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Abstract. Originating in game theory, Shapley values are widely
used for explaining a machine learning model’s prediction by quanti-
fying the contribution of each feature’s value to the prediction. This
requires a scalar prediction as in binary classification, whereas a mul-
ticlass probabilistic prediction is a discrete probability distribution,
living on a multidimensional simplex. In such a multiclass setting
the Shapley values are typically computed separately on each class
in a one-vs-rest manner, ignoring the compositional nature of the
output distribution. In this paper, we introduce Shapley compositions
as a well-founded way to properly explain a multiclass probabilistic
prediction, using the Aitchison geometry from compositional data
analysis. We prove that the Shapley composition is the unique quan-
tity satisfying linearity, symmetry and efficiency on the Aitchison
simplex, extending the corresponding axiomatic properties of the stan-
dard Shapley value. We demonstrate this proper multiclass treatment
in a range of scenarios.

1 Introduction

Many machine learning approaches are regarded as black-boxes, mak-
ing them unreliable for real-life applications where the model’s pre-
dictions need to be understood or explained. In recent years, the
interest in more interpretable models and explainability methods has
therefore increased in the machine learning literature [5, 18]. One
group of approaches, known as local explanation, aims to measure
the contribution of each input feature’s value to the computation of
the model’s output. Shapley values are widely used for this purpose
[28, 8], especially since the release of the SHAP toolkit [20] h

Shapley values were introduced in cooperative game theory where a
group of players work together to maximise a payoff. A set of Shapley
values distributes the payoff over all the players according to their
individual contribution to the total. The Shapley value is the unique
quantity that satisfies a set of desired axiomatic properties [26]. For
explaining a machine learning model’s prediction, features are treated
as players and the scalar output of the model as the total payoft.

The Shapley value is designed for a one-dimensional function’s
codomain. In game theory, the characteristic function takes a coalition
of players and gives a payoff. In machine learning, for a given instance,
the characteristic function takes a group of features and gives a scalar

output measuring how the prediction changes when the values of the
features are considered. For a two-class probabilistic classification,
the prediction is essentially a scalar since the probabilities for the
two classes sum to one. Therefore, the Shapley value framework can
simply be applied to the logit transform of one of the probabilities’.

For more than two possible classes the output of the model is a
discrete probability distribution or the output of a softmax function
as commonly used by neural networks. Hence the output lives on a
(D — 1)-dimensional simplex, where D is the number of classes. In
this case, the Shapley value framework cannot be directly applied. Of
course, one can compute Shapley values on each output probability
separately, but this ignores the structure of the simplex where the
relative values between the probabilities is what really matters, rather
than the absolute value of a single probability.

This paper presents Shapley composition as an extension of the
Shapley value to the space of discrete probability distributions, using
the Aitchison geometry of the simplex from the field of compositional
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Figure 1. A synthetic example of a Shapley composition-based explanation.
This shows a 2-dimensional space isomorphic to the 3-class-simplex where
each point is a probability distribution as visualised with the histograms. The
dashed black rays separate the maximum probability regions for each class
and the dashed coloured vectors show the direction in favour of one class and
against the other two. The space is additive such that the features’ contributions

{pi} {1,2,3} translate the base distribution to the prediction.

Thttps://shap.readthedocs.io/en/latest

2The logit maps the domain ]0, 1[ to the additive real line R.
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data analysis. Compositional data [2, 23] are vectors — known as com-
positions — living on a simplex (not necessarily a probability simplex).
Compositional data analysis has been applied to geological and chem-
ical data, for example, but also to discrete probability distributions
[10, 11, 21]. In the present paper, the probability distributions given
by a classifier will be treated as compositional data in order to extend
the Shapley value to multiclass classification.

Figure 1 shows a synthetic example to provide some intuitions.
It shows a 2-dimensional space isomorphic to the 3-class-simplex
where each point is a probability distribution also visualised as a
histogram. The maximum probability regions, for each class, are
clearly visible and separated by dashed black rays. Importantly, this
space of probability distribution is additive thanks to the Aitchison
geometry. The vectors show how the contribution of each feature
changes — in an additive manner — the probability distribution (the
ordering of the features can be chosen freely but the final point is
fixed).

