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Abstract. The increasing application of machine learning (ML)
in critical areas such as healthcare and finance highlights the im-
portance of fairness in ML models, challenged by biases in train-
ing data that can lead to discrimination. We introduce ’FairUS’, a
novel pre-processing method for reducing bias in ML models uti-
lizing the Conditional Generative Adversarial Network (CTGAN) to
synthesize upsampled data. Unlike traditional approaches that focus
solely on balancing subgroup sample sizes, FairUS strategically op-
timizes the quantity of synthesized data. This optimization aims to
achieve an ideal balance between enhancing fairness and maintain-
ing the overall performance of the model. Extensive evaluations of
our method over several canonical datasets show that the proposed
method enhances fairness by 2.7 times more than the related work
and 4 times more than the baseline without mitigation, while preserv-
ing the performance of the ML model. Moreover, less than a third
of the amount of synthetic data was needed on average. Uniquely,
the proposed method enables decision-makers to choose the working
point between improved fairness and model’s performance according
to their preferences.

1 Introduction

ML models have become essential tools in various decision-making
fields. The reliability and effectiveness of these models are highly
dependent on the quality and representativeness of the data used for
training. A critical aspect of training ML models involves ensuring
fairness [14]. Minimizing bias is essential in ML models to guar-
antee that automated decisions are equitable and do not perpetuate
existing societal inequalities, particularly in sensitive domains like
healthcare, finance, and criminal justice. Biases related to protected
attributes such as race, gender, occupation and age can result in unfair
outcomes, disproportionately affecting specific groups. This could
lead to discrimination and other negative impacts on individuals from
these groups.

Bias mitigation techniques in ML can be broadly categorized into
three types [25]: pre-processing, in-processing, and post-processing.
Pre-processing techniques mitigate bias in the training data before
AI models are affected. In-processing techniques address bias during
the training process of the model, while post-processing techniques
attempt to mitigate bias in the models’ results. Pre-processing tech-
niques for bias mitigation are instrumental in ensuring fairness by re-
ducing bias in training data, regardless of their model’s training pro-
cess or architecture. Bias in datasets can considerably influence the
predictions of the model, leading to unjust outcomes, especially for

1 Equal contribution.

underrepresented minority groups. These techniques focus on iden-
tifying and rectifying biases in the data before the training process
commences. By addressing the root cause of bias, these methods
foster transparency and accountability in AI systems. Pre-processing
methods encompass several techniques, including transforming pro-
tected attributes to balance group representation [11, 5, 23], fair rep-
resentation learning [4, 12, 33, 30, 31, 7, 34], relabeling and per-
turbation methods [16, 24, 11, 21], and sampling strategies such as
upsampling and downsampling [20, 9, 1]. These techniques aim to
eliminate biases from training data and balancing group representa-
tion, which are both the focus of our work.

Our motivation was initiated by identifying gaps in how tra-
ditional sampling techniques affect fairness, particularly evident in
real-world datasets such as COMPAS [18]. We observed a unique
trend: while initial incremental upsampling of minority sub-groups
in the dataset leads to improved fairness (as gauged by the Equal-
ized Odds metric, where lower values signify greater fairness), this
trend does not consistently hold. As shown in Figure 1, with each up-
sampling incremental, the fairness begins to decline rather than im-
prove. This pattern is crucial, because, in some cases, attempting to
balance sample sizes between groups can paradoxically reduce fair-
ness. Driven by these insights, we developed a novel pre-processing
method for bias mitigation. Our approach is distinctively designed
to fine-tune the upsampling process, strategically optimizing the bal-
ance between minority and majority groups in the dataset to enhance
fairness.

Figure 1. Equalized Odds, which represents the measured bias, is worsen
(higher values) in the upsampling process for COMPAS dataset.

While the idea of equalizing group sizes may appear intuitive, it
does not always guarantee the most optimal fairness and accuracy
outcomes as is exemplified in Figure 1. To better achieve fairness
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in this context, a more nuanced upsampling approach is needed. By
adopting an optimized upsampling strategy, we have been able to
strike a balance between fairness and performance, achieving im-
proved model generalization while mitigating bias and promoting
fairness effectively.

