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Abstract. Understanding the life cycle of the machine learning (ML)
model is an intriguing area of research (e.g., understanding where the
model comes from, how it is trained, and how it is used). Our focus is
on a novel problem within this domain, namely Model Provenance
(MP). MP concerns the relationship between a target model and its
pre-training model and aims to determine whether a source model
serves as the provenance for a target model. In this paper, we for-
mulate this new challenge as a learning problem, supplementing our
exploration with empirical discussions on its connections to existing
works. Following that, we introduce “Model DNA”, an interesting
concept encoding the model’s training data and input-output infor-
mation to create a compact machine-learning model representation.
Capitalizing on this model DNA, we establish an efficient framework
consisting of three key components: DNA generation, DNA simi-
larity loss, and a provenance classifier, aimed at identifying model
provenance. We conduct evaluations on both computer vision and
natural language processing tasks using various models, datasets, and
scenarios to demonstrate the effectiveness of our approach.

1 Introduction

In recent years, machine learning has become a ubiquitous presence
in various fields, revolutionizing industries ranging from healthcare to
finance [28, 7]. With the release of OpenAI’s GPT-4, the capabilities of
machine learning are poised to reach even greater heights1. However,
as the value of data as an emerging asset class becomes increasingly
recognized, the issue of understanding the entire life cycle of the
model, e.g., understanding where the model comes from, how it is
trained, and how it is used, has become a pressing concern.

In this paper, we explore a novel and important problem within the
research direction of understanding the machine learning model life
cycle, namely Model Provenance (MP). This problem aims to inves-
tigate the relationship between two models, such as understanding
whether a target model is derived from a source model. To illustrate
this problem, consider a real-world business scenario in which an
AI company seeks to protect the intellectual property of its machine
learning model trained on private data using a significant amount of
computing power. The company wishes to ensure that the model is
only used by authorized users. However, in practice, authorized users
may share the model with unauthorized users without the company’s
permission, or the model may be stolen and used by an unauthorized
user. The unauthorized user may then use the stolen model to develop
their own products based on techniques such as continual learning
[24]. This situation presents a significant challenge: how can an AI
company identify whether a source model, owned by an authorized
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user, is the provenance of a target model developed by an unauthorized
user?

A relevant area of study involves investigating the influence of
pre-training models in continual learning or lifelong learning. For
instance, recent work by [20] has shown that generic pre-training can
implicitly counteract the negative effects of catastrophic forgetting
when learning multiple tasks sequentially, particularly when compared
to models initialized randomly. Additionally, research conducted by
[33] highlights the occurrence of catastrophic forgetting in the context
of continual learning scenarios. Furthermore, certain works have
explored connections between the outputs of different models [6, 14].
While previous research has explored the relationship across various
tasks to understand the phenomenon of catastrophic forgetting or
the outputs of different models, there is currently no established
method for identifying the relationship between different models
across diverse tasks, to the best of our knowledge.

In this paper, we address the problem of model provenance and
begin by formalizing this problem and conducting an empirical study
to evaluate the performance of the target model on the source model’s
training data (Section 3), whose results inspire us to ask whether we
can create a description to explain the relationship between the source
and target models. Then, we introduce a novel concept of model DNA,
which represents the unique characteristics of a machine learning
model, and propose a framework for model DNA generation and
model provenance identification. The effectiveness of our approach
is demonstrated through both Computer Vision (CV) and Natural
Language Processing (NLP) tasks.

The contributions of the paper are summarized as follows:

• This paper investigates a critical aspect of understanding the ma-
chine learning models’ life cycle - identifying the homologous
relations between a source model and its subsequent target ver-
sions. We first formulate this challenge as a learning problem and
provide empirical discussions on its relation to existing works.

• We propose a novel machine learning model representation, called
Model DNA, which combines data-driven and model-driven ap-
proaches to encode the training data and input-output information
as a compact representation of the model (Section 4.1). In DNA
space, we can easily measure the similarity between models and
track their usage and evolution over time. Based on this idea, we
introduce the Model Provenance framework, which includes Model
DNA generation and provenance identification, providing a practi-
cal solution for identifying relationships between models and better
understanding the provenance of machine learning models.