In the example, the base distribution (the average prediction over
all data®) is modified by the contribution &1 of the first feature. This
goes mostly against class 2 such that the resulting distribution has
the lowest probability for class 2. The angle between @1 and the
class-3 direction being the lowest among the classes, the resulting
distribution has the highest probability for this class. The second
feature moves the distribution into the class-1 region, perpendicular
to the class-3 direction. The probability for class 1 is now maximum
by reducing the probability for class 2, keeping the relative weight
for class 3 unchanged. The third feature moves the distribution away
from class 1. The resulting distribution being on the class-3 direction,
the probability is maximum for class 3 and uniform for the other two.

We fully formalise the approach in this paper, making the following
contributions:

e We define Shapley composition as a principled multidimensional
extension of the Shapley value to the probability simplex,

e We prove that the Shapley composition is the unique quantity satis-
fying the set of desired properties known as linearity, symmetry and
efficiency on the simplex equipped with the Aitchison geometry,

e We demonstrate the advantages of Shapley compositions for ex-
plaining a multiclass probabilistic prediction in machine learning.

The paper is structured as follows. Section 2 briefly reviews related
work. Section 3 recalls the standard definition of the Shapley value
and its use in binary classification. Section 4 presents the necessary
tools from compositional data analysis: in particular, the Aitchison
geometry of the simplex and the isometric log-ratio transformation.
Section 5 defines the Shapley composition as an extension of the
Shapley value framework to the multidimensional simplex using the
Aitchison geometry. Section 6 shows with intuitive examples and
visualisations how Shapley compositions can be used for explain-
ing multiclass probabilistic predictions. Section 7 provides a short
discussion and concludes the paper®.

2 Related work

There is a plethora of methods in the literature to explain and better
understand predictive models. They focus on different aspects of the
task, from possible dataset biases, the feature importance with respect
to the target, the parameters of a model after training, or the model

3Note that this does not need to be the uniform distribution, i.e., the origin.
4The code and Jupyter notebooks are available on the github page: https:
//github.com/shapley-composition.

predictions [27]. Some methods explain the influence of features on
the model’s performance: e.g., Permutation Feature Importance for
random forest [7], which was later extended to the model agnos-
tic Model Reliance [13]. Other methods focus on how individual
features influence the model’s predictions: e.g., Local Interpretable
Model-agnostic Explanations (LIME) [25], Individual Conditional
Explanation [16], Partial Dependence-based Feature Importance [17],
Marginal Effect [6], Accumulated Local Effect [6], and Shapley value-
based approaches [28, 8, 20].

We base our work on the Shapley value framework as one of the
most well-founded feature influence methods. Inherently two-class, it
has been applied to multiclass problems by explaining the influence
of the features in a one-vs-one or one-vs-rest manner [32, 19], hence
losing information that can be obtained by properly considering the
full distribution. Utkin et al. [29, 30] explicitly consider the classi-
fier output as a probability distribution, and measure the change in
prediction in terms of statistical distance or divergence rather than in
terms of difference between scalar predictions. However, even if this
approach can measure the strength of a feature’s value effect, it loses
its directional information.

A recent work presented by Franceschi et al. [14] (later extended
[15]) introduces stochastic characteristic functions to deal with models
that output a random variable. With a categorical random variable,
their approach can be used for explaining a multiclass classifier by
allowing probabilistic statements about the likelihood of a feature to
flip the decision from one class to another. In contrast, the approach
we propose does not require an additional stochastic process but does
not permit such a probabilistic statement. Instead, our approach is
geometrical, by measuring how a feature moves the prediction on the
probability simplex. In this way, it constitutes a natural extension of
the standard Shapley value to the simplex for multiclass applications.

3 The Shapley value in machine learning

This section briefly recalls Shapley values as used for explaining
features’ contribution on a scalar prediction in machine learning. Let
f : X = R be alearned model one wants to locally explain where
f(z) is the prediction on the instance z € X C R%. Let Pr be the
probability distribution of the data over X’ (usually unknown but
approximated by empirical averages). Let S C Z = {1,2,...d} bea
subset of indices where d is the number of features. xs refers to an
instance x restricted to the features with indices in S.