We have proposed and implemented an upsampling method that
employs CTGAN to synthesize samples in a refined manner, aim-
ing to enhance the fairness of the data while maintaining the model’s
performance. We investigated whether varying ratios between privi-
leged and unprivileged groups can result in enhanced fairness while
maintaining the model’s performance, compared to mere group size
equalization which is the common practice of related work, as far
as we know. To undertake this investigation, we delved into a multi-
optimization problem, utilizing Tree structure Parzen Estimator, with
the specific aim of identifying optimal values that amplify the rep-
resentation of smaller groups within each label, as demonstrated in
Figure 2 with the goal of minimizing the bias of the training dataset
while maximizing the accuracy.

1.1 Main contributions of our research

• We introduce ’FairUS’ - a novel method, for pre-processing bias
mitigation using upsampling with CTGAN synthetic data.

• A notable contribution of our study is the careful and optimized
alteration of the original training set. Unlike existing methods that
may significantly modify the training data, our approach intro-
duces a fine-tuned amount of synthetic data upsampled. This ap-
proach ensures that the modifications serve the specific purpose of
enhancing fairness while preserving the underlying structure and
quality of the original data.

• The proposed method empowers decision-makers to improve fair-
ness and simultaneously determine their preferred balance with
accuracy, allowing for a customized tradeoff between these criti-
cal factors.

• Our method can be seamlessly integrated into ML pipelines
for model-agnostic applicability. The reproducible code of our
method is available on GitHub.

• We demonstrated superior results in fairness metrics and accuracy
through evaluations on various canonical datasets, both in com-
parison to a baseline without bias mitigation and in comparison to
related work.

Figure 2. Optimization of the upsampling process per class and sub-group

2 Related Work

In this section, we provide a concise review of the foundational and
contemporary work in our research area, primarily focusing on bias
detection metrics, and pre-processing bias mitigation methods.

2.1 Bias Detection Metrics

Canton et al.’s comprehensive survey [6] broadly classifies bias met-
rics into two main categories: outcome probabilities-based metrics,
such as Statistical Parity [4] and Disparate Impact [4], and confu-
sion matrix-based metrics, including Equalized Odds, Equalized Op-
portunity [13], and Accuracy Rate Difference [3]. Our research uses
Equalized Odds, a metric that considers the delta of True Positive
and False Positive Rates measured in sub-groups, as suggested by
Hardt et al. [13]. This metric particularly overcomes the pitfalls of
the former bias detection measures. It is important to mention that
the metrics of Statistical Parity and Disparate Impact, by their defini-
tions, are inherently enhanced by upsampling techniques. Therefore,
they do not present meaningful or insightful measures for evaluating
our approach.

2.2 Sampling Pre-processing Bias Mitigation Methods

Bias mitigation methods can be divided into pre-processing, in-
processing, and post-processing approaches [15]. Our study focuses
on pre-processing methods, mainly balancing groups by sampling
[11, 5, 23].

Sampling techniques have been used extensively to address data
imbalance, which could lead to biased models. Two recent upsam-
pling methods, FairSMOTE [8] and FairGAN [28], produce syn-
thetic data generation to balance class distribution and mitigate bias.
FairSMOTE employs the Synthetic Minority Over-sampling Tech-
nique (SMOTE) [9] to equalize group sizes, creating synthetic sam-
ples by interpolating minority samples. FairGAN leverages Condi-
tional Tabular GAN (CTGAN) [32] to generate synthetic samples
that preserve statistical properties and dependencies in tabular data.
A recent study [22] emphasizes the importance of measuring the con-
tribution of each subgroup and its size to the fairness measured, but
mitigates this disparity with re-weight samples in an optimized man-
ner to the relevant subgroup.

Our proposed method, FairUS, differs from existing approaches
such as FairSMOTE and FairGAN, which aim to directly equalize
group sizes. Instead, FairUS employs an optimization-centric strat-
egy to achieve the optimized balance between groups for each label.

By solving this optimization problem, FairUS identifies a bal-
ance that enhances both fairness and accuracy. This approach allows
FairUS to cater to specific instances of imbalanced data and fairness
requirements, leading to improved fairness, accuracy, and better gen-
eralization across various real-world applications.

