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Abstract. We present PPCEF, a novel method for generating prob-
abilistically plausible counterfactual explanations (CFs). PPCEF ad-
vances beyond existing methods by combining a probabilistic formula-
tion that leverages the data distribution with the optimization of plausi-
bility within a unified framework. Compared to reference approaches,
our method enforces plausibility by directly optimizing the explicit
density function without assuming a particular family of parametrized
distributions. This ensures CFs are not only valid (i.e., achieve class
change) but also align with the underlying data’s probability density.
For that purpose, our approach leverages normalizing flows as power-
ful density estimators to capture the complex high-dimensional data
distribution. Furthermore, we introduce a novel loss function that bal-
ances the trade-off between achieving class change and maintaining
closeness to the original instance while also incorporating a proba-
bilistic plausibility term. PPCEF’s unconstrained formulation allows
for an efficient gradient-based optimization with batch processing,
leading to orders of magnitude faster computation compared to prior
methods. Moreover, the unconstrained formulation of PPCEF allows
for the seamless integration of future constraints tailored to specific
counterfactual properties. Finally, extensive evaluations demonstrate
PPCEF’s superiority in generating high-quality, probabilistically plau-
sible counterfactual explanations in high-dimensional tabular settings.

1 Introduction

Counterfactual explanations (briefly counterfactuals, and abbreviated
as CF) are one particular type of such explanations of black box model
predictions that provide information about how feature values of an
example should be changed to obtain a more desired prediction of the
model (i.e., to change its target decision) [30]. On the one hand, by
interacting with the model using counterfactuals, the user can better
understand how the system works by exploring "what would have
happened if..." scenarios. On the other hand, a good counterfactual
provides a practical recommendation to the user about what changes
are needed in order to achieve the desired outcome.

There are many practical applications for counterfactual explana-
tions, including loan or insurance decisions [31], recruitment pro-
cesses [21], the discovery of chemical compounds [32], medical diag-
nosis [17], and many others, see, e.g., the recent survey [10].

More formally, a counterfactual explanation is an alternative input
instance, denoted as x′, which is minimally modified from the descrip-
tion of the original instance x0, such that the output of the classifier h
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Figure 1: Probabilistically Plausibile Counterfactual Explanation Esti-
mation Process on the Moons Dataset. We show an evolution of an
instance from the initial instance (black dot) to the final counterfactual
(red dot) against the linear classifier’s decision boundary (blue line)
and density threshold contours, highlighting the method’s trajectory
towards achieving target classification and probabilistic plausibility
condition.

changes from the original decision y = h(x0) to a specific desired
outcome y′ = h(x′).

Up to now, several algorithms for generating counterfactual expla-
nations have been introduced. They are based on different principles,
and for comprehensive surveys, see, e.g., [10, 30]. Depending on the
specific method, some properties of counterfactuals are expected to
be met, such as validity of the decision change, proximity to the input
instance, sparsity of recommended changes, their actionability, i.e.,
the counterfactual should not modify immutable features or violate
monotonic constraints, and plausibility of locating the counterfactual
within a high-density region of the data, ensuring that the proposed
counterfactuals are realistic and feasible within the context of the
observed data distribution.

Many of these methods are inspired by the formulation of Wachter
et al. [31], which proposed framing counterfactual explanations as an
unconstrained optimization problem. For a prediction function h and
an input x0 ∈ R

d, a counterfactual x′ ∈ R
d is computed by solving:

arg min
x′∈Rd

�(h(x′), y′) + C · d(x0,x
′). (1)
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In this formulation, �(·, ·) represents a classification loss function,
d(·, ·) is a penalty for deviation from the original input x0, and the
term C ≥ 0 serves as the regularization strength modifier.

An alternative approach [2] frames counterfactual explanations
as a constrained optimization problem. This perspective focuses on
directly finding the minimal perturbation required to achieve the target
prediction under the constraint that the model’s prediction for the
counterfactual instance meets the specified criterion. Mathematically,
this is represented as:

arg min
x′∈Rd

d(x0,x
′) s.t. h(x′) = y′. (2)

In our study, we want to pay special attention to the plausibility of
counterfactuals. Referring to arguments of [10], a counterfactual is
plausible if the feature values describing the example are coherent
(sufficiently similar) with those present in the original data X . This
means it should be located in sufficiently dense regions of original
instances in X from the target class. Plausibility helps in increasing
users’ trust in the explanation: it would be hard to trust a counterfac-
tual if it is a combination of features that are unrealistic with respect
to existing examples.

In previous works, plausibility has often been verified by simple
k-neighbourhood analysis of the counterfactual with respect to the
original data [26, 14, 27]. Few other approaches [3] model the con-
ditional density in the target class and try to find the counterfactual
example with the density value above the given threshold. Although
the problem is quite well mathematically defined, the current methods
apply simple approaches like kernel density estimators or a mixture of
Gaussians to model conditional distributions that are difficult to apply
for high-dimensional data. Moreover, the problem of estimating valid
and plausible counterfactuals is defined as a complex constrained
optimization problem with strict convexity assumptions [3]. Finally,
the currently proposed methods, while providing valid counterfac-
tuals, struggle to consistently produce observations that fulfill the
plausibility criteria.