When an instance @ is observed, the expected value of the predic-
tion is simply E[f(X) | ] = f(x). However, when only x5 is given
with S # Z, there is uncertainty about the non-observed features and
the expected prediction given @ g is computed as Ep:[f(X) | &s] =
waX f(x)Pr(x | s)dx. The change in prediction when the val-
ues of the features indexed by S are observed is measured by the

characteristic function:
Vf e Pr: 21 — R, (1)
S En[f(X) | ®s] — Epe[f(X)],

where 27 is the set of all subsets of Z. The contribution of the feature
indexed by i ¢ S to the prediction, given the known values for the
features indexed by S, is given by:

Cf,w,Pr(i> S) = 'Uf,a:,Pr(S U {71}) - Uf,m,Pr(S)' 2

The total contribution of the ith feature is computed by averaging this
quantity over all possible coalitions S as follows:

1 )
6i (f,Pr) = 5 > cram(i,m™), 3)
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where 7 is a permutation of the set Z of indexes and < is the set
of indexes before 7 in the ordering given by 7. For better clarity,
“f,x,Pr” or simply “a, Pr” will be dropped from the equations.

This quantity is known as the Shapley value for the ¢th feature. It
originates from cooperative game theory and is the unique quantity
respecting a set of desired axiomatic properties [26, 28]:

Linearity with respect to the model:

a,BER Vi€, ¢i(af + Bg) = agi (f) + Boi(9);
Symmetry:

VS CI\{i,j}, v (SU{i}) =v(SU{}) = ¢i = ¢
Efficiency: The “centered” prediction is additively separable with

respect to the Shapley values:

d

f(@) —Ee[f(X)] = ¢: (f,2,Pr). “)

i=1

Efficiency ensures that the change in prediction when the features are
observed is distributed among them. In other words, the cumulative
sum of the Shapley values moves the averaged prediction (also called
base prediction) to the actual one.

The Shapley value is designed for a characteristic function with
a scalar codomain. For explaining machine learning models which
output multidimensional discrete probability distributions, like in
multiclass classification, one could explain each output dimension
separately, resulting in a one-vs-rest comparison. However, this ap-
proach ignores the relative information between each probability and
ignores the compositional nature of the discrete probability distribu-
tions. Indeed, the probabilistic output of a classifier lives on a multidi-
mensional simplex. The latter is the sample space of compositional
data briefly reviewed in the next section.

4 Compositional data

Compositional data carries relative information. Each element of a
composition describes a part of some whole [23], such as vectors of
proportions, concentrations, and discrete probability distributions. An
D-part composition is a vector of D non-zero positive real numbers
that sum to a constant k. Each element of the vector is a part of the
whole k. The sample space of compositional data is the (D — 1)-
dimensional simplex:

D
SP = {w = [x1,22,...2p]" €RY D my = k} 5)
=1

In a composition, only the relative information between parts matters
and John Aitchison introduced the use of log-ratios of parts to handle
this [2]. He defined several operations on the simplex which leads to
what is called the Aitchison geometry of the simplex.

4.1 The Aitchison geometry of the simplex

Only the relative information between the parts of a composition mat-
ters. Compositions are therefore scale-invariant. This is materialised
by the closure operator defined for k£ > 0 as:

T

kxi  kxo kxp c SD, ©)

Uzl 2l 2l

C(z)

where & € R3P and ||z|1 = Zil|xl| Aitchison defined on the
simplex the following three operations [3]:

Perturbation: © & y = C ([z1y1, ... zpyp]), seen as an addition
between two compositions «, y € ST;

Powering: o © x = C ([z7, ... zD]). seen as a multiplication by a
scalar o € R;

Inner product:

1 2.2 2 "

(m,y)A—2D;;10ng logyj. @)
In this paper, since we are interested in classification problems where
the set of classes represents a set of exhaustive and mutually exclu-
sive hypotheses, the output of a probabilistic classifier is a discrete
probability distribution over the set of classes. We therefore restrict
ourselves to the probability simplex where k = 1.

4.2 The isometric log-ratio transformation

A (D — 1)-dimensional orthonormal basis of the simplex, referred
to as an Aitchison orthonormal basis, can be built. The projection
of a composition into this basis defines an isometric isomorphism
between SP and R”~!. This is known as an isometric log-ratio
(ILR) transformation [12] and allows to express a composition into a
Cartesian coordinate system preserving the metric of the Aitchison
geometry. Within this real space, the perturbation, the powering and
the Aitchison inner product are respectively the standard addition
between two vectors, the multiplication of a vector by a scalar, and
the standard inner product.