2.3 CTGAN for synthetic data generation

Xu et al. introduced Conditional GAN (CTGAN), a tool that uses
Generative Adversarial Networks (GANs) to generate synthetic tab-
ular data by modeling its distribution [32]. CTGAN handles complex
distributions of both discrete and continuous data columns through
a process called "mode-specific normalization". Each data column is
processed separately. For continuous data, a Gaussian mixture model
estimates distinct peaks in the distribution, assigns probabilities to
each data point from these modes, and normalizes the data point
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based on a randomly sampled mode. This results in data points rep-
resented as a mix of the mode, which is one-hot encoded, and the
original value. For discrete columns with imbalanced data, a ’con-
ditional generator’ creates synthetic rows based on the logarithmic
frequency of each category (’training-by-sampling’). Generating dis-
crete columns data is one of the advantages of CTGAN over other
synthetic data generation tools, such as SMOTE or other methods
that leverage synthetic data for bias mitigation [28], especially rele-
vant for handling protected attributes, such as gender, religion, mar-
ital status or race, which are mostly discrete, by their nature. In our
study, we employed CTGAN to produce new synthetic samples for
each group.

3 Method

FairUS method aimed at improving fairness in a given input dataset
D without compromising the model’s performance. This enhance-
ment is realized through an innovative pre-processing multi-objective
optimization of upsampling. The upsampling is done utilizing CT-
GAN technique to synthesize data efficiently.

Our method coordinates two principal algorithms: Upsampling
Dataset Algorithm (Algorithm 1), and Finding Optimal Lambdas
Algorithm (Algorithm 2). The process initiates with Algorithm 1,
tasked with upsampling the dataset via predetermined lambda values,
thereby creating new samples through CTGAN. Following this, Al-
gorithm 2 is engaged to refine these lambda values. This refinement
is optimized iteratively through the Tree-structured Parzen Estimator
(TPE) optimization method, which incorporates Algorithm 1 at each
step. The aim is to construct an objective that leverages the outcomes
of the upsampling, both throughout the iterative process and in the
final analysis. The high level description of the method is illustrated
in Figure 3.

The resulting output is an optimized by sub-groups upsampled
dataset D′. To achieve fairer results for the protected attribute, Al-
gorithm 1 utilizes λ0 as the proportion of the sub-groups of the
protected attribute within class "0" and λ1 as the proportion of the
sub-groups of the protected attribute within class "1" to balance the
dataset with synthesized data utilizing CTGAN. Algorithm 2 focuses
on determining the optimal parameters, denoted by λ0 and λ1, that
enhance the representation of minority groups within each label.

Algorithm 1: Optimized Upsampling Dataset

1 Input: D - dataset, PA - Protected Attribute, PAV - Privileged
Attribute Value, λ0, λ1 - Lambdas for upsampling

2 Output: D′ - Upsampled dataset
1: p1 ← |{i ∈ D | PA(i) = PAV ∧ label(i) = 1}|
2: p0 ← |{i ∈ D | PA(i) = PAV ∧ label(i) = 0}|
3: np1 ← |{i ∈ D | PA(i)! = PAV ∧ label(i) = 1}|
4: np0 ← |{i ∈ D | PA(i)! = PAV ∧ label(i) = 0}|
5: adjustment_factor0 ← λ0 ×max(0, p0 − np0, np0 − p0)
6: adjustment_factor1 ← λ1 ×max(0, p1 − np1, np1 − p1)
7: syn_nonpriv_0 ← CTGAN0(adjustment_factor0)
8: syn_nonpriv_1 ← CTGAN1(adjustment_factor1)
9: syn_priv_0 ← CTGAN0(adjustment_factor0)

10: syn_priv_1 ← CTGAN1(adjustment_factor1)
11: D′ ← D ∪ syn_nonpriv_0 ∪ syn_nonpriv_1 ∪

syn_priv_0 ∪ syn_priv_1
12: return D′

3.1 Algorithm 1 - Upsampling Function

Algorithm 1 aims to balance the protected attribute by upsampling
the dataset with synthetic samples. The input to this algorithm in-
clude the dataset (D), the protected attribute (PA), the privileged at-
tribute value (PAV), and lambda values λ0 and λ1. Initially, the algo-
rithm splits the dataset into different groups based on labels and the
privileged attribute value (line 1-4). Subsequently, it calculates the
number of samples to generate for each group, considering the λ0 and
λ1 and the difference in group sizes (line 5-6). Utilizing CTGAN, it
generates synthetic samples for the minority group out of the non-
privileged and privileged sub-groups separately (line 7-10). Finally,
it merges the synthetic samples with the original dataset (line 11),
creating an upsampled dataset (D’) as the output (line 12). The incor-
poration of CTGAN, a sophisticated generative modeling technique,
facilitates the generation of realistic samples, thereby contributing to
the overall effectiveness of the approach. While we use binary val-
ues in this example, this method can be easily applied to any discrete
protected attribute by applying one-hot encoding.