• We perform experiments on various commonly used CV and NLP
benchmark datasets along with DNN structure models to assess the
effectiveness of our proposed framework. To enhance the under-
standing, we present comprehensive visualizations of the distribu-
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tion of Model DNA in the DNA space (Section 5).

2 Related work

Lifelong learning. Lifelong machine learning is a learning paradigm
that continuously accumulates past knowledge and adapts it to future
learning and problem-solving [16, 5, 24]. This involves perform-
ing a sequence of N learning tasks, T1, T2, . . . , TN , each with its
corresponding dataset D1, D2, . . . , DN of different types and from
different domains. When faced with a new task TN+1 (called the
current task) with its data DN+1, the learner can use past knowledge
to aid in learning. One of the major challenges in lifelong learning is
catastrophic forgetting, where the model forgets previously learned
information when learning new tasks. To mitigate this phenomenon,
approaches can be categorized into three groups: (1) regularization-
based approaches [13, 37], (2) memory-based approaches [18, 3, 35],
and (3) network expansion-based approaches [27, 1, 30]. This paper
aims to distinguish the relationship between the model from the previ-
ous task and the current task, which is an under-explored direction in
existing lifelong learning works.

Representation Learning. Representation learning refers to the
process of learning a parametric mapping from the raw input data
domain to a feature vector, in the hope of capturing and extracting
more abstract and useful concepts that can improve performance on a
range of downstream tasks. The aim of learning representations of the
data is to make it easier to extract useful information when building
classifiers or other predictors. Representation learning has played a
tremendous role in different frameworks [2]. Recently, Contrastive
Representation Learning (CRL) is widely used in NLP and CV [17].
It can be considered as self-supervised learning by comparing among
different samples [4, 34]. In this paper, we explore a way of machine
learning model representation. Our approach involves a data-driven
and model-driven representation learning framework that constructs a
model representation in a latent space. Additionally, there are some
works to investigate the relationship of Neural Network representa-
tions [6, 14]. This work is novel since it is the first time, as far as
we know, that such an approach is proposed for representing the ML
model.

Data Provenance. The area of data provenance is also relevant and
falls under the provenance research family. In general, the problem
is defined by auditing if a certain piece of data has been used to train
a machine learning model [31, 22, 19]. It is also called membership
inference attacks [29, 10]. A data provenance technique (i.e., shadow
training) has been widely studied, which can successfully audit deep
learning-based models [29, 31]. The main idea is to use multiple
shadow models to imitate the behavior of the target model. As the
training data for the shadow models are known, the target model can
be trained using the labeled outputs of the shadow models. However,
this is a data-level provenance problem, whereas our focus is on the
model-level provenance problem.

3 Model Provenance (MP)

3.1 Definition

Consider a dataset Ds = {(xi, yi)}|Ds|
i=1 where each xi ∈ R

d is a
data instance and yi ∈ Y = {1, 2, . . . , c} is its associated class
label, a machine learning model Ms is learned from Ds by using
an algorithm architecture As. Let Dt = {(xj , yj)}|Dt|

j=1 be a dataset
used to learn a machine learning model Mt. If Mt is learned using
the pre-training model Ms with the same algorithm architecture As,

we refer to Ms as the source model and Mt as the homologous model
of Ms. Similarly, let M̄t be a machine learning model learned from
the dataset Dt = (xj , yj)

|Dt|
j=1 but based on random initialization or

pre-training without using Ms. We refer M̄t as non-homologous to
Ms.

The problem of Model Provenance (MP) is to find a function f
such that for a given source model Ms and any target model Mt,

f(Ms,Mt) =

{
1, if Mt is the homologous model of Ms.
0, otherwise.

(1)

When f(Ms,Mt) = 1, we say Ms is the provenance of Mt.

Remark: The problem of Model Provenance (MP) can have various
variations based on the conditions applied to the target model Mt.
For example, there would be a lot of downstream models obtained
by fine-tuning, distillation, pruning, etc. In this paper, our primary
focus is on the MP scenario within the fine-tuning setting, specifically
when Mt shares the same structure as Ms, and its training solely
depends on the pre-training model Ms. Our exploration of MP is
initially focused on this easier condition, and we intend to explore
more complex scenarios in future research.

