
ical considerations such as fairness. The need for fair algorithms
and agents has been widely studied across different areas, such as
robotics [3], healthcare [4], telecommunications [11], and resource
allocation [15], among others.

Formulating fairness concerns in different domains can be chal-
lenging, and it has been the subject of many studies [21]. In this pa-
per, we take a new angle to considering fairness in decision making
processes. We build upon previous fairness formulations, and focus
on how to reason about fairness from a temporal perspective, ac-
counting for the fairness of a history of past decisions. We aim to in-
troduce the concept of “temporal fairness” into the decision making
process, which measures the fairness of solutions throughout time.

As a motivating example consider the scenario depicted in Figure 1
where courses must be assigned to a pool of lecturers (l1, l2 and l3)
in semester t. Each lecturer is specialized in different areas and the
teaching quality of a course is proportional to the expertise of its
lecturer (the gray bars below the lecturers depict their expertise on
different topics). Figure 2a depicts the number of courses assigned
to each lecturer in the past four semesters. Lecturer l1 has received a
higher teaching load than l2 over the past four semesters. Regardless
of the reasons that have led to the scenario in Figure 2a, the reality is
that there has been some “historical unfairness”. Figure 2b depicts
the cumulative teaching load over time for each of the two available
lecturers l1 and l2.

A new course allocation must be made for semester t. If an allo-
cation is made that is presently fair, in which both lecturers teach
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Figure 1: Depicts a university course assignment, in which courses
are to be assigned to lecturers with different levels of expertise in
different areas. The lecturer in gray is on sabbatical leave.

the same number of courses (dashed gray scenario in Figure 2b), an
overall “temporal unfairness” remains, with the gap in cumulative
lecturing load not reducing. In fact, as depicted in Figure 2c, even
in the case where an unfair allocation is made for semester t and l2
lectures all courses, there would still exist a gap in the lecturing load.

In this work, we focus on the problem of decision making while
accounting for a historical fairness and considering the impact of fu-
ture decisions in overall temporal fairness.

We first introduce the definition of an optimization problem that
reasons over the trade-off between quality and fairness (Section 2.1).
Then we introduce the concept of temporal fairness by including his-
torical fairness into our formulation (Sections 2.2 and 2.3). We then
extend this optimization problem to reason over this trade-off while
accounting for future predictions and forecasts (Section 2.4). This
allows the generation of solutions that may look unfair in the short
term, but fairer when analyzed over a longer period of time into the
future. We incorporate the notion of temporal fairness via the intro-
duction of a framework for fairness metrics that considers historical
solutions.

The main contributions of this paper are: (i) introducing the con-
cept of temporal fairness in decision making problems, (ii) a formu-
lation for addressing historical unfairness from past solutions, (iii) a
formulation for both addressing historical unfairness and considering
future historical fairness, and (iv) a qualitative evaluation on different
domains that examines the differences between solutions generated
with and without considering the temporal aspect of fairness.

The remainder of the paper is structured as follows. Section 2
introduces the formulations of optimization problems that consider
fairness, as described above. We then present the qualitative evalua-
tion of our framework in Section 3. Section 4 discusses relevant re-
lated work, and the paper concludes in Section 5 with final remarks
and a discussion on avenues for future work.
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Figure 2: Depicts a concrete scenario of a university course assignment. Figure 2a depicts the scenario in which l1 was assigned a higher
lecturing load over the past 4 semesters. Figure 2b and 2c depict the cumulative lecturing load of l1 (blue) and l2 (red) with possible solutions
to the current allocation problem (dashed gray). 2b depicts the case where at timestep t a fair allocation is made with both lecturers given the
same load (1.5 courses each). 2c depicts the case where an unfair allocation is made and l2 is assigned all the lecturing load (3 courses).

2 Problem Formulation

We consider decision making problems solved by finding a solution
that maximizes an objective function while satisfying a set of con-
straints. First, we consider a decision making problem where no fair-
ness metric is considered. Such problems can be formulated as an
Optimization Problem (OP).

Definition 1. An Optimization Problem (OP) is a tuple 〈Q,X ,C 〉
where Q is a quality metric, X is the domain for optimization, and
C is the set of constraints.

Formally, we define an OP as:

max
x∈X

Q(x)

s.t. C (x)
(1)

In this setting, the goal is to find a solution x∗ that maximizes a given
quality metric Q, while being subject to a set of constraints C (x). We
let variables x denote the optimization variables of the problem. Since
this formulation only reasons over the quality metric, it is possible
that the optimal solutions may be deemed unfair according to some
fairness metric. Moreover, as depicted in Figure 2a, this formulation
may lead to a fast accumulation of unfair solutions.