3.2 Algorithm 2 - Finding Optimized Lambdas for
Upsampling Dataset

Algorithm 2 is tasked with the challenge of improving the dataset
fairness while simultaneously preserving its accuracy.
This is achieved by meticulously determining the most appropriate
λ0 and λ1 values. The balancing act between fairness enhancement
and accuracy maintenance is moderated by the user by choosing the
optimal trial from the TPE results. A trial close to the first one will
represent a preference for greater fairness.

The algorithm requires a dataset (D), a protected attribute (PA)
with a privileged attribute value (PAV), and N optimization trials.

Initiating with lambda values set to zero ensures a neutral com-
mencement (line 1). The subsequent phase involves the calculation
of baseline metrics for Equalized Odds and accuracy, utilizing a
Random Forest model for this purpose. These baseline metrics lay
the foundation for comparative assessment following lambda adjust-
ments (lines 2-3).

The algorithm then enters a critical phase of iterative exploration,
spanning a range of lambda values from 0 to 2 utilizing Tree struc-
ture Parzen Estimator (TPE), Parzen_T (line 5) . In each iteration,
for every distinct combination of λ0 and λ1, the algorithm gener-
ates an upsampled dataset, using Algorithm 1. It then evaluates the
efficacy of each lambda pairing through the lens of the fairness and
accuracy metrics of the upsampled dataset, juxtaposed against the
baseline values (lines 6-10). The scaling of these comparisons is piv-
otal, providing a proportionate measure of the metrics’ deviations
from their baseline states.

The result of each optimization trial is updated in the Parzen_T
based on multi optimization objectives (line 12).

Conclusively, the algorithm yields the optimally upsampled dataset
from the Parzen_T , identified by the λ0 and λ1 values that most ef-
fectively conform to the user’s balance preferences between fairness
and accuracy (line 14-15). Algorithm 2 thus presents a sophisticated,
customizable methodology for navigating the often intricate trade-
off between fairness and accuracy in dataset sampling, a challenge in
equitable ML models development.
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Figure 3. High-level description of FairUS: Algorithm 2 finds the optimized lambdas using Algorithm 1 to upsample the training set

Algorithm 2: Finding Optimized Lambdas for Upsampling
Dataset

1 Input: D - dataset, PA - Protected Attribute, PAV - Privileged
Attribute Value

2 Parameters: N - number of optimization trials
3 Output: D′

opt - Optimized Dataset with λ0opt , λ1opt -
Optimized upsampling parameters

1: Parzen_T ← Initialize TPE-based optimization model
2: OrigFair_score ← EoD(D,PA,PAV )
3: OrigAcc_score ← Accuracy(D)
4: for i ← 1 to N do

5: (λ0, λ1) ← Select parameters using TPE model Parzen_T
6: D′ ← UpsampleDataset(D,PA,PAV, λ0, λ1)
7: CurrFair_score ← EoD(D′, PA, PAV )
8: CurrAcc_score ← Accuracy(D′)
9: Scaled_Fair_score ←

CurrFair_score/OrigFair_score
10: Scaled_Acc_score ← CurrAcc_score/OrigAcc_score
11: Optimization_Objective ←

Scaled_Fair_score, Scaled_Acc_score
12: Parzen_T ← Update with

(λ0, λ1, Optimization_Objective)
13: end for

14: (λ0opt , λ1opt) ← Optimal user-defined trial from TPE
Parzen_T

15: D′
opt ← UpsampleDataset(D,PA,PAV, λ0opt , λ1opt)

16: return D′
opt

3.3 Lambdas Optimization with TPE

We apply the TPE algorithm for optimizing lambda parameters,
specifically λ0 and λ1, to balance fairness and accuracy in predictive

models. TPE, an effective hyperparameter optimization technique,
is particularly suited for this task due to its iterative and probabilistic
approach. It excels in scenarios where optimizing hyperparameters to
balance competing objectives, such as accuracy and latency in quan-
tization, is crucial. TPE operates iteratively, using a history of eval-
uated hyperparameters to construct a probabilistic model that guides
the selection of new hyperparameters. The process involves defining
a search space domain, creating an objective function, and employing
Parzen Estimators for modeling densities based on observed scores.