In this paper, we introduce PPCEF: Probabilistically Plausibile
Counterfactual Explanations using Normalizing Flows - a novel ap-
proach to estimate counterfactual explanations for differentiable clas-
sifiers tailored for tabular problems. It includes a novel, unconstrained
formulation of the problem that enables direct estimation of the plau-
sibility property - to the best of our knowledge, a characteristic pre-
viously not achieved in the literature. For that purpose, we design
loss functions to satisfy both validity and plausibility constraints and
minimize the distance to the original example in a balanced way (see
an example in Fig. 1). Our approach incorporates plausibility in the
probabilistic sense by targeting observations with a probability density
exceeding a predefined threshold [3]. Unlike existing methods limited
to specific estimators of families of density functions, ours employs
any differentiable conditional density model. Moreover, we postulate
to utilize conditional normalizing flows for density estimation [24],
ensuring independence from specific parameterized distribution fami-
lies while enabling direct calculation of density values for complex,
high-dimensional data. Finally, PPCEF leverages efficient batch pro-
cessing utilizing gradient-based optimization techniques, leading to
significant computational gains compared to previous methods.

To summarize, our contributions are as follows:

• The formulation of counterfactual explanations within an uncon-
strained optimization framework employing direct optimization of
plausibility and novel loss functions.

• The utilization of normalizing flows as density estimators to capture
the complex high-dimensional data distribution effectively.

• The experimental evaluations demonstrating PPCEF’s ability to
efficiently generate high-quality, probabilistically plausible coun-
terfactuals in high-dimensional tabular datasets for both binary and
multiclass classification problems, outperforming existing refer-
ence methods.

2 Related Works

2.1 Plausible Counterfactual Explanations

The approaches for obtaining plausible counterfactual explanations
are primarily categorized into endogenous and exogenous ones [10].
Endogenous counterfactuals are crafted using feature values from
existing data instances, ensuring their naturally occurring status and
grounding them in real-world contexts, thereby enhancing their plau-
sibility. In contrast, exogenous counterfactuals are generated through
methods such as interpolations or random data generation, which do
not strictly rely on existing dataset features. While this offers greater
flexibility, it does not inherently assure the plausibility of these coun-
terfactuals, as they might represent feature combinations not found in
actual data.

2.1.1 Endogenous Counterfactual Explanations

Endogenous approaches to counterfactual explanations revolve around
leveraging existing instances within the dataset to generate plausible
counterfactuals. These methods, which include instance-based or case-
based approaches, primarily utilize nearest neighbors’ techniques to
identify instances that closely resemble the input but yield different
outcomes.

Examples of endogenous methods include the Nearest-Neighbor
Counterfactual Explainer (NNCE) [26], selecting similar yet outcome-
divergent instances from the dataset as counterfactuals. The Case-
Based Counterfactual Explainer (CBCE) [14] forms ’explanation
cases’ by pairing similar instances with contrasting outcomes, creat-
ing counterfactuals by merging features from these pairs. Extending
this concept, the approach by Smyth and Keane [27] adapts to k-
nearest neighbors, utilizing multiple nearest candidates for generating
counterfactuals. Feasible and Actionable Counterfactual Explanations
(FACE) [23] constructs a graph over data points, applying user-defined
parameters to find actionable paths to desired outcomes. Lastly, PRO-
PLACE [12] employs bi-level optimization and Mixed-Integer Linear
Programming, generating robust counterfactuals from Δ-robust near-
est neighbors that closely align with data distribution and model
robustness.

2.1.2 Exogenous Counterfactual Explanations

In the landscape of exogenous counterfactual explanations, meth-
ods generally involve introducing external modifications to original
instances, diverging from reliance on existing instances and their fea-
tures. These approaches utilize a range of computational techniques,
such as autoencoders, linear programming, gradient-based methods,
and generative models, to ensure that the resulting counterfactuals are
plausible.

Firstly, the Contrastive Explanation Method (CEM) [5] innovates
by adding perturbations to an instance and utilizing an autoencoder
to verify the closeness of the modified instance to known data, en-
suring plausibility. Meanwhile, the Diverse Coherent Explanations
(DCE) [25] method leverages linear programming to create varied
counterfactuals, with additional linear constraints to maintain both
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diversity and plausibility. Further, the Distribution-Aware Counterfac-
tual Explanation (DACE) [13] method incorporates the Mahalanobis
distance and Local Outlier Factor (LOF) in its loss function, focusing
on minimizing this distance while keeping a low LOF score to signify
higher plausibility. The Diverse Counterfactual Explanations (DICE)
[18] approach involves solving an optimization problem to generate
multiple counterfactuals, with a specific emphasis on the diversity
and actionability of these counterfactuals to determine their plausibil-
ity. Additionally, Counterfactual Explanations Guided by Prototypes
(CEGP) [15] adopts a similar loss function to CEM but introduces a
prototype-based loss term. This guides perturbations towards a coun-
terfactual that aligns with the data distribution of a specific class,
using the encoder of an autoencoder based on the average encoding
of the nearest instances in the latent space with the same class label.