2.1 FOP: Incorporating Fairness

We now incorporate a fairness metric F into the formulation of the
optimization problem. A Fair Optimization Problem (FOP) can be
defined as:

Definition 2. A Fair Optimization Problem (FOP) is a tuple
〈Q,F,X ,C ,β 〉 where F is the fairness metric and β ∈ R is a pa-
rameter than controls the trade-off between quality and fairness. The
remaining elements follow the original OP.

Formally, an FOP can be modelled as:

max
x∈X

Q(x)+βF(x)

s.t. C (x)
(2)

In general, we will assume that F returns higher values for fair so-
lutions and lower values for unfair solutions. In practice, it may be
convenient for both Q and F to have well-specified ranges, render-
ing it easier to understand the impact of the parameter β . However,
the formulation is general and supports arbitrary quality and fairness

metrics. Finally, we note that the specification of the fairness met-
ric F may potentially require the introduction/modification of con-
straints. In order to keep notation simple, we will continue denoting
the set of constraints as before, C (x).

As an example building upon our previous scenario of the course
assignment domain, let us consider a relative max-min fairness met-
ric F rmm, which compares the maximum and minimum number of
courses lectured by all lecturers, versus the total number of courses
lectured during that time. Formally,

F rmm(x) = 1− maxi Si(x)−min j S j(x)
S(x)

,

where Si(x) is the number of courses lectured by li in solution x,
and S(x) is the total number of courses lectured. The range of F rmm

is [0,1]. It is maximized when lecturers get an equal lecturing load,
and minimized when one of the lecturers takes the entire load. While
incorporating the new fairness metric in the FOP leads to solutions
that are fair according to F (or at least fairer, depending on β ), there
may still exist some historical unfairness that remains from previous
allocations. Figures 2a and 2b hinted at this, depicting a scenario
where scheduling a fair plan at time step t would have maintained
the gap of cumulative courses lectured.

2.2 HFOP: Incorporating Historical Fairness

FOPs assume a fairness metric F that only reasons over the fairness
of a solution x. In order to account for existing historical unfairness,
it is thus important to reason over the fairness of a solution x in the
context of the history of past solutions H = (xt−T , . . . ,xt−1), where
xt−Δ is a previous solution from time step t −Δ.

We formalize the notion of such fairness metrics in the following
definition.

Definition 3. A historical fairness metric FH : X → R is a fairness
metric for an FOP 〈Q,FH ,X ,C ,β 〉 where H ⊆ X contains solu-
tions satisfying C . We assume F/0 is a fairness metric and write it as
F.

The historical fairness metric FH can be used to control how fast or
slow historical unfairness is compensated. Also, as it is not a limita-
tion for the real-world scenarios we consider in this paper, we assume
the time between the historical solutions in H is uniform.

Definition 4. A Historical Fair Optimization Problem (HFOP) is
an FOP tuple 〈Q,FH ,H,X ,C ,β 〉 where FH is a historical fairness
metric.
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Figure 3: Compares the fairness of the solutions computed using a
FOP (red) and HFOP (blue) in a simple scenario with no quality metric
Q. Each solution is evaluated with both the relative max-min fairness
metric F rmm, and its historical variant F rmm

H , shown respectively in
dashed and solid lines. The x axis is in log scale.

Formally, we can formulate an HFOP as:

max
x∈X

Q(x)+βFH(x)

s.t. C (x)
(3)

As before, parameter β provides control over the quality/fairness
trade-off, with higher values of β leading to a faster compensation of
historical unfairness. It is worth highlighting that the optimal solution
to an HFOP may actually be an unfair solution from the perspective
of a fairness metric F . To see this, let us consider an example.

Building upon the relative max-min fairness metric previously dis-
cussed, we can now consider its historical variant F rmm

H , where we
reason instead over the courses lectured across (H,x)—the concate-
nation of historical solutions in H with the new solution x.

F rmm
H (x) = 1− maxi Si((H,x))−min j S j((H,x))

S((H,x))
,

where Si((H,x)) is the number of courses lectured by li over all solu-
tions in (H,x) and S((H,x)) is the total number of courses lectured.

Let’s now see how F rmm and F rmm
H would differ in a concrete

scenario, depicted in Table 1. Assume that at time step t we take
a solution x(1.5, 1.5) assigning an equal load of 1.5 courses to each
lecturer. While F rmm(x(1.5,1.5)) = 1, we have that F rmm

H (x(1.5,1.5)) =

1− 5
15 ∼ 0.67. Since the allocation given by x(1.5,1.5) is balanced, the

historical max-min gap remains 5 while the total number of courses
becomes 15. On the other hand, if we take the solution x(0,3) assign-
ing all 3 courses to lecturer l2, we would have F rmm(x(0,3)) = 0 and
F rmm

H (x(0,3)) = 1− 2
15 ∼ 0.87 – since all the lecturing load was as-

signed to l2, the max-min gap decreases to 2.