Given a composition p = [p1,...pp]" € S we write its ILR
transformation as p = ilr (p) = [p1,...pp—1]" € RP~'. The
ith element §; of P is obtained as: p; = (p, e(") 4 where the set
{e € 8P} <;<p_1 forms an Aitchison orthonormal basis of the
simplex. The basis can be obtain through the Gram-Schmidt procedure
or by building a sequential binary partition [12, 9]. Examples are
discussed in Section 6.2.

In the introductory example of Figure 1, the 2-dimensional ILR
space isomorphic to the 3-class probability simplex was constructed
as follows:

- 1 D1 - 2 \/P1D2
= —log?, Fr=4/Zl0 .
p1 \/i g s p2 3 g D3

Hence, the x-axis compares the probabilities for classes 1 and 2, the
y-axis compares the probability for class 3 with the geometric mean
of p1 and p2, and the origin corresponds to the uniform distribution,
i.e., the neutral element for the perturbation. Note that the perturbation
can be seen as a Bayesian update: the perturbation of a prior by a like-
lihood function gives the posterior. In the space of isometric log-ratio
transformed distributions, the Bayes update is a vector translation.

5 Shapley composition on the simplex

In this section we will use the Aitchison geometry to extend the Shap-
ley value from Section 3 to the simplex for explaining a multiclass
probabilistic prediction. Let f : X — S be a learned model which
outputs a prediction on the (D — 1)-dimensional probability simplex
SP. In order to properly consider the structure of the simplex and
the relative information between the probabilities, the model’s output
is treated as compositional data using the operators from the Aitchi-
son geometry of the simplex. We therefore rewrite the characteristic
function and the contribution of Equations 1 and 2 as follows:

z D
Vizp: 2 =87,

S = B [£(X) | @s] © B [£(X)]. ®



P-G. Noé et al. / Explaining a Probabilistic Prediction on the Simplex with Shapley Compositions 1127

cf,m,Pr(i7 S) = 'Uf,:z:,Pr(S ) {Z}) © 'Uf,a:,Pr(S), (9)
where @ © b is the perturbation a & ((—1) ® b) which corre-
sponds to a subtraction between two compositions, and where the
A in superscript highlights the fact that the expectation is taken
with respect to the Aitchison measure. This can be computed as:
EA[Y] = ilr~! (E [ilr (Y)]), where E refers to the expectation
with respect to the Aitchison measure while E refers to the expecta-
tion with respect to the Lebesgue measure [23].

The Shapley quantity expressing the contribution of the ith fea-
ture’s value on a prediction can be expressed on the simplex as the
composition ¢; given by:

1 .
i (f,2,Pr) = — © Pesarli,m). (10)

We call this quantity Shapley composition. Note that the average is
here with respect to the Aitchison geometry, i.e. with perturbations
and a powering rather than sums and a scaling.

The following is the main theoretical result of the paper.

Theorem. The Shapley composition is the unique quantity that satis-
fies the following properties on the Aitchison simplex:

Linearity with respect to the model:

a,BeER Viel,

Pi(aOfOBOG) =a0¢i(f)DBO Gi(g):
Symmetry:

VS CI\{i,j}, v (SU{i}) =v (SU{j}) = i = ¢;;
Efficiency:

d
Po: (f.z,Pr) = f(z) ©Enlf(X)). (11
i=1
A proof of this result is given in the supplementary material [22].
Shapley compositions are thus the natural multidimensional extension
of the Shapley value framework on the Aitchison simplex. In the next
section we give a number of compelling examples of how this can be
used to explain multiclass probabilistic predictions.

6 Explaining a multiclass prediction with Shapley
compositions

Given a probabilistic prediction f(x) € S, the Shapley composi-
tion ¢; (f, x, Pr) describes the contribution of the ith feature value
to the prediction. The efficiency property shows how the probability
distribution is perturbed from the base distribution Eg; [ f (X)], i.e. the
expected prediction regardless of the current input, to the actual pre-
diction f(x). In the standard Shapley formulation recalled in Section
3, the prediction is one-dimensional such that the Shapley quantity
is a scalar. In applications where there are more than two possible
classes, the prediction is multidimensional such that the Shapley quan-
tity (the Shapley composition) is too. Both live in the same space: the
probability simplex. In this section, we discuss how the set of Shapley
compositions can be analysed to better understand the contribution
and influence of each feature’s value on the prediction.