3.2 Discussion

In the field of continual learning, there have been several studies fo-
cused on quantifying the relationship between homologous models,
such as the analysis of catastrophic forgetting [21, 11, 20]. For ex-
ample, [21] provided a theoretical bound on forgetting in sequential
learning. Let L(w) be the loss on the training dataset with model
parameter w, and w1 and w2 be the optimal or convergent parame-
ters after training the source and homologous models sequentially.
Specifically, they showed that

L1(w2)−L1(w1) ≈
1

2
Δw�∇2L1(w1)Δw ≤ 1

2
λmax
1 ||Δw|| (2)

where L1(w1) and L1(w2), respectively, represent the losses on
source training dataset with parameters w1 and w2, Δw = w2 − w1,
and λmax

1 is the largest eigenvalue of the Hessian matrix ∇2L1(w1).
The eigenvalues of the Hessian matrix are indicative of the curvature
of the loss function [11], where smaller eigenvalues imply a flatter
loss function. Thus, λmax

1 is considered as a proxy for the flatness of
the loss function (lower is flatter). Meanwhile, empirical studies con-
ducted by [20] and [21] show that initializing models with pre-trained
weights results in a relatively flat task minima, and flatter models tend
to have smaller Δw than less flat ones.

These existing works have motivated us to a straightforward so-
lution for model provenance, i.e., using the difference of Δw to
distinguish between homologous and non-homologous models. We
can expect that Δw = w2 − w1 would be smaller for homologous
models compared to non-homologous models based on the above
analysis. However, we found that this solution did not work well in
practice. The main issue was that it is impossible to know how flat the
target model is, which makes it difficult to use the difference of Δw
as a reliable indicator of model provenance.

Furthermore, we conducted experiments using the standard contin-
ual learning setup on the image classification task [33, 25] to show
the relationship between homologous models. Specifically, we exam-
ined two model architectures, ResNet18 [9] and AlexNet [15], on the
CIFAR10 and CIFAR100 datasets. A source model Ms is first trained
on CIFAR10. Then we randomly select ten classes from CIFAR100
to train target models Mt. Note that Mt is learned by initializing
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Figure 1. ResNet18. (a) No replace layer. (b) Replace target model’s last layer with source model. (c) Replace last two layers. (d) Replace last three layers. (e)
Replace target model (random initialization)’s last three layers with source model.

its parameters using those of the source model Ms. In Figure 1, we
present the results of the experiments conducted on ResNet18, and
the results for AlexNet can be found in [23]. The background color
indicates the different training phases. The red color represents the
training of source model Ms on the CIFAR10 dataset, while the blue
color represents the training of target model Mt on the CIFAR100
dataset. The red line corresponds to the accuracy of testing the model
on the training data of CIFAR10, while the blue line represents the
accuracy of testing the model on the training data of CIFAR100. In
the blue background part, we train the model based on the parameters
of the model obtained in the red background part.

Figure 1 (a) demonstrates that the predictive accuracy of Mt is
significantly reduced when evaluated on the CIFAR10 dataset. The
red section represents a model (called source model) trained on the
source domain (CIFAR10), while the blue section represents this
model (called target model) continuously trained on the target domain
(CIFAR100). The red line indicates model evaluation on CIFAR10,
and the blue line represents model evaluation on CIFAR100. This
observation suggests that the training data of the source model may
have been severely forgotten in the homologous model (i.e., large
||Δw||). Figures 1 (b)-(d) provide further insight into the relation-
ship between the source model Ms and the homologous model Mt.
They show the predictive accuracy of Mt on the CIFAR10 dataset
when different numbers of the last layers of Mt are replaced with
corresponding layers in Ms. In Figure 1 (b), within the blue section,
we replace the model’s last layer with the model from the red sec-
tion. Consequently, the model exhibits reduced performance when
evaluated on CIFAR10 (red line). Similarly, in Figures 1 (c) and (d),
we extended this by replacing the model’s last two/three layers with
the ones from the red section, respectively. We can observe that as
we replace more layers in Mt with those from Ms, the predictive
accuracy of Mt on the CIFAR10 dataset increases. In Figure 1 (e),
we consider a scenario where in the blue section, the (target) model
is not initialized by the (source) model from the red section. Instead,
the (target) model is trained with random initialization. In this setting,
we replace the model’s last three layers with the corresponding layers
from the (source) model in the red section (as depicted in Figure 1
(a)). Figure 1 (e) shows that even with the last layers replaced, the
predictive accuracy of M̄t is still poor. The green line in Figure 1 (e)
represents the training accuracy of M̄t. Figures 1 (b) and (e) illustrate
the presence of a relationship between the source model and its homol-
ogous model. However, non-homologous models, do not exhibit any
discernible relationship even by replacing the layers between them.