Table 1: Compares F and FH for different solutions, assuming a his-
tory H (repeated from Figure 2a). A solution x(m,n) refers to the case
where lecturers l1 and l2 are assigned m and n courses, respectively.
We observe that, under history H, a perfectly fair solution according
to F may not be fair according to FH . The solutions that would be
picked under F and FH are in bold.

H

t−4 t−3 t−2 t−1

l1 2 1.5 3 2
l2 1 1.5 0 1

xt F(xt ) FH (xt )

x(1.5,1.5) 1.00 0.67
x(1,2) 0.67 0.73
x(0,3) 0.00 0.87

More generally, it is interesting to compare solutions computed by
FOP vs. HFOP, and the respective fairness metric F rmm and historical
fairness metric F rmm

H . Figure 3 depicts these metrics under a simple

course allocation scenario where we assume there exists no quality
metric Q and 3 courses per semester. As expected, we observe that
the fairness metric F rmm of the solutions computed by FOP is always
maximized. In this case, FOP always returns x(1.5,1.5). HFOP, on the
other hand, starts by computing unfair solutions x(0,3) and x(0.5,2.5)
at time steps t and t+1. From t+2 onward, HFOP returns the fair so-
lution x(1.5,1.5). These different choices for the solutions have a sig-
nificant impact on the way the historical unfairness is compensated.
Whereas HFOP maximizes the historical fairness in two time steps,
we observe that after 10 semesters (or 30 courses) FOP only reaches
a value of 0.9. As anticipated in the end of the previous section, we
conclude that FOP takes a long time to compensate existing historical
unfairness.

2.3 DHFOP: Incorporating Discounted Historical
Fairness

We observed in Figure 3 how slowly the historical unfairness would
be compensated when following the solutions produced by FOP. In
fact, it turns out it would never be fully compensated – since FOP al-
ways computes perfectly balanced schedules, the lecturing load gap
of 5 would remain unchanged. This behaviour may not fit many do-
mains. It may become especially problematic when considering sce-
narios with long histories of unfair solutions.

A historical fairness metric FH allows the specification of an opti-
mization problem HFOP that reasons over remnant historical unfair-
ness. We observed this may lead to solutions that seem unfair at time
step t when only considering the current time step (i.e., according to
F).

In practice, it makes sense to consider a “forgetting rate phe-
nomenon”, where we attribute more importance to recent events than
those in a distant past. However, FH(x) puts equal importance to the
fairness of solution x at time step t and all past solutions. In order
to model the importance of recent events we propose the discounted
historical fairness metric FH,γ , which discounts past unfairness with
a forgetting discount factor γ .

Definition 5. A Discounted Historical Fair Optimization Problem
(DHFOP) is a tuple 〈Q,FH,γ ,H,X ,C ,β 〉, where FH,γ is a historical
fairness metric that reasons over a history of previous solutions H =
(xt−T , . . . ,xt−1) with the discount factor γ . The remaining elements
follow the HFOP.

Reasoning over a discounted historical fairness metric FH,γ allows
us to control the importance of the unfairness of past solutions rela-
tive to more recent ones. Formally, the optimization problem is:

max
x∈X

Q(x)+βFH,γ (x)

s.t. C (x)
(4)

There are now two hyper-parameters. The discount factor γ , which
sets the importance of the fairness of past solutions, and the parame-
ter β , which controls the quality/fairness trade-off.

Revisiting once more our running example of course assignment
and the max-min fairness metric, we could define its discounted his-
torical variant as follows:

F rmm
H,γ (x) = 1− maxi Sγ,i((H,x))−min j Sγ, j((H,x))

Sγ ((H,x))
,

where Sγ,i((H,x)) = ∑T
Δ=0 γΔSi(xt−Δ) is the discounted number of

courses lectured by li over all solutions in (H,x) and similarly,
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the faster the historical fairness is compensated.

Sγ ((H,x)) is the discounted total number of courses lectured:

Sγ ((H,x)) =
T

∑
Δ=0

γΔS(xt−Δ)

We now analyze the behavior of F rmm
H,γ for different values of γ . We

build upon our course assignment example introduced in the previous
section, assuming that at time step t and onward we accept a solution
that assigns an equal load to each lecturer (the solution that the FOP

would compute). Figure 4 depicts F rmm
H,γ for different values of γ .