Our implementation is inherently multi-objective, hence combines
equalized odds with model accuracy. This composite measure allows
for a nuanced approach to optimizing the upsampling parameters λ0

and λ1. The TPE algorithm iteratively adjusts these parameters, as-
sessing their impact on both fairness and accuracy. Each iteration
leverages historical performance data to refine the parameters, guid-
ing the optimization towards a balance that minimizes equalized odds
and maximize accuracy. The algorithm divides observations into two
groups based on scores, models two densities using Parzen Estima-
tors, and samples hyperparameters from these densities. This method
aims to identify a set of lambdas that optimally balance the trade-off
between fairness and accuracy, ensuring the most equitable represen-
tation of data groups while maintaining robust and high predictive
quality.

3.4 Pareto Front Optimization

Within the scope of this study, our methodology employs the concept
of a Pareto front to examine the trade-offs between fairness and ac-
curacy, two pivotal objectives in the context of bias mitigation in ML
datasets. The Pareto front is an essential tool for multi-objective op-
timization, delineating a set of optimal solutions where any attempt
to improve one objective would lead to a deterioration in another.
This frontier is critical for our analysis as it captures the inherent
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trade-offs involved when aiming to enhance dataset fairness without
compromising the accuracy of the models.

In deploying the Pareto front, each point along the front represents a
distinct combination of fairness and accuracy, achieved through our
bias mitigation strategy. This graphical representation allows us to
systematically explore the efficiency frontier of these two competing
objectives. By comparing various points along the Pareto front, we
can discern the extent to which improvements in fairness may influ-
ence the accuracy of the models and vice versa.

3.5 Intuition for the Method Effectiveness

As discussed in the related work, the notion of fairness can be quanti-
fied by the Equalized Odds metric, examining the difference in TPRs
and FPRs across different groups [13], and expressed as:

EoD− =
1

2
(|TPRPA=0 − TPRPA=1|
+ |FPRPA=0 − FPRPA=1|) (1)

Here, the term PA represents the protected attribute. For simplic-
ity, we consider PA to have two distinct values: 0,1, one represents
the unprivileged group, and the other denotes the privileged group.
In this equation, TPR represents the true positive rate, and FPR
represents the false positive rate.

A classifier achieves equalized odds if both TPR and FPR are the
same between groups, which means that it is equally accurate for
all groups. Any deviation from zero in the EoD− value indicates
a disparity in the classifier’s performance between the two groups,
signaling potential unfairness.

Suppose the classifier’s False Positive Rate (FPR = FP
FP+TN

) for
group PA = 1 is greater than that for group PA = 0:

FPRPA=1 > FPRPA=0 (2)

This indicates that group PA = 1 experiences an unfair situation of
more False Positives relative to class 1, which increases the EoD−.

Similarly, suppose the classifier’s True Positive Rate (TPR =
TP

TP+FN
) for group PA = 1 is greater than that for group PA = 0:

TPRPA=1 > TPRPA=0 (3)

This indicates that group PA = 0 experiences an unfair situation of
more False Negatives relative to class 0, which increases the EoD−.

The EoD− is reduced when a classifier’s predictive performance,
specifically TPR and FPR, become more homogeneous across pro-
tected and non-protected groups. The Upsampling Dataset Algorithm
1 addresses this by correcting imbalances within the training data,
which are often the cause of unequal classifier performance metrics.

Balancing Representation to Reduce False Negatives (FN) When
a protected group is underrepresented in the positive class, there is an
increased risk that the classifier predicts more negative outcomes for
this group, leading to a higher FN rate. Upsampling the positive class
for the protected group using λ1 augments its presence in the training

data. This enriched representation equips the classifier with a broader
spectrum of positive examples from the protected group, improving
its ability to recognize such cases accurately and thus reducing FN
rates.

Balancing Exposure to Reduce False Positives (FP) Similarly, if
the protected group is underrepresented in the negative class, the
classifier may incorrectly predict more positive outcomes, resulting
in a higher FP rate. Upsampling the negative class for the protected
group using λ0 bolsters the number of negative examples from this
group within the training set. This expanded exposure helps the clas-
sifier to better understand the characteristics of negative cases within
the protected group, decreasing the propensity for FPs.