Within the field of exogenous counterfactual explanations, a sub-
category particularly relevant to our work utilizes deep generative
models. Variational Autoencoders (VAEs) are exploited in methods
like Example-Based Counterfactual (EBCF) [16] and the approach
by Vercheval and Pizurica [29]. EBCF incorporates known causal
relationships into the VAE, promoting realistic counterfactuals. The
method by Vercheval and Pizurica [29] enables visual counterfactual
generation through VAE-based latent space exploration. Generative
Adversarial Networks (GANs) play a crucial role in the PCATTGAN
approach [1]. It utilizes adversarial examples within a multi-objective
optimization framework to create plausible counterfactuals, consid-
ering validity, minimality, and a notion of plausibility defined as
human-understandable, non-automated changes. Diffusion models
underpin methods proposed in [11, 4]. While these approaches spe-
cialize in visual counterfactual generation, their focus lies primarily
on counterfactual sampling, not controlling plausibility via density-
based optimization. Lastly, Normalizing Flow-based methods [8, 9]
center on pinpointing counterfactuals within their latent spaces. These
methods leverage the invertible nature of normalizing flows to explore
counterfactual regions in the latent representation of the data.

All of the reference methods, except Artelt and Hammer [3], do
not provide an explicit probabilistic formulations of plausibility. Com-
pared to Artelt and Hammer [3], we propose an alternative problem
formulation in unconstrained form with no prior constraints on the
density model.

3 Background

In this work, we consider the problem formulation of probabilisti-
cally plausible counterfactual explanations introduced by Artelt and
Hammer [3]. This approach extends the problem formulation given
by eq. (2) by adding a target-specific density constraint to enforce the
plausibility of counterfactuals using a probabilistic framework. The
constrained optimization problem is formulated as follows:

arg min
x′∈Rd

d(x0,x
′) (3a)

s.t. h(x′) = y′ (3b)

δ ≤ p(x′|y′), (3c)

where p(x′|y′) denotes conditional probability of the counterfactual
explanation x′ under desired target class value y′ and δ represents the
density threshold.

This approach’s crucial aspect is finding the proper model to repre-
sent the conditional density function p(x|y). Typically, kernel density
estimators (KDEs) are used to model conditional densities, but the
use of non-linear kernels results in the highly non-convex optimiza-
tion problem formulation. Gaussian Mixture Model (GMM) can be

applied alternatively, but convexity constraints are still not satisfied.
To facilitate the desired optimization process, the authors of Artelt
and Hammer [3] propose to approximate the density value p(x′|y′)
using a component-wise maximum of GMM components:

p̂G(x
′|y′) = max

j

(
πj,y′N (x′|μj,y′ ,Σj,y′)

)
, (4)

where μj,y′ , Σj,y′ and πj,y′ are means, covariances and prior values
for component j considering class y.

This approximation is transformed into a convex quadratic con-
straint for each GMM component j, resulting in the following for-
mula:

(x′ − μj,y′)
TΣj,y′(x′ − μj,y′) + cj ≤ δ′, (5)

where cj is constant from the Gaussian normalization factor and
δ′ = −2 log δ.

For each component j, the optimization problem is solved, result-
ing in a set of convex programs - one for each component. This step is
crucial because knowing beforehand which component will produce a
feasible and plausible counterfactual is impossible. Finally, the coun-
terfactual x′ that yields the smallest value for the objective function
is selected.

However, this approach has few limitations. First, the number of
components should be predefined for each class. Second, the family
of parametrized distributions limits the ability to adjust to a data
distribution. Third, the approach is difficult to be applied to high-
dimensional data due to the Gaussian components.

In order to cope with the listed limitations, we postulate to model
conditional density function p(x|y) using the normalizing flows [24].
This group of models can adjust to very complex, high-dimensional
data distributions, which allows for calculating the density value from
the change-of-variable formula. Moreover, we propose an alterna-
tive unconstrained problem formulation that allows solving using
a gradient-based approach for any differentiable representation of
conditional distribution p(x|y).

4 Method

This section introduces a novel approach to the problem of plausible
counterfactual explanation formulated by eq. (3). First, we reformulate
the problem of calculating counterfactuals as unconstrained optimiza-
tion suitable for direct, gradient-based optimization. Next, we show
how to train the flow model to estimate the class-conditional distri-
butions. Finally, we show how the counterfactuals can be efficiently
estimated using a gradient-based approach.

4.1 Unconstrained Probabilistically Plausible
Counterfactual Explanations

We consider a binary classification problem, y ∈ {0, 1}. However,
our considerations can be easily extended to the multiclass case. Fur-
ther, we consider a discriminative differentiable model (e.g., Logistic
Regression or MLP) pd(y|x) and reformulate the validity constraint
h(x′) = y′ as pd(y′|x′) ≥ 0.5 + ε, where ε → 0, practically repre-
sented as small enough value close to 0.

We postulate the following unconstrained optimization problem:

arg min
x′∈Rd

d(x0,x
′) + λ ·

(
�v(x

′, y′) + �p(x
′, y′)

)
, (6)

where λ = ∞, practically, is large enough.
The loss �v(x′, y′) component controls the validity constraint and

is defined as follows:
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�v(x
′, y′) = max

(
0.5 + ε− pd(y

′|x′), 0
)
. (7)

The Binary Cross Entropy (BCE) criterion can be used alterna-
tively. However, using such criteria enforces 100% confidence of
the discriminative model, while our approach aims at achieving the
current classification accuracy with the margin controlled with the ε
parameter. While using our criterion, the model can focus more on
producing closer and more plausible counterfactuals, which we show
in ablation studies.