We observe that smaller values of γ lead to a faster compensation of
historical fairness. For example, for γ values of 0.25, 0.5, and 0.9, it
takes, 2, 5, and 26 semesters, respectively, for F rmm

H,γ to reach a value
of 0.99.

2.4 MSDHFOP: Historically Fair Planning with
Future Forecasts

All problems introduced so far are of a single-shot nature, where
the solver is assumed to make a decision for the current time step t.
However, single-shot decisions can often result in sub-optimal solu-
tions in complex domains with extended horizons, such as planning
problems [8]. Reasoning over multiple time steps into the future can
allow for more effective solutions given knowledge or predictions
about future events.

In the setting of fairness, reasoning over multiple steps into the
future may allow for interesting solutions. For example, due to future
constraints, a solution that is fair over a given horizon may require
initial solutions that seem unfair when analyzed independently. In
order to account for both existing historical unfairness and a planning
horizon into the future, we let FH,γ,τ (xt , . . . ,xt+TF ) denote a fairness
metric that considers both a history of solutions H and a sequence of
TF future problems (xt , . . . ,xt+TF ), with the past and the future being
discounted according to γ and τ .

Definition 6. A Multi Step Historical Fair Optimization Problem
(MSDHFOP) is a tuple 〈Q,FH,γ,τ ,H,X ,C ,β ,γ,τ〉, where FH,γ,τ is
a historical fairness metric that reasons over a history of previous
solutions H = (xt−TH , . . . ,xt−1) and a sequence of future solutions
(xt , . . . ,xt+TF ). γ and τ are discount factors. The remaining elements
follow the DHFOP.

We formulate an MSDHFOP as:

max
x0,...,xTF

∑T
t=0τtQ(xt)+βFH,γ,τ (x0, . . . ,xTF )

s.t. C (x)
(5)

The first term computes the discounted sum of quality of the planned
solutions. The second term computes the multi-step historical fair-
ness metric. As before, the discount factor γ sets the importance of
past solutions relative to more recent ones in the computation of fair-
ness. Similarly, the discount factor τ discounts future solutions rela-
tive to the previous one, impacting both fairness and solution quality.
Whereas γ seeks to model the “recency effect” from a fairness per-
spective (i.e., we tend to attribute more importance to recent events
than those in a distant past), τ seeks to model uncertainty in planning
into the future (i.e., it is easier to predict states closer in time than
those in a distant future).

We can again build upon the discounted historical relative max-
min fairness metric, and introduce a variant that also reasons over
the next TF solutions xt:TF = (xt , . . . ,xt+TF ), where we define

F rmm
H,γ,τ (xt:TF )

= 1− maxi Sγ,τ,i((H,xt:TF ))−min j Sγ, j((H,xt:TF ))

Sγ ((H,xt:TF )
,

where

Sγ,τ,i((H,xt:TF )) =
TH

∑
Δ=1

γΔSi(xt−Δ)+
TF

∑
Δ=0

τΔSi(xt+Δ)

is the discounted number of courses lectured by li, over all so-
lutions in history H and future planned solutions xt:TF . Similarly,
Sγ,τ ((H,xt:TF )) is the discounted total number of courses lectured.

Table 2: Builds upon the results in Table 1, reporting FH,γ,τ for dif-
ferent solutions, assuming a history as depicted in Figure 2a, and
γ = τ = 1. From Table 1 we observed that a single-shot decision
based on FH would pick solution x(0,3). However, if we are now
aware there exists a constraint preventing l1 from teaching any course
at time step t + 1, then the best decision is to first choose solution
x(0.5,2.5).

xt xt+1 FH,γ,τ ((xt ,xt+1))

x(0,3) x(0,3) 0.94
x(0.5,2.5) x(0,3) 1.00
x(1.5,1.5) x(0,3) 0.88

Table 2 depicts an example where planning multiple steps into the
future can lead to better solutions. This example builds upon our
analysis of Table 1 from which we concluded the optimal solution
according to FH is to assign at time step t all the lecturing load to l2.
However, suppose now we are allowed to plan over a horizon T = 2
into the future, and that we are aware of a constraint preventing l1
from lecturing any courses in the second semester t+1. From Table 2
we conclude the best sequence of actions is actually (x(0.5,2.5),x(0,3)).
Following HFOP instead would yield to the less rewarding solution
(x(0,3),x(0,3)).