The strategy of upsampling to reduce EoD− is predicated on the
construction of a training set that mirrors a more equitable distribu-
tion of outcomes for the protected group. By adjusting the dataset to
provide the classifier with a balanced learning environment, the per-
formance metrics between the protected and non-protected groups
are harmonized. This leads to a reduction in EoD− values and con-
tributes to the advancement of fairness in ML algorithms.

4 Experiments

The experiments that were conducted, compared EoD− and accu-
racy of our method against a baseline without any bias mitigation,
and against two related works, namely FairSMOTE and FairGAN.

4.1 Datasets

We have selected eight well-known tabular datasets from various do-
mains: COMPAS [2], ADULT [17], German Credit [10], Bank Mar-
keting [26], Diabetes 2, Utrecht Fairness Recruit3, Nursery [27] and
Default Credit4 as summarized in Table 1, due to their relevance
in ML research and the presence of fairness concerns [19]. These
datasets contain various attributes that can potentially introduce bi-
ases and discrimination, such as race, occupation, age, and gender.
Pre-processing of these datasets included: the removal of rows with
missing values and the encoding of categorical attributes.

4.2 Experimental Setup

We performed experiments to evaluate the performance of our pro-
posed method, FairUS, in terms of fairness and accuracy. We applied
FairUS to the training data, generating an upsampled training set. We
then trained a model on this upsampled training set and evaluated its
evaluation metrics as discussed next.

2 Medical dataset that was published in 2023 on Kaggle. The data set is cre-
ated by Mohammed Mustafa.

3 Students’ admission to university dataset that was published in 2022 on
Kaggle. The data set is created by Sieuwert van Otterloo.

4 Contains information on default payments, demographic factors, credit data,
history of payment, and bill statements of credit card clients in Taiwan from
April 2005 to September 2005.
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Dataset #Sample Protected Privileged

COMPAS 7,217 Race Caucasian
Sex Male

ADULT 32,561 Race Caucasian
Sex Male

GERMAN CREDIT 1,000 Sex Male
BANK MARKETING 11,162 Age 25-65
RECRUIT 4,000 Sex Male
DIABETES 99,982 Gender Female
NURSERY 12,960 Parents Occupation Great_pret
Default Credit 30,000 Sex Male

Table 1. Experiments’ datasets with a variety of protected attributes.

4.2.1 Models Setup

To calculate the Equalized Odds, we used Random Forest from
Sklearn [29] library, with the default parameters. We used the "Syn-
thetic Data Vault Project" (SDV) CTGAN implementation5 with de-
fault parameters. We used the "Optuna" Python package6 for TPE
implementation, with the following settings n_startup_trials=20,
n_ei_candidates=24, multivariate=True, n_trials=200. For the multi-
objective, the directions were defined as "minimize" for Equalized
Odds and "maximize" for accuracy.

4.3 Comparison Methods

We compared our method against three alternatives:

• Baseline: A model trained without any bias mitigation. This pro-
vides a reference point to gauge the improvement brought by the
other methods as well as FairUS.

• FairSMOTE: A well-known pre-processing method that uses a
variant of SMOTE for fair upsampling.

• FairGAN: A method that employs Generative Adversarial Net-
works for fairness-enhanced data generation.

4.4 Evaluation Metric

In our experiments, we selected the Equalized Odds metric to evalu-
ate our method’s effectiveness, as detailed in the Related Work and
Method sections. Our research has dual optimization goals: (1) to
minimize the value of the Equalized Odds metric, as indicated by
Equation 1, and (2) to maximize the accuracy of the test set. It should
be noted that our method is suitable for any fairness metric and can
be easily adjusted accordingly. It should be noted that our method
can support any fairness metric as a parameter to the multi-objective
optimization algorithm.

5 Results

The results of our experiments are comprehensively presented in Ta-
ble 2. We demonstrate the efficacy of our method, FairUS. For each

5 https://github.com/sdv-dev/CTGAN
6 https://optuna.org/

dataset and protected attribute, we compare the performance of our
method against a baseline without bias mitigation, and against related
work - FairSMOTE, and FairGAN. The metrics used for compari-
son are Accuracy and EoD−. We show the superiority of FairUS
in enhancing fairness in nine out of nine experiments, all of which
on the first trial. Interestingly, when focusing on accuracy, FairUS
maintained its leading position in eight out of nine experiments, three
of which were attributed to the first trial as well. Five experiments,
where FairUS showcased the highest accuracy, were part of advanced
trials. This illustrates the nuanced capability of FairUS to navigate
the fairness-accuracy landscape effectively.