Additionally, we extend the validity loss component to the multi-
class scenario in the following way:

�v(x
′, y′) = max

(
max
y �=y′ pd(y|x

′) + ε− pd(y
′|x′), 0

)
, (8)

where we replace the 0.5 threshold value with the highest probability
value returned by the discriminative model, excluding the value for
target class y′. This guarantees that pd(y|x′) will be higher than the
most probable class among the remaining classes by the ε margin.

The loss component �p(x′, y′) controls probabilistic plausibility
constraint (δ ≤ p(x′|y′)) and is defined as:

�p(x
′, y′) = max

(
δ − p(x′|y′), 0

)
, (9)

where δ is the density threshold calculated in the same way as in [3],
i.e., by utilizing the median of the training dataset. The conditional
distribution p(x|y) can be represented by any differentiable model
(e.g., Mixture of Gaussians, KDE). In this work, we postulate to model
the distribution using conditional normalizing flow due to the flexi-
bility and ability to adjust to multidimensional complex distributions.
Thanks to the unconstrained problem formulation given by eq. (6) and
differentiation assumption for the models, the counterfactuals can be
easily calculated using a gradient-based approach.

4.2 Probabistically Plausible Counterfactual
Explanations via Normalizing Flow-based Density
Estimation

KDE or GMMs can be used to model the conditional distributions.
However, those models have limited modeling capabilities due to
the parametrized (usually Gaussian) form of p(x|y) or the inability
to model high-dimensional data (KDE). Therefore, in this work, we
postulate the use of a conditional normalizing flow model [24] to
estimate the density for the joint distribution of the attributes for each
class.

Normalizing Flows have surged in popularity within generative
models due to their adaptability and the simplicity of training via
direct negative log-likelihood (NLL) optimization. Their adaptability
stems from the change-of-variable technique, which transforms a
latent variable z with a known prior distribution p(z) into an observed
space variable x with an unknown distribution. This transformation
occurs through a sequence of invertible (parametric) functions: x =
fK ◦· · ·◦f1(z, y). Assuming a known prior p(z) for z, the conditional
log-likelihood for x is expressed as:

log p̂F (x|y) = log p(z)−
K∑

k=1

log

∣∣∣∣det
∂fk

∂zk−1

∣∣∣∣ , (10)

where z = f−1
1 ◦ · · · ◦ f−1

K (x, y) is a result of the invertible mapping.
The biggest challenge in normalizing flows is the choice of the invert-
ible functions fK , . . . , f1. Several solutions have been proposed in

the literature to address this issue with notable approaches, including
NICE [6], RealNVP [7], and MAF [19].

For a given training set D = {(xn, yn)}Nn=1 we simply train the
conditional normalizing flow by minimizing negative log-likelihood:

Q = −
N∑

n=1

log p̂F (xn|yn), (11)

where log p̂F (xn|yn) is defined by eq. (10). The model is trained
using a gradient-based approach applied to the flow parameters stored
in fk functions.

4.3 Estimating Counterfactuals

For a trained conditional normalizing flow, the counterfactual explana-
tion can be easily calculated simply by optimizing the criterion given
by eq. (6). The parameters of the flow model are frozen, and x′ is opti-
mized using the gradient-based procedure, starting from the point x0.
To enhance the efficiency of our method, we have incorporated batch
processing capabilities, allowing for the simultaneous calculation of
multiple counterfactual explanations. This is achieved by aggregating
instances and employing an average aggregation for loss calculation.
Such a feature is notably absent in the other approaches compared
to this study, providing our method with a distinct computational
advantage.

5 Experiments

In this section, we aim to demonstrate and validate our counterfactual
explanation method through a series of experiments. Initially, we il-
lustrate our method’s intuition with the Moons dataset and Logistic
Regression model. Next, we compare our approach against the only
reference method in a probabilistically plausible CFs area - Artelt and
Hammer [3], as well as other established CF methods. This compar-
ison focuses on the impact of plausibility on proximity metrics and
time efficiency. Lastly, we conduct broader comparisons using other
classifier models: Logistic Regression (LR), Multilayer Perceptron
(MLP), and Neural Oblivious Decision Ensembles (NODE) [22]. The
code for these experiments is publicly released on GitHub1.

Datasets To evaluate PPCEF’s effectiveness, we conducted experi-
ments on seven numerical-only tabular datasets. Four datasets (Law,
Heloc, Moons, and Audit) represent binary classification problems,
whereas the first two datasets (Law and Heloc) are commonly used
benchmarks for counterfactual explanation tasks. The remaining three
datasets (Blobs, Digits, and Wine) address multiclass classification
problems. Detailed descriptions of these datasets are available in the
Appendix B [33]. Overall, they represent broad diversity in sample
sizes (up to approximately 10.000), number of variables (up to 64),
and number of classes (up to 10). For preprocessing purposes, we
implemented two key steps to prepare the datasets. First, we addressed
class imbalance by downsampling the majority class to match the size
of the minority class. Second, we normalized all features across the
datasets to a [0, 1] range, enabling consistent scale and comparabil-
ity among features. Thirdly, to ensure robust method evaluation, we
employed stratified 5-fold cross-validation on each dataset. Finally,
for clarity, the main manuscript reports average values, while the
appendix [33] includes standard deviation for detailed analysis.