3 Experimental Evaluation

3.1 Setup

We evaluate our formulations across multiple domains using differ-
ent fairness metrics. We start with a technical description of each do-
main, introducing the decision variables, and the quality and fairness
metrics to be used. The machine used to run experiments is an In-
tel(R) Xeon(R) CPU E3-1585L v5 @ 3.00GHz with 64GB of RAM.
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3.1.1 Course Assignment Problem (CAP)

This is the domain that has been used throughout the paper, where
a set of lecturers L is to be assigned to a set of courses C . When
dealing with multi-step decision making settings, we may denote the
set of courses at time step t as Ct . The expertise of lecturer l in course
c is measured by S : L ×C → R, and higher values correspond to
higher expertise. Decision variable xl,c ∈ {0,0.5,1} indicate the load
of lecturer l in teaching course c— a lecturer may not lecture the
course at all, or lecture either half a course or the full course.

We consider a quality metric Q = 1
Qmax

∑c∈Ct ∑l∈L xl,c S(l,c),
which rewards course assignments with skilled lecturers. Qmax is
a normalization constant, denoting the maximum sum of expertise
possible—this ensures Q is bounded between 0 and 1. In order to
display the generality of our formulation, throughout the experimen-
tal evaluation with this domain we may use different fairness metrics.

3.1.2 Vehicle Routing Problem (VRP)

In this domain, given a set of vehicles V , a set of points P that
must all be traveled to exactly once, a depot r ∈ P the vehicles
must leave from and return to, and distances between all points
D : P × P → R+, determine a route for each vehicle that mini-
mizes the total distance traveled. We consider a standard integer
program to model the OP where quality Q(x) is the total distance
traveled (see Supplementary Materials in [20] for a full definition).
To model fairness, for a given solution x to the integer program,
let Uv(x) be the total distance vehicle v travels under x and de-
fine F(x) := maxv∈A Uv(x)−minw∈A Uw(x). This notion of fairness
is similar to proportional equality and is used in [13] in a multi-
objective version of VRP.

3.1.3 Task Allocation Problem (TAP)

In this domain, given a set of agents A, a set of tasks T , and a cost
associated with each agent for each task C : A×T →R+, find an as-
signment of tasks to agents such that the sum of costs is minimized.
We consider a standard integer program to model the OP where qual-
ity Q(x) is the sum of costs (see Supplementary Materials in [20] for
a full definition). The fairness metric we consider is the classic min-
imax notion of fairness (see [21] and references therein), where for
a given solution x to the integer program, let Ua(x) be the total cost
agent a incurs under x and define F(x) := maxa∈A Ua(x).

3.1.4 Nurse Scheduling Problem (NSP)

We consider a version of this classical problem in operations re-
search. In the Supplementary Materials in [20], the authors first for-
mally define the problem and then we show the impact of different
histories on the NSP, in particular showcasing the impact of the dis-
count factor in DHFOP.

3.2 Quality vs. Fairness

We start our experimental evaluation with an example depicting the
quality vs. fairness trade-off, and the impact of the parameter β
therein. Let’s consider an instance of CAP with 3 lecturers, l1, l2, l3
and 2 courses c1,c2. Across all 3 courses, l1 has high skills (S = 2),
l2 has medium skills (S = 1.5), and l3 has low skills (S = 0). We use
a historical quadratic max-min gap fairness metric

Fqmmg
H (x) =−

(
1
2
(max

i
Si((H,x))−min

j
S j((H,x)))

)2
,
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Figure 5: The quality Q, fairness Fqmmg, and historical fairness
Fqmmg

H of the solutions computed by HFOP under different values
of β , in the course assignment domain.

where Sγ,i is defined as previously. The original fairness metric that
disregards H follows naturally. Fqmmg has range [−∞,0] and, when
compared to F rmm, should allow for heavier penalization of solutions
that increase the lecturing load, due to the quadratic term and the lack
of normalization.

We analyzed the solutions computed by HFOP under different val-
ues of β , for 10 consecutive semesters, starting with no previous
history. Figure 5 compares the quality Q, fairness Fqmmg, and his-
torical fairness Fqmmg

H of the solutions computed by HFOP under
different values of β . Table 3 provides a summary of the results
for the different metrics. We observe that, as β increases, HFOP

computes solutions with lower quality Q, but higher fairness F and
historical fairness FH . This follows our expectation, since β is the
parameter setting the quality vs. fairness trade-off. From the fig-
ure we also observe that HFOP converges to a pattern of first se-
lecting higher-quality/lower-fairness solutions, and once the histor-
ical fairness reaches a certain (low) level, starts selecting lower-
quality/higher-fairness solutions to compensate for it. This pattern
is even more noticeable for lower values of β , where at earlier time
steps the solutions produced tend to be characterized by high quality
and low fairness.