Overall, our discussion has demonstrated the existence of a rela-
tionship between the source model and its homologous model, as
shown by the improvement in predictive accuracy when replacing

the last layers of the target model with those of the source model.
These results led us to pose the question: “Can we establish a relation-
ship between a source model and its homologous or non-homologous
model based on the training data of the source model?” and motivated
us to introduce the “Model DNA” and Model Provenance framework.

4 The proposed framework

4.1 Model DNA

In the field of biology, deoxyribonucleic acid (DNA) is known as
the molecule responsible for carrying genetic information essential
for the growth and operation of organisms [26]. In the context of
Machine Learning (ML), we introduce the concept of model DNA
as a form of representation for an ML model. Drawing parallels to
prior research in representation learning [2], this model representation
aids in identifying differences among various model iterations across
diverse tasks. Furthermore, it facilitates comparisons and assessments
of similarity between different models.

In the domain of machine learning, a typical process involves train-
ing an ML model using a dataset D and an algorithm architecture
As. With this understanding, our approach to DNA generation factors
in both the impact of the dataset D and the model’s input-output
relationship. Thus, we present the model DNA definition:

Definition 1. (Model DNA): Let D be a set of N training data of a
machine learning model M . We define the model DNA as a set of N
DNA fragment O = {o1, o2, . . . , oN}, where each DNA fragment oi
is corresponding to a training sample of the model. It can be generated
as O ← g(D,M) where g(·) is an approach for DNA generation. A
DNA fragment oi is generated by g(xi,M) for xi ∈ D.

Through the conceptualization of model DNA, we create a latent
space of model representations encompassing the diverse DNA of
various ML models. In this space, we can quantify the relationships
between different ML models. Here, we assume that a DNA fragment
oi is a vector by oi ← g(xi,M), where xi ∈ D. It is important to
note that we generally assume that the DNA of homologous models
will be positioned closer, while the DNA of non-homologous models
will be relatively distant from each other. This latent space leads to
several key properties of model DNA, as described below.

Let Oi be the model DNA of any model Mi and D represent the
distance function such that D(osi , o

t
j) is the distance between DNA

fragments of any two models Ms and Mt. The following properties
of DNA latent space are desired:

• Different ML models have different DNA: If Ms �= Mt, Os �=
Ot.
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Figure 2. The MGMP framework.

• The homologous models should have similar DNA fragments
and vice versa: D(osi , o

t
i) < D(osi , ō

t
i), where osi ← g(xi,Ms),

oti ← g(xi,Mt) and ōti ← g(xi, M̄t). Mt is trained based on
the pre-training model Ms, whereas M̄t is trained without using
Ms.

• The DNA fragments from the same ML model should be similar:
∀i, j , i �= j, D(oi, oj) should be minimized for oi, oj ∈ O.

In the following, we present our framework aimed at tackling the
MP problem. This framework has been meticulously crafted to adhere
to the aforementioned model DNA properties. Our approach takes
into account not only the training data of the source model but also
the model’s input-output to produce a comprehensive model DNA
representation.

4.2 MGMP

We introduce a framework termed Model DNA Generation and Model
Provenance identification (MGMP), which operates on the principles
of deep representation learning. The MGMP framework comprises
three primary components: DNA generation, DNA similarity loss, and
provenance classifier, as depicted in Figure 2. The process commences
with the source model’s training data, which is fed into the DNA
generator alongside the source and target models. This concatenation
produces outputs from the DNA generator, source model, and target
model, which are then amalgamated to generate the model DNA,
exemplified by the integration of DNA generator outcomes and model
predictions. Subsequently, we formulate the model DNA for both
the source and target models. To preserve information relevant to
homologous and non-homologous models, a DNA similarity loss is
incorporated. Finally, we exploit the model DNA to train a binary
prediction network, allowing us to infer provenance outcomes. Each
component of the MGMP is described in subsequent sections.