1 https://github.com/ofurman/counterfactuals
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Table 1: Comparative Results of Probabilistically Plausible Counterfactual Explanation Methods. We contrast the performance of PPCEF method
with Artelt & Hammer [3] and other methods across Logistic Regression (LR) classifier. The results demonstrate our method’s consistently valid
and probabilistically plausible results and its ability to produce counterfactuals even in complex scenarios like high-dimensional data.

DATASET METHOD COVERAGE ↑ VALIDITY ↑ PROB. PLAUS. ↑ LOF ISOFOREST LOG DENS. ↑ L1 ↓ L2 ↓ TIME ↓

MOONS

CBCE 1.00 1.00 0.10 1.06 0.03 -5.81 0.62 0.48 0.07 S
CEGP 1.00 1.00 0.09 1.36 0.00 -6.66 0.36 0.28 904.11 S
CEM 1.00 1.00 0.14 2.03 -0.07 -10.09 0.55 0.50 211.56 S
WACH 0.98 1.00 0.11 1.55 -0.01 -6.34 0.49 0.36 198.29 S

ARTELT 1.00 1.00 0.08 1.53 -0.03 -8.74 0.32 0.32 4.15 S
PPCEF 1.00 1.00 1.00 1.01 0.04 1.69 0.45 0.36 1.85 S

LAW

CBCE 1.00 1.00 0.49 1.05 0.04 1.28 0.61 0.40 0.23 S
CEGP 1.00 1.00 0.49 1.07 0.04 1.08 0.23 0.18 1973.76 S
CEM 1.00 1.00 0.26 1.26 -0.02 -0.56 0.33 0.31 368.10 S
WACH 1.00 1.00 0.39 1.30 -0.01 -0.29 0.45 0.35 359.00 S

ARTELT 1.00 1.00 0.40 1.12 0.02 0.54 0.20 0.20 4.02 S
PPCEF 1.00 1.00 1.00 1.03 0.07 2.05 0.37 0.23 2.42 S

AUDIT

CBCE 1.00 1.00 0.79 11.70 0.14 54.97 2.55 1.24 0.04 S
CEGP 0.97 1.00 0.02 6.08·107 0.02 8.09 1.56 0.57 561.04 S
CEM 0.52 1.00 0.00 8.28·106 -0.04 20.84 1.20 0.37 105.92 S
WACH 0.99 1.00 0.02 1.42·108 0.06 -40.34 1.78 0.80 101.27 S

ARTELT 0.60 0.97 0.00 4.09·108 0.10 -3585.76 0.90 0.88 43.84 S
PPCEF 1.00 0.99 0.99 4.25·107 0.08 51.64 2.04 0.79 7.01 S

HELOC

CBCE 1.00 1.00 0.54 1.10 0.07 28.01 2.84 0.82 5.71 S
CEGP 1.00 1.00 0.29 3.50·107 0.04 24.75 0.26 0.10 9654.60 S
CEM 1.00 1.00 0.07 2.50·108 0.02 12.37 0.35 0.20 1639.16 S
WACH 1.00 1.00 0.00 2.65·108 0.03 -15.09 0.74 0.37 1600.28 S

ARTELT 0.00 - - - - - - - - S
PPCEF 1.00 1.00 1.00 6.47·107 0.07 32.42 0.90 0.23 12.44 S

BLOBS

CBCE 1.00 1.00 0.27 1.02 0.03 -35.52 0.95 0.72 0.13 S
CEGP 1.00 1.00 0.00 2.43 -0.07 -9.08 0.30 0.25 1295.36 S
CEM 0.96 1.00 0.00 3.51 -0.12 -14.95 0.46 0.45 512.56 S
WACH 1.00 1.00 0.04 2.24 -0.06 -9.52 0.51 0.38 441.59 S

ARTELT 1.00 1.00 0.00 2.11 -0.07 -3.51 0.39 0.33 6.62 S
PPCEF 1.00 1.00 1.00 1.01 0.04 3.00 0.69 0.50 3.22 S

DIGITS

CBCE 1.00 1.00 0.18 1.02 0.04 23.72 16.28 3.09 0.51 S
CEGP 1.00 1.00 0.11 1.09 0.01 -0.39 2.53 0.63 1945.67 S
CEM 1.00 0.98 0.01 1.23 -0.03 -86.77 5.28 1.38 852.05 S
WACH 1.00 1.00 0.08 1.20 0.00 -34.97 2.47 1.20 651.00 S

ARTELT 0.80 0.93 0.04 1.69 0.01 -54.72 3.30 2.43 238.28 S
PPCEF 1.00 1.00 1.00 1.12 0.03 44.42 8.27 1.33 8.68 S

WINE

CBCE 1.00 1.00 0.37 1.06 0.05 2.13 3.38 1.12 0.01 S
CEGP 1.00 1.00 0.01 1.08 0.05 -0.15 0.82 0.32 191.09 S
CEM 1.00 1.00 0.00 1.35 -0.02 -12.94 1.20 0.63 81.33 S
WACH 1.00 1.00 0.01 1.27 0.00 -9.41 1.57 0.78 50.74 S

ARTELT 1.00 0.97 0.01 1.33 0.02 -11.73 0.68 0.65 0.96 S
PPCEF 1.00 1.00 1.00 1.01 0.09 9.72 1.65 0.53 2.03 S

Classification Models For the experiments, we include Logistic
Regression (LR), 3-layer Multilayer Perceptron (MLP), and Neural
Oblivious Decision Ensemble (NODE) catering to both linear and
non-linear scenarios. LR aligns with linear assumptions prevalent in
some baseline methods, MLP allows for the assessment of behav-
iors in non-linear model contexts, and NODE stands as an example
of a complex ensemble of neural decision trees. This triple-model
approach facilitates a thorough evaluation across varied model com-
plexities. Crucially, all models are differentiable, which is essential in
the context of our method.