3.3 Planning with Future Forecasts

We now evaluate the benefits from a fairness perspective of MSD-
HFOP reasoning over multiple steps into the future from a fairness
perspective. Consider a simplified instance of CAP with two lectur-
ers l1 and l2, and two courses c1 and c2. Across all courses, l1 has
high skills (S = 2) and l2 has medium skills (S = 1). To showcase
the flexibility of our approach to fairness metrics, we now consider
another version of the maximin fairness metric where utility Ui mea-
sures the number of courses taught by lecturer li:

Fmm(x) =
mini Ui(x)
max j Uj(x)

.

Assuming no historical solutions, the scheduler is now to plan the
course assignments for the next T = 4 semesters. There exists a
known constraint about the future—l1 will not be able to take any
lecturing load on semesters t+2 and t+3 due to a sabbatical leave.
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Table 3: Summary of the results on the comparison of the quality Q, fairness Fqmmg, and historical fairness Fqmmg
H of the solutions computed

by HFOP under different values of β .

Q Fqmmg Fqmmg
H

max min μ ±σ max min μ ±σ max min μ ±σ
OP 1.0 1.0 1.0±0 −1.0 −1.0 −1.0±0.0 −1.0 −100.0 −38.5±2.42

H
F

O
P

β
0.125 1.0 0.44 0.7±0.22 −0.06 −1.0 −0.33±0.35 −1.0 −6.25 −3.89±1.83
0.25 0.88 0.44 0.66±0.22 −0.06 −0.25 −0.16±0.09 −0.25 −2.25 −1.47±0.63
0.75 0.88 0.44 0.61±0.13 −0.06 −0.25 −0.08±0.06 −0.06 −0.25 −0.19±0.09

2 0.69 0.44 0.59±0.11 −0.06 −0.06 −0.06±0.0 −0 −0.06 −0.04±0.03

Table 4 depicts the solutions computed by HFOP and MSDHFOP, in
a setting with β = 2 and discount factors γ = 1,τ = 1. Since HFOP

plans a single step at a time, it is not able to take advantage of the
information on l1’s future constraints. As a result, it schedules the
perfectly balanced solution in the two initial steps, and is then forced
to schedule the last two time steps as x(0,2). This results in a sequence
of solutions leading to an overall lower quality (10 vs. 12) and fair-
ness (0.33 vs. 1).

Table 4: Comparison between FOP and MSDHFOP, showing the bene-
fits of reasoning over multiple steps into the future. Since HFOP per-
forms single-shot decisions, it ends up ignoring the known constraint
that l1 will not lecture any course in time steps t+2 and t+3.

xt xt+1 xt+2 xt+3 ∑t Q(xt) FH,γ,τ (x)

HFOP x(1,1) x(1,1) x(0,2) x(0,2) 10 0.33
MSDHFOP x(2,0) x(2,0) x(0,2) x(0,2) 12 1.0

3.4 Increasing Complexity and Benchmarking

We now examine a more complex problem and show the impact of
considering fairness on running time. We first introduce a method for
generating random instances and a history of past solutions for VRP.
Consider a square integer grid of a fixed size. We deterministically
place the depot at the center of the grid and, given a fixed number of
points n, choose n of the grid points uniformly at random (not includ-
ing the depot). For generating history, we generate random instances
and solve the problem optimally on these random instances.

For our experiments in this section and the following, we imple-
mented the integer program with the corresponding fairness con-
straints using the PuLP Python library [17] and used the CBC
solver [6] with a standard linearization of F(x) (see, e.g., [21]).
All times measured are wall-clock times for the combined model-
building and solving times.

In our experiments, we consider 4 vehicles V = {V1,V2,V3,V4}
and 12 locations. We generate a history of 5 steps and a single ran-
dom instance. For each historical instance, we assume V1 always had
the shortest route, V2 the second shortest, and similarly for V3 and
V4. Table 5a shows the total distance traveled for each vehicle. We
compare the solutions of OP, FOP, and HFOP. We set β = 10 for all
experiments. Table 5b shows the results for each of the 4 vehicles.

In FOP, the notion of fairness considered should encourage solu-
tions where all distances traveled are similar. This, of course, should
come at the expense of increasing the overall distance traveled. We
see this exact scenario play out when comparing OP and FOP. The
distances in the solution for OP are not uniform but attain a total
distance of 74.4 and the distances in the solution for FOP are all sim-
ilar but the total distance traveled is 112.1. When comparing OP and
FOP to HFOP, we expect that HFOP should account for the historical
unfairness received by vehicle V4. In fact, we expect and see in the
results that the solution to HFOP should give the shortest routes (in

order) to V4, V3, V2 and V1. In terms of total time, FOP and HFOP

require roughly 3 times as long to run, thus showing that the cost of
incorporating fairness in our framework is not computationally pro-
hibitive for VRP.