4.2.1 DNA generation

The process of DNA generation involves a combination of data-driven
and model-driven techniques aimed at acquiring a representation for
an ML model. Inspired by [8], we initiate the process by initializing a
generator g(·) using a standard deep neural network architecture (it’s
important to emphasize that the generator could potentially be con-
structed using more intricate deep generative models). This generator

encompasses multiple hidden layers, employing the rectified linear
unit (ReLU) activation function.

Given an input data point xi, the generator produces a latent rep-
resentation denoted as zi = g(xi) (e.g., the output of the last layer).
Here, g(·) signifies the learned DNA generation function realized
through the deep network. The MGMP framework utilizes the train-
ing data Ds of the source model as its own training data. Concretely,
each training data point xi is individually fed into the DNA generator,
source model, and target model, as follows:

zi ← g(xi), ys
i ← Ms(xi), yt

i ← Mt(xi) . (3)

Model pool. The primary objective of the proposed framework
is to establish a representation space, enabling the comparison of
distinct models, encompassing both those that are homologous and
those that are not. To realize this objective, we utilize a model pool
that encompasses a variety of models, each demonstrating different
relationships with the source model. In each training mini-batch, we
select a pair of models (Mt, M̄t) to represent the target model (as
shown in Figure 2), where Mt is learned based on the source model
Ms, while M̄t is learned based on random initialization.

For each input xi, the framework produces four distinct outputs.
These include the foundational DNA representation zi, the output ys

i

from the source model, and the outputs yt
i and ȳt

i from the homologous
and non-homologous target models respectively.

DNA assemble. After that, the outputs of the DNA generator and
the source/target models are merged to create a model DNA fragment
for each input xi. The specific approach for combining these outputs
can vary. In this study, we assume that the outputs are of the same
dimension and are combined through addition. As a result, for each
input xi, we can generate three distinct types of DNA fragments:

osi ← zi + ys
i , oti ← zi + yt

i , ō
t
i ← zi + ȳt

i . (4)

4.2.2 DNA similarity loss

The DNA similarity loss is designed with a specific purpose: to mea-
sure the similarity between the DNA of two models and to satisfy
the properties of DNA latent space. We achieve this by employing a
metric that ensures that the similarity of (osi , o

t
i) in the latent space

is not disclosed to (osi , ō
t
i), which is inspired by Contrastive Learn-

ing [4, 36]. In more detail, our approach does not just preserve the
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Figure 3. Similarity in DNA space.

relationships like (osi , o
t
i) and (osi , ō

t
i) based on a single input xi. In-

stead, it takes into account the amalgamation of information across
relationships present in Os, Ot, and Ōt. This implies that we incor-
porate more relationships into the loss function, depicted in Figure 3.
The solid line represents relationships used in prior works, while the
dashed line signifies the relationship between distinct DNA fragments
within a model.

Let sim(u, v) = uT v/||u||||v|| denote the dot product between
l2 normalized vectors u and v (i.e. cosine similarity). We consider
a training dataset of N examples and define a contrastive DNA gen-
eration loss on pairs of (osi , o

t
i) and (osi , ō

t
i). The loss function is as

follows:

LS = −
N∑
i=1

log
exp(sim(osi , o

t
i)/τ)∑N

k=1 exp(sim(osi , ō
t
k)/τ)

(5)

where τ denotes a temperature parameter [4].
We also consider the DNA distance in each model side:

LI =−
N∑
i=1

N−1∑
k=1

log
(
exp(sim(osi , o

s
k)/τ)

+ exp(sim(oti, o
t
k)/τ)

+ exp(sim(ōti, ō
t
k)/τ)

)
, i �= k.

(6)

The DNA similarity loss is then computed using

L = Ls + LI + λ||wg||2 (7)

Here, Ls quantifies the disparity between the DNA of the source
model and the target model, adhering to the first and second properties
of the DNA latent space. On the other hand, LI assesses the DNA
stemming from the same model, aligning with the third property of
the DNA latent space. The final term corresponds to L2 regularization
applied to the model parameters wg of the DNA generator.