Experiments Details For every combination of the classification
model and dataset, we trained both the classification model and a
Normalizing Flow as the density estimator, following the approach
detailed in Section 4.2. We opted for the Masked Autoregressive
Flow (MAF) architecture [19] as our choice for the Normalizing Flow.
This decision was based on experimental findings indicating MAF’s
superior performance in accurately fitting data distributions. For a
deeper analysis of these results, including in-depth model performance
metrics like accuracy, please refer to the Appendix [33]. See Section C
for a detailed exploration and Tab. 9 for specific performance figures.
The final step involved generating counterfactual explanations for the
entire set of test samples.

Reference Methods Our analysis includes several significant base-
lines, each selected for its relevance to the field. We first consider the
method developed by Artelt and Hammer [3], notable for its focus on
probabilistically plausible counterfactuals. Additionally, we evaluate
the approach by Wachter et al. [31], widely recognized as a founda-
tional baseline in counterfactual explanations research. To provide
both endogenous and exogenous counterfactual explanations, we com-
pare three methods: Case-Based Counterfactual Explainer (CBCE)
[14], Contrastive Explanation Method (CEM) [5], and Counterfactual
Explanations Guided by Prototypes (CEGP) [15].

Metrics Following related works, we chose a comprehensive set
of metrics to assess the performance of counterfactual explanation
methods. We include two success metrics: coverage, evaluating the
method’s ability to generate explanations across all instances, and va-
lidity, assessing the efficacy of counterfactuals in altering the model’s
decision. In terms of proximity, we measure the L1 and L2 distances
to quantify the closeness between original instances and their coun-
terfactuals. We evaluate plausibility using a combination of metrics.
First of all, we measure the Local Outlier Factor (LOF) score, which,
when significantly greater than 1, indicates an outlier, with values
closer to 1 suggesting normalcy, highlighting anomalies through lo-
cal density deviations. Secondly, we utilize Isolation Forest, which
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assigns scores between -0.5 and 0.5, with values approaching -0.5
identifying anomalies due to the ease of isolation and scores above
0 indicating normal observations. We further access counterfactuals
using probabilistic plausibility metric, the proportion of CFs meeting
the criterion defined in Eq. 3c. Moreover, we calculate log density,
which gauges the logarithmic probability density of counterfactuals
under the target class, with higher values indicating greater plausi-
bility. Finally, we calculate time metric representing time in seconds
needed for the method to process the whole test dataset.

5.1 Method Intuition via Toy Example

In our illustrative example, we present the counterfactual generation
process using the Moons dataset under a Logistic Regression model,
as depicted in Figure 1. The initial observation is represented by a
black dot, with intermediary observations during the optimization
process (after every 150 iteration steps) shown as orange dots and the
final counterfactual outcome marked by a red dot. The probability
distributions are indicated by contour lines, with the filled red contour
denoting the region exceeding the desired density threshold. The blue
line illustrates the decision boundary of the classifier. This visualiza-
tion effectively demonstrates how our method navigates toward the
target classification and probabilistic plausibility regions, adjusting its
trajectory to surpass the classifier’s decision boundary by a predefined
margin ε upon achieving the required density level.

5.2 Probabilistically Plausibile Counterfactual
Explanations Methods Comparison

In this section, we conduct a focused comparison of our approach,
PPCEF, against the method by Artelt and Hammer [3], which is the
primary reference in the realm of probabilistically plausible counter-
factual explanations. For that purpose, we utilize the datasets, metrics,
and classifiers described in the previous section. The evaluation is
centered on assessing and validating the accuracy of both methods in
generating counterfactuals, their plausibility, and their proximity to
original instances.

The results are presented in Tab. 1. Firstly, we can observe that
our method always returns the results that are probabilistically plau-
sible. That is not the case for Artelt’s method, which struggles in
high-dimensional datasets like Heloc (23 dimensions) or Digits (64
dimensions), doesn’t support non-linear classifiers like MLPs, and
wasn’t able to consistently fulfill the probabilistic plausibility criterion.
Secondly, in terms of distances, Artelt’s method returns better results,
which is expected due to the trade-off between distance and plausibil-
ity, i.e., the more plausible observations, the farther away they usually
are. However, the results are not clearly worse, especially in terms of
L2 distance, meaning PPCEF can balance both desired properties of
counterfactuals. Thirdly, the log density values of the observations
produced by PPCEF method are significantly better. Fourthly, our
analysis using Local Outlier Factor (LOF) and Isolation Forest (Iso-
Forest) metrics indicates that our methods generate inliers (except
for Audit and Heloc, where almost all methods struggle to obtain
reasonable values of LOF), whereas Artelt’s method underperforms
and can sometimes result in outliers. Fifthly, our method turned out
to be significantly faster, with the speed up around x2-10 on relatively
small datasets. Finally, our method was almost always able to produce
valid counterfactual explanations for MLP and NODE, contrary to
Artelt (see results in Tab. 2 and detailed results in Tab. 6 and 7 in
Appendix [33]). It’s worth mentioning that PPCEF almost always
returned probabilistically plausible observations, which, in case of

non-valid observations, might still be valuable insight for the final
user, contrary to the lack of a response at all.