6.1 Visualisation in an isometric-log-ratio space

The Shapley compositions can be visualised in a (D — 1)-dimensional
Euclidean space isometric to the simplex with the ILR transformation
presented in Section 4.2. As we will see, this space is intuitive since it
is a standard real vector space and it is additive. In what follows, we
discuss some examples of Shapley composition-based explanations in
an ILR space.

6.1.1 Three classes

Our first illustration uses the well-known Iris classification dataset
consisting of a set of flowers described by 4 features: sepal length
and width, and petal length and width. The aim of the classification
task is to predict to which of the three species (setosa, versicolor and
virginica) a flower belongs.

In the present example, a Support Vector Machine (SVM) with
a radial basis function (rbf) kernel is used as a classifier. Pairwise
coupling [31] is used to obtain a probabilistic prediction. Figure 2
shows the explanation of the classifier prediction for one versicolor
instance where the Shapley compositions move the distribution from
the base to the prediction. Having the highest norm, the petal width
and length are the features contributing the most to the prediction and
move the base distribution into the versicolor maximum probability
region (maximum probability region boundaries are the dashed gray
rays). Class-compositions are represented by coloured dashed vectors.

Class composition:

----- setosa
versicolor

----- virginica

Shapley composition:
sep. length
1 —— sep. width
pet. length
pet. width

ILR2
o
«

® Dbase
prediction

Max..proba.
region boundaries

-2 0 2
ILR1

Figure 2. The sum of the Shapley compositions in an ILR space from the

base distribution to the prediction for the classification of an Iris instance.

higher 2 lower
f(x) Setosa base va
0.01
O.uu 0.05 0.10 0.15 0.20 0.25 0.30 0.35
' ' ' ' ' ' '

pet. length pet. width sep. length sep. width
. higher 2 lower
base value VerS|COIOr f(x)
0.83
0.3 0.4 0.5 0.6 0.7 0.0
1 1 1 1 1 1
- | |
sep. length pet. length pet. width
higher2lower ..
0 Virginica base value
0.16
0.05 0.10 0.10 0.20 0.25 0.30 0.35 0.40

sep. length | sep. width | pet. width pet. length

Figure 3. Visualisation of the Shapley values for each class in a one-vs-the-
rest manner for the same instance as in Figure 2, obtained using the SHAP
toolkit [20]. The red/blue bars represent positive/negative contributions of each
feature on the prediction.
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A class-composition is defined as a unit norm composition going
straight to the direction of one class and uniformly against all the
others (see the supplementary material [22] for a formal definition).
Note that the class-compositions are not mutually orthogonal. This
is because a positive contribution toward one class has necessarily to
lead to a negative contribution toward at least another class to preserve
the structure of the simplex.

The Shapley composition for the petal length is almost orthogonal
to the virginica class-composition: for this instance, this feature does
not contribute to the weight of the predicted probability for this class.
Having a Shapley composition going straight to the opposite direction
of one class-composition would suggest that the corresponding fea-
ture’s value contributes to rejecting this class. This is somewhat the
case for the sepal length. However, because its Shapley composition
has a low norm, this feature contributes little to the prediction.

Alternatively, one could analyse this instance by applying the stan-
dard Shapley value in a one-vs-rest manner, explaining the feature
contributions separately for each class. Figure 3 shows how each
explanation is usually visualised with the SHAP toolkit [20]. The
prediction is explained for each class one-by-one independently from
one another, which makes it hard to appreciate the influence of one
feature on the full distribution. Moreover, there is no guarantee that
the intermediate full distribution remains on the simplex. In contrast,
with our approach, the influence of one feature’s value on the full pre-
diction can be analyse with a single quantity, the Shapley composition,
in a single coherent and easily interpretable plot.

6.1.2 Four classes

In a four-class example, the simplex is 3-dimensional. We illustrate
this with a simple handwritten digit recognition task>. It consists of
classifying an 8 x 8 image as representing one of the digits 0, 1, 2 or
3. Since there are 64 pixels, considering each pixel as a feature would
correspond to 64 Shapley compositions. Moreover, the pixels will be
highly correlated. Since our goal here is to provide simple illustrative
examples, we reduce the number of features to 6 using a principal
component analysis for better clarity and conciseness. An SVM with
a rbf kernel and pairwise coupling is again used as a probabilistic
classifier. A similar analysis as before can be applied here but within
a 3-dimensional plot as illustrated in Figure 4.