Table 5: Results for VRP experiments.

V1 V2 V3 V4

37.1 44.9 154.4 202.6

(a) Total historical distance traveled.

V1 V2 V3 V4 time (s)
OP 4.5 6.3 13.8 49.8 11.6

FOP 26.6 28.3 28.6 28.6 34.2

HFOP 74.5 65.3 6.32 4.47 33.9

(b) Distance traveled for all 4 vehicles on a single instance.

3.5 Larger Scale Experimentation

In this section, we show that our framework can be applied on a
larger scale than considered in the previous sections. We introduce
a method for generating random instances for TAP. We create in-
stances with |A|= |T |= 40. For each agent a ∈ A, one task is chosen
uniformly at random to have cost 5, three tasks are chosen uniformly
at random to have cost 20, and the rest of the tasks have cost 30. We
sometimes deterministically enforce that an agent a does not have a
task of cost 5 and this task is replaced with a cost 30 task, in which
case we say agent a is constrained.

We refer to the following setup as a single run and we average
our results over 10 runs. Sample 8 agents uniformly at random from
A and denote this subset as C. Produce 3 random instances accord-
ing to our random instance generation given above. Then produce 3
more random instances where all agents in C are constrained. These
6 instances are the future instances. To generate history, we run the
OP on each of these 6 instances. Sort the agents according to total
cost. In this order, the last 4 agents not in C are assigned a histori-
cal cost of 180, call these agents W . Amongst the remaining agents,
the first 24 agents are assigned a historical cost of 30. The remaining
12 agents are assigned a historical cost of 120. More justification for
random instance generation and history generation is provided in the
Supplementary Materials in [20]. All instances are run with β = 10.

We first evaluate the maximum cost assigned to any agent in OP

and FOP. Table 6 shows the number of times per run the maximum
cost is 30. We expect the number to be much larger in OP compared to
FOP, which is confirmed in Table 6. This is at the expense of incurring
a larger total cost, which is expected since FOP is also prioritizing
minimizing the maximum cost and not just the total cost.
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Table 6: Evaluating OP, FOP, HFOP for TAP experiments. (First col-
umn) Measures the number of times the maximum cost is 30—the
largest value is 6 as there are 6 instances per run. (Last two columns)
For each run, we compute the total cost for each agent in W and av-
erage it by |W |= 4, similarly for A\W . All values averaged over 10
runs.

max
cost=30

avg sum
of costs

avg cost
of W

avg cost
of A\W

OP 5.9±0.3 470.8±12.1 97.6±7.8 67.6±1.7
FOP 2.4±0.8 484.0±13.2 86.7±9.3 71.0±2.2

HFOP 6.0±0.0 478.2±12.5 50.7±7.7 74.0±1.9

Table 7: Evaluating the impact of the constrained agents on the TAP
experiments. For each run, we compute the total cost for each agent
in C and average it by |C| = 8. We compare the results over the first
3 instances and last 3 instances of each run. The times for each run
are averaged over the 6 instances. All values averaged over 10 runs.

avg cost of
C (first 3)

avg cost of
C (last 3) time (s)

OP 32.5±4.4 67.8±1.7 0.5±0.1
FOP 32.3±3.2 62.1±2.1 54.4±42.5

HFOP 36.6±4.5 67.3±1.9 0.6±0.1
MSDHFOP 23.3±3.7 64±0.9 4.2±1.2

We next evaluate the impact of history in OP, FOP, and HFOP. Re-
call that for each run, W is the set of agents who received the largest
historical cost. OP and FOP do not consider history and therefore will
not necessarily prioritize the agents in W . We see this exact behavior
in Table 6. Furthermore, even as OP continues to not prioritize the
agents in W , which is how W is defined, the average cost of agents
not in W for OP is still less than for FOP or HFOP. This is expected,
at least for HFOP, as HFOP prioritizes agents in W .

We now examine the outcomes of the constrained agents C, who
are all constrained in the last 3 instances of each run. Table 7 shows
that the constrained agents in OP, FOP, and HFOP all have a similar
average over both the first and second 3 instances, which is expected
as these agents should not necessarily receive special treatment in
any of these frameworks. However, MSDHFOP reasons about the fu-
ture, and therefore we expect it to adjust for the fact that the agents
in C are constrained over the last 3 instances. We see this behavior in
Table 7. Note that we set γ = τ = 0.75.