5.3 Counterfactual Explanations Methods Comparison

In this comparative analysis, we evaluate our method against well-
established reference methods, with a particular focus on the impact of
integrating probabilistically plausible conditions into the optimization
process. Our primary objective is to assess our method’s performance
in terms of validity, plausibility, proximity metrics, and processing effi-
ciency. We also explore whether methods not specifically designed for
plausibility can still produce plausible counterfactuals across various
classifiers such as Logistic Regression (LR), Multilayer Perceptron
(MLP), and Neural Oblivious Decision Ensembles (NODE).

Results presented in Tab. 1 and Tab. 2 indicate that our model
excels in validity, plausibility (considering both probabilistic formu-
lation and outlier metrics), and processing times while maintaining
reasonable distances compared to competing approaches across all
datasets and classification methods. Specifically, Tab. 2 presents the
evaluation results for two selected high-dimensional datasets (one for
binary classification problem and one for multiclass problem) using
two advanced classifiers, demonstrating that our method consistently
produces valid results not only with a shallow model, such as LR but
also with deeper models, including MLP and NODE. In contrast, the
majority of existing methods encounter difficulties in producing valid
counterfactual explanations for the Multilayer Perceptron. We con-
ducted a comprehensive evaluation utilizing all methods and datasets
mentioned earlier, applying three different classifiers. Detailed out-
comes are presented in Appendix A [33]. Particularly, results for
Logistic Regression are shown in Tab. 5, while findings for the MLP
and NODE classifiers are detailed in Tab. 6 and 7, respectively.

Furthermore, our hypothesis that reference methods could inadver-
tently yield plausible outcomes without targeted optimization was not
confirmed. In terms of proximity, CEGP achieves the most favorable
outcomes, with our method typically ranking closely behind. This
demonstrates our method’s effectiveness in balancing proximity and
plausibility constraints. Notably, our method’s computational time
efficiency closely parallels the CBCE method, which does not in-
volve an optimization process. This efficiency is due to our batching
strategy, which processes all datasets collectively, as opposed to the
case-by-case optimization typical of other methods. Summarizing,
our method generates probabilistically plausible counterfactuals with
exceptional efficiency and minimal compromise on proximity. Its
ability to process high-dimensional data quickly makes it ideal for
resource-constrained, real-world applications.

6 Method Analysis

In this section, we delve into the analysis of two pivotal components
of our proposed method: the loss function and the regularization hy-
perparameter λ. Adhering to the experimental framework established
in the earlier sections, these studies are conducted specifically using
the Logistic Regression model. Our focus is on evaluating the impact
of these elements on the method’s overall performance and efficacy.

6.1 Loss Function Ablation Study

In this ablation study, we examined the influence of discriminative
loss function selection on the effectiveness of our proposed method.
While Binary Cross Entropy (BCE) and Cross Entropy (CE) losses are
conventional choices for binary and multiclass problems, respectively,
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Table 2: Analysis of Counterfactual Methods Across Classification Models. We offer a detailed comparison of our method and other well-
established reference methods across two classification models: a 3-layer Multilayer Perceptron (MLP), and a Neural Oblivious Decision
Ensemble (NODE). The results emphasize the efficacy of our method in producing valid and plausible counterfactuals across various models,
including those that are deeper and more complex.

DATASET METHOD COV. ↑ VAL. ↑ PROB. PLAUS. ↑ LOF ISOFOREST LOG DENS. ↑ L1 ↓ L2 ↓ TIME ↓
MLP

HELOC

CBCE 1.00 0.94 0.54 1.09 0.08 28.85 2.87 0.82 6.47 S
CEGP 0.94 0.63 0.05 4.15·108 0.01 -3.28 1.25 0.43 31309.33 S
CEM 1.00 0.86 0.01 7.71·108 -0.01 -89.39 1.32 0.58 6938.45 S
WACH 0.99 0.81 0.00 1.34·108 -0.06 -161.68 3.11 0.90 23392.40 S
ARTELT - - - - - - - - - S
PPCEF 1.00 0.92 1.00 1.42·108 0.07 32.07 1.18 0.31 25.32 S

DIGITS

CBCE 1.00 1.00 0.18 1.02 0.04 23.66 16.29 3.09 0.54 S
CEGP 0.95 0.46 0.02 1.24 -0.02 -138.62 6.39 1.42 2523.28 S
CEM 1.00 0.42 0.01 1.44 -0.06 -481.57 6.34 1.76 1260.54 S
WACH 1.00 0.72 0.00 1.50 -0.07 -516.44 11.04 2.13 3342.38 S
ARTELT - - - - - - - - - S
PPCEF 1.00 1.00 0.98 1.13 0.03 43.87 8.78 1.42 25.09 S