6 Class composition:
= 0
4 1
T~
2 = 3
Shapley composition:
ILR3 O w15t prin. comp.
2 . . m.2nd prin. comp.
3rd prin. comp.
-4 s 4th prin. comp.
Sth prin. comp.
s 6th prin. comp.
base

prediction
ILR2

N O b RO

a 5
- b

6 -
. ILR1

Figure 4. Shapley compositions in a 3-dimensional ILR space for a four
classes digit recognition task. The Shapley compositions are summed in the
ILR space from the base distribution to the prediction. The gray transparent
walls mark out the four maximum probability decision regions.

SWe use the scikit-learn’s digits dataset [24].

To better understand how this space is divided into four regions—
each representing the maximum probability region for one class—one
can think about the shape of a methane molecule. The hydrogens
correspond to the vertices and the carbon to the center of a tetra-
hedron i.e. a 3-dimensional simplex. The relative positions of the
class-compositions in the ILR space are the same as the bonds be-
tween the carbon and hydrogen: the angles are ~ 109.5°. In this
example, the tested instance is a 0°.

6.2 More classes: groups of classes and balances

When more than three classes are involved, the dimensions of the ILR
space cannot be visualised all at once. However, 2 or 3-dimensional
subspaces can still be visualised. In order to select the ILR components
to investigate, one needs to understand what they refer to. In this
section, we briefly discuss the interpretation of the ILR components.

A component of an ILR space can be interpreted as a balance, i.e. a
log-ratio of two geometrical means of probabilities [12, 9, 23]: one
giving the central values of the probabilities in one group of classes
and one for another group of classes. Therefore, a balance is here
comparing the weight of two groups of classes. The set of balances is
built such that they are geometrically orthogonal meaning they provide
non-redundant information’. This can be illustrated by a sequential
binary partition or bifurcation tree. Two examples are given in Figures
5 and 6. Figure 5 shows the bifurcation tree corresponding to the
basis obtained with the Gram-Schmidt procedure as in [12] which
is the one used in the examples of Figures 2 and 4 with respectively
D = 3 and D = 4. Each node of the tree is a balance, i.e., an ILR
component. The first balance p1 compares the probability for class
1 with the probability for class 2. Each next balance then recursively
compares the probability for the next class with the probabilities for
the previous classes independently of all the others.

In some applications, one may be interested in particular compar-
isons of groups of classes not necessarily given by a basis in the form
of Figure 5. For instance, as in an example presented in [9], if one
wants to compare political parties or groups, it may be pertinent to
have a balance comparing left and right-wing groups. But sometimes
there are no obvious relevant comparisons to study. In the handwritten
digit recognition problem, one may want to compare odd with even
numbers or primes with non-primes (although, being essentially a
shape recognition problem, and the shape of the numbers being inde-
pendent of their arithmetic properties, such comparisons may not be
pertinent).

PD-1

b1 D2 p3 --- PD

Figure 5. Bifurcation tree corresponding to the basis obtained with the Gram-
Schmidt procedure as in [12] and used in the examples of Figures 2 and 4.

We use the basis of Figure 6 for a 10-class digit recognition task. In
this example, the bifurcation tree is obtained from the dendrogram of
an agglomerative clustering of classes: for each class, the set of pre-
dictions is modelled by a logistic-normal [4], with equal covariance,

%More examples and better visualisations can be obtained from the Jupyter
notebooks: https://github.com/orgs/shapley-composition.
7Not to be confused with statistical uncorrelation [23].
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4 1 7 8 5 2 3 9 0 6

Figure 6. Bifurcation tree used in the 10-class digit recognition task dis-
cussed in Section 6.2 and in Figure 7.

Class composition:

05 8

............. \K

Shapley composition:
feature n.1

ILR5
o

feature n.2

feature n.3
feature n.4

feature n.5

feature n.6
-1 base

® prediction

-1 0 1
ILR3

Figure 7. The sum of the Shapley compositions from the base to the predic-
tion in the ILR subspace made of p3 and ps for a test instance from class 2.
p3 compares the probability assigned for class O with the probability assigned
for class 6 and ps compares the probability assigned for class 1 with the group
of probabilities assigned for class 7 and 8. The color dashed vectors represent
the class-compositions with non-zero projection.

and classes are recursively merged with respect to the Mahalanobis
distance. Consider, in Figure 7, the third and fifth ILR dimensions (p3
and ps). Effectively, we are saying that we are interested in comparing
the probability assigned for class 0 with the probability assigned for
class 6, and in comparing the probability assigned for class 1 with
the group of probabilities assigned for classes 7 and 8. p3 depends
only on the probability for the digits 0 and 6, and ps depends only on
the probabilities for the digits 1, 7 and 8. The class-compositions for
the other digits have a zero projection within this subspace and are
therefore discarded in Figure 7. The class-compositions for 0 and 6
are orthogonal to the class-compositions for classes 1, 7 and 8. Indeed,
the set of classes making the balance p3 and the set of classes making
Ps have no intersection.