We also report the running times in Table 7. The running times
of HFOP and MSDHFOP are about the same as OP, especially con-
sidering MSDHFOP runs all 6 future instances at once. FOP, however,
has a large average running time, but the median running time is only
1.6 s—some instances require large amounts of time but are not com-
mon. One hypothesis is that the solver we use takes a lot of time when
trying to minimize the max cost when there are multiple agents that
can achieve the max cost. In HFOP on the first future instance, for
example, the historical imbalance ensures that only the 4 agents in
W can achieve the max cost, which may reduce the set of candidate
optimal solutions considerably.

4 Related Work

In recent times, a significant amount of research has been dedicated
to fairness in AI, with a focus on predictive models and algorithmic
fairness [14]. In machine learning, in particular, the topic of long-
term fairness has been the subject of much attention [5, 7, 10]. The
long-term consideration of fairness is relevant to the MSDHFOP for-

mulation, where we consider both future and past history.
Other lines of research look into the connections of algorithmic

fairness and ethical decision making in the context of sequential de-
cision making and planning [18]. Nashed et al. explore how each of
these settings has articulated its normative concerns, the viability of
different techniques for these different settings, and how ideas from
one may be useful for the other.

Motivated by computational resource allocation problems, there
exists a vast literature on the topic of fairness in real-time schedul-
ing. Examples include the fair scheduling of periodically arriving
tasks with deadlines [2], or more generally, the problem of schedul-
ing tasks to long lived processes while taking into account the bene-
fit/cost to each process [1]. While these works look at fairness from
a temporal perspective—seeking to ensure a fair load to the different
processes—they do not consider possible historical unfairness due to
previous solutions and tend to focus on a specific fairness metric.

In the areas of decision-making and planning, several works have
focused on different ways to mathematically formulate fairness met-
rics. Recent work surveys various schemes that have been proposed
for formulating ethics-related criteria, including those that integrate
efficiency and fairness concerns [21]. They emphasize the challenges
of having a single definition of fairness, as different definitions are
appropriate for different contexts. Additionally, different fairness
models are grouped into clusters, each representing a different type
of fairness principle, to facilitate comparisons and help identify the
most suitable model for practical applications. While the fairness
metrics introduced did not consider fairness from a temporal per-
spective where a history of past solutions exists, they can be adapted
and used as part of all our formulations.

There has also been a growing interest in fairness in multi-agent
decision making, planning [19], and reinforcement learning [12, 9].
Recent work focuses on fairness in long-term decision making prob-
lems, introducing a new voting formalism that takes the history of
previous decisions into account [16]. While the concept of consider-
ing history is similar to the definition of HFOP, our formalism con-
siders a centralized decision making process.

5 Conclusion and Future Work

In this work we took a new angle to considering fairness in decision
making processes. Building upon previous fairness formulations, we
focused on how to reason about fairness from a temporal perspective,
especially when there exists a history of past decisions that may have
been potentially unfair. In this setting, we proposed to reason over
the concept of “temporal fairness” in decision making processes.

Starting from a general decision making problem—OP—we in-
crementally built our approach to reason over temporal fairness, ac-
counting for both past solutions and predictions about the future.
With the introduction of a fairness metric in the objective, FOP ex-
tends OP by reasoning over the quality/fairness trade-off of a solu-
tion. To reason over historical unfairness, we propose HFOP, where
the fairness metric takes into account a history of previous solutions.
A discounted version DHFOP is then proposed to allow us to model
the importance of more recent events. Finally, the MSDHFOP formu-
lation is extended to reason over both historical and future solutions.
In the experimental evaluation we assess our approach across differ-
ent domains and show, in particular, how our approach is compatible
with different fairness metrics.

As directions for future work, we envision exploring scenarios
where different fairness metrics are used across time (in the past and
future) and reasoning over multiple concurrent fairness metrics.
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6 Disclaimer

This paper was prepared for informational purposes in part by the
Artificial Intelligence Research group of JPMorgan Chase & Co. and
its affiliates (“JP Morgan”), and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and
warranty whatsoever and disclaims all liability, for the completeness,
accuracy or reliability of the information contained herein. This doc-
ument is not intended as investment research or investment advice,
or a recommendation, offer or solicitation for the purchase or sale of
any security, financial instrument, financial product or service, or to
be used in any way for evaluating the merits of participating in any
transaction, and shall not constitute a solicitation under any jurisdic-
tion or to any person, if such solicitation under such jurisdiction or
to such person would be unlawful.
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