NODE

HELOC

CBCE 1.00 1.00 0.55 1.09 0.08 28.88 2.85 0.82 17.53 S
CEM 0.94 1.00 0.10 1.35 0.05 9.00 0.47 0.29 14772.66 S
WACH 0.96 1.00 0.10 2.12·108 0.05 10.75 0.85 0.36 37254.33 S
ARTELT - - - - - - - - - S
PPCEF 1.00 0.94 1.00 1.08 0.09 31.85 1.02 0.28 126.05 S

DIGITS

CBCE 1.00 1.00 0.18 1.02 0.04 24.00 16.27 3.09 3.12 S
CEM 1.00 1.00 0.03 1.32 -0.02 -39.458 4.07 1.44 5451.835 S
WACH 1.00 1.00 0.16 1.12 0.02 7.02 2.93 1.13 15376.44 S
ARTELT - - - - - - - - - S
PPCEF 1.00 1.00 1.00 1.15 0.02 43.97 7.76 1.36 69.45 S

Table 3: Ablation Study on Loss Function Selection.

DATASET LOSS COV. VAL. PP L1 L2 LD

MOONS OURS 1.00 1.00 1.00 0.45 0.36 1.69
BCE 1.00 1.00 0.99 0.89 0.69 1.74

LAW OURS 1.00 1.00 1.00 0.37 0.23 2.05
BCE 1.00 1.00 0.98 0.97 0.60 1.67

AUDIT OURS 1.00 0.99 0.99 2.04 0.79 51.64
BCE 1.00 0.99 0.98 3.01 1.25 52.54

HELOC OURS 1.00 0.99 0.99 0.85 0.23 37.50
BCE 1.00 0.97 0.99 1.91 0.54 34.50

BLOBS OURS 1.00 1.00 1.00 0.69 0.50 3.00
CE 1.00 1.00 0.93 0.82 0.60 2.85

DIGITS OURS 1.00 1.00 1.00 8.27 1.33 44.42
CE 1.00 1.00 1.00 12.67 2.13 44.18

WINE OURS 1.00 1.00 1.00 1.65 0.53 9.72
CE 1.00 1.00 0.99 3.87 1.29 9.29

we compared them against our proposed discriminative loss function
to understand their impacts on the results. The findings, detailed in
Tab. 3, reveal a notable distinction in distance metrics. Our method,
using the specialized loss function, demonstrated significantly better
proximity to original observations compared to BCE and CE. This
improvement is attributed to our loss function’s design, which ze-
roes the classification component of the loss upon surpassing by ε a
classification threshold. This allows for more rapid convergence to
closer counterfactuals, while CE, by continually seeking points with
higher classification confidence, tends to push counterfactuals further
from the original samples. Consequently, this affects the final values
in proximity metrics, underscoring the advantage of our approach in
generating more proximate and plausible counterfactuals.

6.2 Regularization Hyperparameter λ Analysis

To evaluate the impact of the regularization hyperparameter λ on the
fulfillment of validity and probabilistic plausibility conditions, we
conducted a focused hyperparameter sensitivity analysis. While λ
theoretically should extend to infinity, practical considerations neces-

Table 4: Ablation Study on Regularization Hyperparameter λ.

DATASET λ COV. VAL. PP L1 L2 LD

MOONS

1 1.00 0.46 0.78 0.43 0.34 1.61
2 1.00 0.95 0.92 0.43 0.34 1.63
5 1.00 0.99 0.98 0.43 0.34 1.66
10 1.00 0.99 1.00 0.44 0.35 1.70
100 1.00 1.00 1.00 0.45 0.36 1.70
1000 1.00 1.00 1.00 0.45 0.36 1.70

LAW

1 1.00 0.48 0.98 0.19 0.12 1.85
2 1.00 0.99 0.99 0.28 0.18 1.88
5 1.00 1.00 1.00 0.29 0.18 1.94
10 1.00 1.00 1.00 0.30 0.18 2.00
100 1.00 1.00 1.00 0.34 0.21 2.08
1000 1.00 1.00 1.00 0.38 0.22 2.09

sitate setting a feasible value. Our objective is to identify an optimal
λ that not only guarantees condition fulfillment but also to under-
stand its influence on other metrics. Experiments were carried out
on the Moons and Law datasets, exploring λ values within the set
{1, 2, 5, 10, 100, 1000}. The results in Tab. 4 indicate that moderate
values of λ, like 5 or 10, deliver satisfactory outcomes, while values
around 100 or more almost invariably guarantee the fulfillment of
the conditions, leading us to adopt the value of 100 for all preceding
experiments. This experiment confirms the expected trade-off: higher
strictness in counterfactual conditions leads to decreased proximity
metrics, requiring larger deviations from the original data point.

7 Conclusions

In this work, we present PPCEF, a novel method for generating coun-
terfactual explanations that utilize normalizing flows as density estima-
tors within an unconstrained optimization framework. This technique
adeptly balances essential factors such as distance, validity, and proba-
bilistic plausibility in the counterfactuals it produces. Notably, PPCEF
is computationally efficient and capable of handling large datasets,
making it highly applicable in real-world scenarios. The method’s
flexible design allows for future enhancements, including other de-
sirable counterfactual attributes like actionability or sparsity, and to
generate plausible counterfactuals in label-scarce environments.
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