Remark: In practice, after assembling the DNA fragments, we
consider a cosine distance in our final decision (Eqn. (5) and (6)).
Cosine similarity is the cosine of the angle between the vectors; that
is, it is the dot product of the vectors divided by the product of their
lengths. It follows that the cosine similarity does not depend on the
magnitudes of the vectors, but only on their angle. Therefore, through
DNA assemble with addition, the angles between the representations
of the source and target models change even though the vectors only
linearly move. That is why the generator can improve the results.
Meanwhile, we emphasize that the part of DNA assemble is flexible,
which means it can be replaced by different combining methods, e.g.,
concatenation or adding some networks (e.g., fully connected layers).

4.2.3 Provenance classifier

The outcome prediction network (i.e., a classifier) is employed to
estimate the results of provenance prediction h′ by taking DNA rep-
resentations as input. Let fp(·) denote the function learned by the

outcome prediction network. We concatenate osi and oti (or osi and ōti)
as input oci . The loss function is as follows:

LBCE = − 1

N

N∑
i=1

[
hi log(h

′
i) + (1− hi) log(1− h′

i)
]

(8)

where hi is the truth label on each input oci and h′
i ← fp(o

c
i ). Note

that h = 1 if Ms and Mt are homologous and 0 otherwise.

4.2.4 Joint optimization

Both the DNA generation and the outcome prediction network are
conventional feed-forward neural networks, enriched with Dropout
[32] and the Rectified Linear Unit (ReLU) activation function. The
global optimization problem is tackled by jointly optimizing the over-
all loss functions described in Eqn. (7) and (8). Adam [12] is adopted
to solve the optimization problem.

4.2.5 Prediction

In the prediction phase, our framework is equipped to provide predic-
tions at various levels of granularity concerning the data. Specifically,
we can choose any model (e.g., Mt) to ascertain its homology with the
source model Ms, based on either the DNA fragment o or the DNA
set O. For predictions at the level of DNA fragments, the process is
carried out as follows:

f(xi,Ms,Mt) =

{
1, if fp(oci ) → 1

0, otherwise
(9)

where oci is the concatenation of DNA fragment osi and oti correspond-
ing to xi for xi ∈ Ds. For the granularity of the model DNA set,
we can compute the average results by considering the whole DNA
fragments: f(Ds,Ms,Mt) = 1 if 1

N

∑N
i=1 fp(o

c
i ) → 1, and 0 oth-

erwise. In practice, we can also employ a threshold δ for determining
the final prediction, i.e., 1

N

∑N
i=1 fp(o

c
i ) ≥ δ. and δ can be seen as a

degree of similarity of DNA. The choice of threshold depends on the
specific context and requirements of the problem at hand.

5 Experiments

To evaluate the effectiveness of our proposed framework, we con-
duct experiments on several commonly used benchmark datasets in
Computer Vision and Natural Language Processing.

5.1 Experimental settings.

All experiments were conducted using Python programming language
on a machine equipped with an Intel Core CPU, 64 GB of memory,
and an NVIDIA Corporation GV100GL [Tesla V100 SXM2 32GB]
GPU. We show the details of our proposed framework MGMP in
Table 3. In the Computer Vision (CV) task, the generator’s structure is
set using the ResNet50 architecture. ResNet50 is a popular Convolu-
tional Neural Network (CNN) architecture commonly used for image
classification tasks. It consists of 50 layers, including convolutional
layers, pooling layers, and fully connected layers. The model param-
eters, such as the learning rate, are set to their default values. In the
NLP task, the structure of the generator is set as DistilBERT, and the
model parameters are also set to their default values. We employ three
fully connected layers as the classifier in each task. Details regarding
the impact of various generators can be found in Section 5.5.
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Table 1. Test accuracy of the proposed MGMP on CV task with and without (shown in parentheses) the DNA generator module.