These findings underscore the Pareto front’s conceptual importance
in our analysis. By demonstrating that FairUS can either lead or
closely align with the optimal points on the Pareto front, we highlight
its utility in balancing the dual objectives of fairness and accuracy.

On average, FairUS presented enhanced fairness and improved ac-
curacy as shown in Figure 4, indicating its effectiveness in promoting
fairness.

Figure 4. Comparison of average accuracy and EoD− across all methods

Furthermore, our results validate the capability of FairUS to allow
decision-makers to effectively balance fairness and accuracy. This
is illustrated in Figure 5, where FairUS exhibits superior perfor-
mance over other methods in the accuracy-fairness space, present-
ing a Pareto-Dominate of fairness-accuracy combinations. FairUS
consistently achieved a lower Equalized odds score, indicating en-
hanced fairness, while maintaining competitive accuracy. During the
first trials, all FairUS experiments demonstrated effective reduction
of EoD− scores while maintaining or enhancing accuracy.

A key contribution of our method is the optimized alteration of the
original training set. This approach is evident in our results, show-
ing that FairUS has the least amount of data upsampled, hence, pre-
serving the integrity of the original data. This is reflected in the bal-
anced dataset growth across all experiments, as detailed in Table 2
and strengthening our study’s motivation as presented in Figure 1.

5.1 Discussion

• Lower STD: FairUS presents lower STD averages of 0.0076 com-
pared to 0.0111, as calculated from Table 2 for the Equalized Odds
and similar STD for the accuracy, suggesting enhanced stability in
its performance compared to benchmark methods.

• Trade-off: As illustrated in Figure 5, FairUS trials consistently
demonstrated superior performance (indicated by light blue bul-
lets) over other methods, and creating a Pareto-Dominate, achiev-
ing higher accuracy and lower bias. For all experiments, the first
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Dataset Protected Method Accuracy (± STD) EoD− (± STD) Dataset Growth Time (min)

COMPAS Race

Baseline 0.682 ± 0.014 0.278 ± 0.059 0% 0
FairSMOTE 0.674 ± 0.010 0.154 ± 0.034 19.83% 0.662
FairGAN 0.691 ± 0.010 0.130 ± 0.016 19.83% 4.262
FairUS (trial = 1st) 0.712 ± 0.013 0.029 ± 0.014 20.54% 4.38

ADULT Race

Baseline 0.847 ± 0.003 0.108 ± 0.037 0% 0
FairSMOTE 0.797 ± 0.007 0.063 ± 0.005 167.92% 3.925
FairGAN 0.891 ± 0.003 0.119 ± 0.006 167.92% 31.426
FairUS (trial = 1st) 0.879 ± 0.003 0.032 ± 0.009 32.69% 12.64
FairUS (trial = 5th) 0.895 ± 0.002 0.071 ± 0.022 55.61% 12.64

ADULT Sex

Baseline 0.847 ± 0.003 0.125 ± 0.042 0% 0
FairSMOTE 0.747 ± 0.004 0.041 ± 0.017 85.45% 1.628
FairGAN 0.899 ± 0.003 0.117 ± 0.003 85.45% 31.59
FairUS (trial = 1st) 0.878 ± 0.002 0.038 ± 0.004 37.75% 11.02

GERMAN Sex

Baseline 0.727 ± 0.013 0.065 ± 0.034 0% 0
FairSMOTE 0.747 ± 0.024 0.071 ± 0.041 99.60% 0.398
FairGAN 0.781 ± 0.019 0.073 ± 0.040 99.60% 2.279
FairUS (trial = 1st) 0.769 ± 0.005 0.044 ± 0.021 59.4% 3.41
FairUS (trial = 6th) 0.818 ± 0.009 0.068 ± 0.026 57.8% 3.41

BANK Age

Baseline 0.832 ± 0.005 0.227 ± 0.085 0% 0
FairSMOTE 0.790 ± 0.007 0.043 ± 0.006 104.90% 1.097
FairGAN 0.831 ± 0.006 0.127 ± 0.011 104.90% 4.424
FairUS (trial = 1st) 0.823 ± 0.007 0.021 ± 0.012 23.16% 7.47
FairUS (trial = 6th) 0.838 ± 0.008 0.068 ± 0.019 79.51% 7.47