In contrast, in the example of Figure 2, p; is comparing the proba-
bilities for the class sefosa with the probability for the class versicolor
and p» is comparing the probabilities for the class virginica with the
group of probabilities for sefosa and versicolor. In Figure 2, the class-
compositions are exhaustively present and are therefore geometrically
dependent and none of them are orthogonal. In Figure 7, the classes
are not all represented such that the class-compositions projections
can be orthogonal. In other words, since we look at only a subspace of
an ILR space, we are not looking at the full probability distribution.

In the example of Figure 7, since ps is comparing 1 with the
group of digits 7 and 8, the projection on this line of the class-

compositions for 1 goes in an opposite direction than the one for
the class-compositions for 7 and 8. The latter two are equal and half
as long as the former. In this way, ps compares the probability for 1
with the group of probabilities for 7 and 8 with the same weight. In
other words, in this subspace, the class-compositions for 7 and 8 are
reweighted such that this group of two classes has the same weight as
the group made of the single class 1.

Within this space, Shapley compositions can be explored as in the
examples of Figures 2 and 4, keeping in mind that this is a subspace
of a full ILR space.

6.3 Angles, norms and projections

An explanation can be summarised by sets of angles, norms and
projections:

e The norm of a Shapley composition gives the strength of the con-
tribution of the feature’s value to the prediction. This measures the
overall contribution of the feature, regardless of its direction.

e The angle between two Shapley compositions informs about their
orthogonality. Orthogonality suggests that the features are non-
redundant for the given instance. A negative angle would suggest
that the features have an opposite influence on the prediction.

e The projections of a Shapley composition on the set of class-
compositions inform in favour of, or against, which classes a fea-
ture’s value is contributing.

To give a few examples, for the Iris example of Figure 2, the norms
for each Shapley composition are ~ 1.27, 1.02, 0.36 and 0.28 re-
spectively for the petal width, length and sepal width and length,
confirming the features’ importance one would expect from Figure 2.
The projection of the petal length’s composition on the virginica class-
composition is ~ 0.01 confirming the low influence of this feature on
the probability for this class. Finally, note that the cosine similarity
between the Shapley compositions for petal length and width is close
to one (=~ 0.99) which confirms these features are moving the distri-
bution toward the same direction while the compositions for sepal and
petal width have a cosine similarity of 0.45 confirming they point to
complementary directions.

6.4 Histograms and parallel coordinates

For a classification problem with at most 4 classes, an ILR space can
be fully visualised within a single figure. However, for more classes
we cannot visualise the full ILR space and therefore have to explore
subspaces. In this section we discuss alternative visualisations.

The Shapley composition can be visualised using a bar plot like
discrete probability distributions. Figure 8 shows the Shapley compo-
sitions of the Iris classification example as histograms. Note that in
Figure 1, the histograms were showing the probability distributions as
the successive perturbation of the base by the features’ contribution.
The histograms in this section refer to the visualisation of Shapley
compositions for each feature separately. A more uniform histogram
reflects less contribution of the feature’s value to the change of the
probability distribution (e.g. the sepal length in Figure 8). In con-
trast, the Shapley compositions for the petal length and width have a
high value for the versicolor class, in comparison to the others. This
confirms the contribution of these features toward this class.

As another illustration, Figure 9 shows the Shapley compositions
of the 10-class digit recognition example. Here, and contrary to the
visualisation of the compositions in an ILR space as in Section 6.2, one
can analyse all parts of each composition within a single plot. In this
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Figure 8. Shapley compositions visualised as histograms for the Iris classifi-
cation example.

example, the high value for digit 2 for the first principal component
confirms the contribution of this feature toward this class.

H o 1 B2 H 3 H 4 NS 6 W 7 8
H 9

0.2

o kb, ki pabatt ol

feature n.1 featuren.2 featuren.3 featuren.4 featuren.5 featuren.6
Figure 9. Shapley compositions visualised as histograms for the ten classes

digit recognition example.