Source Model pool Evaluation Performance

Data Model Data Model Data Model Accuracy

CIFAR10 ResNet18 CIFAR100 (3 6 8 9 5) ResNet18 CIFAR100 (1 2 4 7 0) ResNet18 0.9193± 0.0232 (0.7529±0.0347)
CIFAR10 ResNet18 CIFAR100 (6 7 0 1 2) ResNet18 CIFAR100 (3 4 5 8 9) ResNet18 0.9511± 0.0432 (0.8219±0.0332)
CIFAR10 ResNet18 CIFAR100 (9 3 7 8 1) ResNet18 CIFAR100 (4 2 5 0 6) ResNet18 0.9607± 0.0483 (0.8030± 0.0451)

CIFAR10 AlexNet CIFAR100 (3 6 8 9 5) AlexNet CIFAR100 (1 2 4 7 0) AlexNet 0.9025± 0.0472 (0.7220±0.0687 )
CIFAR10 AlexNet CIFAR100 (6 7 0 1 2) AlexNet CIFAR100 (3 4 5 8 9) AlexNet 0.9247± 0.0392 (0.8471±0.0417)
CIFAR10 AlexNet CIFAR100 (9 3 7 8 1) AlexNet CIFAR100 (4 2 5 0 6) AlexNet 0.9106± 0.0331 (0.8231±0.0442)

CIFAR10 ViT-small CIFAR100 (3 6 8 9 5) ViT-small CIFAR100 (1 2 4 7 0) ViT-small 0.9164±0.0224 (0.8326±0.0306)

Table 2. Test accuracy of the proposed MGMP on NLP task with and without (shown in parentheses) the DNA generator module.

Source Model pool Evaluation Performance

Data Model Data Model Data Model Accuracy

AGNews DistilBERT Amazon / DBPedia/YahooQA DistilBERT 20Newsgroups/Yelp DistilBERT 0.8377±0.0778 (0.7203±0.0936)
YahooQA DistilBERT 20Newsgroup/DBPedia/Amazon DistilBERT AGNews/Yelp DistilBERT 0.8625±0.0903 (0.7875±0.1003)

20Newsgroups DistilBERT YahooQA/Yelp/20Newsgroups DistilBERT AGNews/DBPedia DistilBERT 0.9395±0.0554 (0.8371±0.0964)

AGNews BERT-base Amazon / DBPedia/YahooQA BERT-base 20Newsgroup/Yelp BERT-base 0.8656 ±0.0802 (0.7074±0.0918)

Table 3. The details of MGMP

Task Generator |z| |o|
CV ResNet50 10 20
NLP DistilBERT 768 1536

Table 4. Description of Datasets

Dataset Name Number of Samples Features

CIFAR-10 50,000 RGB (32×32)
CIFAR-100 50,000 RGB (32×32)

AGNews 20,000 Text (4 classes)
YahooQA 20,000 Text (10 classes)

20 Newsgroups 13,370 Text (20 classes)
DBPedia 20,000 Text (14 classes)

Amazon Reviews 20,000 Text (5 classes)
Yelp Review 20,000 Text (5 classes)

Table 4 summarizes the datasets used in this study, including the
dataset name, a brief description, the number of samples, and the
types of features in each dataset. To accommodate the computational
requirements and ensure efficient experimentation, we sampled a
subset (20,000) from some NLP datasets as the training data.

5.2 Evaluation on CV tasks

Setup. In the CV experiment, we focus on a common image clas-
sification task. Here’s an example to illustrate the process: we start
by initializing the model architecture, such as ResNet18 [9], and
then train the source model Ms using CIFAR10. Then we utilize
CIFAR100 to create model pools and evaluation datasets. To achieve
this, we partition CIFAR100 into 10 disjoint 10-way classification sub-
sets. Out of these, we randomly select 5 subsets (e.g., 3, 6, 8, 9, 5) to
train 10 models (consisting of 5 homologous and 5 non-homologous
models) that become part of the model pool. The remaining subsets
are used to train multiple homologous and non-homologous models,
which then serve as evaluation data. This setup is further detailed in
the first row of Table 1.
Experimental results. Table 1 presents the results of our proposed
method under ResNet18, AlexNet, and ViT-small model structures on
various datasets. We show performance on the granularity of the DNA
fragment. Let N be the total number of training data of the source
model and An (Ao) be the total number of data that can be identified

correctly if we test the homologous (non-homologous) model as the
target model. The test accuracy is defined as Accuracy = An+Ao

2N
.