RECRUIT Age

Baseline 0.766 ± 0.009 0.061 ± 0.028 0% 0
FairSMOTE 0.791 ± 0.014 0.036 ± 0.013 91.6% 1.39
FairGAN 0.761 ± 0.015 0.045 ± 0.020 91.6% 3.59
FairUS (trial = 1st) 0.793 ± 0.008 0.029 ± 0.010 54.47% 5

DIABETES Gender

Baseline 0.970 ± 0.001 0.007 ± 0.006 0% 0
FairSMOTE 0.902 ± 0.005 0.014 ± 0.007 116.3% 9.61
FairGAN 0.909 ± 0.003 0.056 ± 0.006 116.3% 65.45
FairUS (trial = 1st) 0.975 ± 0.002 0.007 ± 0.003 22.35% 25.21

NURSERY Parents Occupation

Baseline 0.932 ± 0.007 0.067 ± 0.015 0% 0
FairSMOTE 0.915 ± 0.004 0.092 ± 0.010 104.1% 2.59
FairGAN 0.869 ± 0.004 0.076 ± 0.010 104.1% 3.67
FairUS (trial = 1st) 0.922 ± 0.003 0.039 ± 0.020 9.13% 5.28
FairUS (trial = 10th) 0.934 ± 0.005 0.075 ± 0.006 3.85% 5.28

Default Credit Sex

Baseline 0.815 ± 0.003 0.017 ± 0.008 0% 0
FairSMOTE 0.742 ± 0.003 0.042 ± 0.004 91.23% 2.72
FairGAN 0.858 ± 0.005 0.033 ± 0.006 91.23% 29.58
FairUS (trial = 1st) 0.830 ± 0.004 0.007 ± 0.009 10.06% 17.2
FairUS (trial = 9th) 0.859 ± 0.002 0.018 ± 0.012 34.77% 17.2

Table 2. Experiments results show that in all experiments, FairUS had the best EoD− and Accuracy measured in comparison to baseline without bias
mitigation and related work. Only in one experiment FairGAN had better Accuracy with worsened EoD− than the FairUS.

trial yielded maximal fairness, underscoring our initial motivation.
While choosing different trials gradually shifts the focus towards
enhancing accuracy, thus creating a more balanced optimization
between these two objectives.

• Optimized Synthetic Data Generation: FairUS generated the
least amount of additional synthetic data compared to other meth-
ods in all experiments (but, COMPAS with race, which has similar
dataset growth), as shown in Figure 6. We observed that bench-
mark methods had, in average, over three times more data than
FairUS (29.95% vs. 97.89%), showcasing FairUS efficient data
usage, as calculated from Table 2.

• Running Time: FairUS shows an increased running time, 4.09
times longer than FairSMOTE due to parameter optimization, but
0.51 times shorter than FairGAN, attributed to less upsampled
data. This one-time optimization in the model development life-
cycle is deemed acceptable for a pre-processing method.

6 Conclusions

This research addressed the pivotal issue of bias in ML models, par-
ticularly those originating from training data. We developed FairUS,
a novel pre-processing technique that utilizes CTGAN for optimized
upsampling, as opposed to merely equalizing group sizes. Empir-
ical evaluations conducted on several canonical datasets demon-
strated the effectiveness of FairUS. It not only mitigated bias and
improved fairness but also preserved the accuracy. Moreover, com-
pared to benchmarks, FairUS displayed superior performance. The
results validate FairUS as an effective and practical tool for bias mit-
igation across various domains and contexts. The main limitation

of FairUS lies in its running time complexity, related to the cho-
sen number of trials for the optimization process (N) in Algorithm
2. However, this limitation is acceptable, given that the method is
applied only once in a pre-processing manner. In terms of future

research directions, we aim to adapt FairUS to handle different do-
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Figure 5. Comparison of EoD− vs. accuracy between methods across different datasets and protected attributes. Different trials of FairUS presented the
Pareto-Dominate

Figure 6. Comparison of dataset growth between the methods. FairUS that
generated the least amount of data in comparison to other methods.

mains such as computer vision training sets. We believe that our work
lays a solid foundation for further exploration in the field of AI fair-
ness and cultivating more equitable AI systems.

7 Data and Code Availability

The reproducible code of our method is available on:
https://github.com/GuyRozenblatt/FairUS
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