Another way to visualise the full compositions is with parallel
coordinates. After sorting the features by their contribution (i.e. the
norm of their Shapley composition), the successive perturbation of
the distribution can be visualised as probability lines from the base
distribution to the prediction. Figure 10 shows such a plot for the
digit recognition example. With this visualisation, we can compactly
see how the probability distribution is transformed by each feature
contribution from the base distribution to the predicted one. In this
example, the probability for digit 2 increases the most with the contri-
bution of feature 1. This feature does not contribute in the change of
the probability for digit 3 as suggested by the horizontal red segment.
The next feature continues to increase the probability for digit 2 while
decreasing the others.

10° —
> - -2 -4 6 8
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% 10 § 1 3 5 7 9
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2 10-2 > <§\*
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Figure 10. Parallel coordinates visualisation of the successive perturbation
of the base distribution by Shapley compositions (ordered by importance, i.e.,
norm). The final distribution on the right side is the prediction.

6.5 The estimation algorithm

The estimation algorithm used in this work for computing the Shap-
ley compositions is an adaptation of Algorithm 2 in [28]. Since the
resulting Shapley compositions are approximations, the efficiency
property does not necessarily hold. In order for the set of estimated
Shapley compositions to respect the efficiency property, each Shapley
composition is adjusted following a similar method as in the sam-
pling approximation in the SHAP toolkit®. We refer the reader to the

Shttps://github.com/shap/shap/blob/master/shap/explainers/_sampling.py

supplementary material [22] for details.

Note that the Shapley composition framework can be applied on
many different types of data, such as images. However, the main
limitation is algorithmic: the complexity of the algorithm increases
with the number of features, as with the standard Shapley value frame-
work. Moreover, the estimation algorithm assumes that the features
are independent. Estimating Shapley values without such assumption
has been discussed in the literature [1]. We leave the exploration
of estimation algorithms of the Shapley compositions without the
features-independence assumption and for data with a large number
of features for future work.

7 Discussion and conclusion

The use of standard Shapley values for explaining multiclass machine
learning models has been rarely discussed in the literature. However,
the computation of the Shapley values on each output dimension
one-by-one can be encountered. To be more precise, for an D-class
problem (D > 2), it may first sound natural to compute a Shap-
ley value on the logit of the probability for each class resulting in a
D-dimensional vector of the Shapley values. Even if the efficiency
property holds with the standard addition, i.e. the sum of the element-
wise logit of the base distribution with such vectors for each feature
is equal to the element-wise logit of the prediction, the path from
the base to the prediction may go out of the simplex, i.e., the space
of probability distributions, which is counter-intuitive and indeed
incoherent. Moreover, such a strategy would require running D inde-
pendent explanations contrary to the Shapley composition approach
which requires a single explanation process.

As far as we are aware, this paper is the first to propose an extension
of the Shapley value framework to the multidimensional simplex for
explaining a multiclass probabilistic prediction in machine learning.
We saw how the formalisation of the standard Shapley value naturally
extends to the simplex using the Aitchison geometry. The resulting
Shapley quantity is a composition (distribution), i.e. a vector living
on the probability simplex. It is referred as Shapley composition and
explicates the contribution of a feature’s value to a prediction. To be
more precise, it tells how a feature’s value moves the distribution from
the base one to the predicted one on the simplex. We saw that the
Shapley composition is the unique quantity that satisfies the linearity,
symmetry and efficiency on the Aitchison simplex.

The Aitchison geometry gives to the simplex an Euclidean vector
space structure. For explaining a prediction, Shapley compositions
can be visualised and analysed through angles, norms and projections.
They inform on both the strength and the direction of each feature’s
value effect. Living on the probability simplex, i.e. the same space as
discrete probability distributions, the Shapley compositions can also
be visualised as histograms. Parallel plots of probabilities can also be
visualised to keep track of the change in the distribution induced by
each feature’s value.

The literature about the use of Shapley values in machine learn-
ing is extensive. Many estimation algorithms have been developed,
many applications of the Shapley value have emerged, and large-scale
experiments have been conducted. In contrast, our paper presents
limited experimental results as simple proofs of concept and illus-
trations. However, the main contribution of this work is theoretical
and methodological. We believe this work lays proper foundations
to foster the research in explainable machine learning, especially for
multidimensional and multiclass predictions.
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