Our method’s performance is consistently superior across all datasets,
demonstrating its effectiveness in verifying the provenance of models.

To the best of our knowledge, no method has been designed for
the MP task. We use MGMP with and without the DNA generator
module (Figure 2) as a baseline method and observe that the inclusion
of the DNA generator improves the provenance prediction accuracy.
Specifically, the test accuracy obtained without the DNA generator
(shown in parentheses) is lower, highlighting the importance of the
DNA generator module in our proposed framework.

To provide a thorough insight into how DNA fragments contribute
to the overall prediction, we analyze their influence by assessing
performance at the DNA fragment level. Additionally, for assessing
performance in terms of the DNA level, a threshold δ (e.g., 0.9) can
be utilized to make final predictions. As demonstrated in Table 1, we
consistently achieve the right provenance prediction in each row.

5.3 Evaluation on NLP tasks

Setup. For text classification tasks on various benchmark NLP
datasets, we utilize the DistilBERT and BERT-base architectures
as shown in Table 2. Similar to the experimental setup for CV tasks,
we randomly select one dataset to train the source model, and three
datasets to form the model pool. For evaluation, we use two datasets
to train homologous or non-homologous models.
Experimental results. The results in Table 2 demonstrate that MGMP
performs exceptionally well on the text classification task when ap-
plied to the DistilBERT model. Similarly, MGMP without the DNA
generator achieves worse accuracy than the original MGMP. These
results are consistent with previous evaluations on CV task. The con-
sistent findings across both the text classification and computer vision
tasks emphasize the robustness and generalizability of MGMP.

5.4 Experimental visualization.

We visualize the generated DNA fragments of the first CV experiment
(i.e., the first row of Table 1). Figure 4 shows T-SNE visualizations
of the space of DNA fragments results. The red points represent
the generated DNA of the source model, the yellow ones are DNA
from homologous target models, and the blue ones are DNA from
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Figure 4. The visualization of the DNA fragments of the source model (red), homologous target model (yellow), and non-homologous target model (blue).

non-homologous target models. We observe that the points belonging
to homologous models are almost much closer to each other than
points from non-homologous models. Specifically, the distance be-
tween the red and yellow points is much smaller than the distance
between the red and blue points. This suggests that our framework is
effective in capturing the similarity between homologous models and
distinguishing them from non-homologous models.

5.5 Ablation study

The analysis of the MGMP framework aims to gain a comprehensive
understanding of the individual components and processes within the
approach. In this study, we specifically investigate the influence of
different generator structures and various methods of DNA assembly.
To isolate the effects of these factors, we conduct separate evaluations
where one component is varied while keeping other components fixed.
To establish a baseline experimental set, we consider the first row of
Table 1 as the initial configuration.

We observed that the performance of different generator structures
remained consistent across various evaluation metrics. We found that
the DNA assembly process had a notable effect on the results. Differ-
ent ways of assembling the DNA fragments resulted in variations in
performance. Our results indicate that increasing the dimensionality
of the DNA representation can lead to improved results within the
MGMP framework. By incorporating additional dimensions into the
DNA, we can capture more nuanced information and potentially en-
hance the performance of the model. By analyzing the results in Table
5, we gain insights into the contributions of individual components
and their interactions within the MGMP framework. This analysis
helps us identify the optimal configuration and provides valuable
guidance for future improvements and refinements of the approach.

6 Conclusion

In this paper, we present an efficient model representation learning
framework for tackling an important problem, namely Model Prove-
nance. We introduce a new idea of model DNA to represent a machine

Table 5. Components analysis: Test accuracy of MGMP with various DNA
generator structures.

Component Performance

Generator DNA assemble (|o|) Accuracy

ResNet50 addition (10) 0.9193
ViT-samll addition (10) 0.9004
ViT-base addition (10) 0.9137
ResNet50 concatenate (20) 0.9264
ResNet50 concatenate (60) 0.9416
ResNet50 concatenate (110) 0.9478

learning model. The proposed framework first constructs the model
DNA space which preserves similarity information between homolo-
gous models and enhances the differences between non-homologous
models, and then uses model DNA to obtain provenance outcomes.
Experimental results on different tasks show that our method achieves
good performance in the MP task.
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