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Abstract. The widespread use of Artificial Intelligence (AI) based
decision-making systems has raised a lot of concerns regarding poten-
tial discrimination, particularly in domains with high societal impact.
Most existing fairness research focused on tackling bias relies heavily
on the presence of class labels, an assumption that often mismatches
real-world scenarios, which ignores the ubiquity of censored data.
Further, existing works regard group fairness and individual fairness
as two disparate goals, overlooking their inherent interconnection, i.e.,
addressing one can degrade the other. This paper proposes a novel uni-
fied method that aims to mitigate group unfairness under censorship
while curbing the amplification of individual unfairness when enforc-
ing group fairness constraints. Specifically, our introduced ranking
algorithm optimizes individual fairness within the bounds of group
fairness, uniquely accounting for censored information. Evaluation
across four benchmark tasks confirms the effectiveness of our method
in quantifying and mitigating both fairness dimensions in the face of
censored data.

1 Introduction

AI-based decision-making systems are becoming increasingly preva-
lent across various sectors of society [11]. However, the implementa-
tion of these systems in real-world scenarios has, at times, resulted in
bias and discrimination against marginalized groups or populations.
This trend has sparked growing concerns about the potential ethical
and fairness issues arising from AI-driven automated decision-making.
These concerns are particularly pronounced in high-stakes scenarios
such as loan approve [50], criminal justice [10], and healthcare [9],
where the consequences of unfair decisions can have far-reaching im-
pacts and serious ethical implications. For example, it would become a
serious ethically problematic if a bank’s loan decision were influenced
by the race information of the applicant or their close contacts.

To address the aforementioned problem, literature has explored
methods to improve the fairness of AI algorithms by mitigating biases
from training data [48, 49] or training algorithms with fairness-aware
frameworks [44, 47, 53]. Existing fairness works are typically catego-
rized into two main areas: group fairness and individual fairness [15].
The principle behind group fairness is to prevent a socially salient
group from being collectively assigned more favorable outcomes
than another group. Existing work [7, 27, 31] achieves group fair-
ness through statistical fairness by first identifying protected group
(e.g., females) and unprotected group (e.g., males) groups by iden-
tifying sensitive attributes, which is potential sources of bias, and
then ensuring that the predictor yields similar outcome statistics (e.g.,
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prediction accuracy and true-positive rates) across different subgroups.
In contrast, the principle behind individual fairness is to prevent two
similar individuals from receiving differential treatment. Unlike group
fairness, which requires pre-defined sensitive attributes, individual
fairness [32, 28, 17] aims to evaluate fairness at a more granular level
by requiring similar individuals to receive comparable probability
distributions on class labels, thereby preventing unfair treatment.

A major obstacle to the practical application of existing work on
fairness is the assumption that the precondition that class labels are
fully usable holds, which fails in the presence of uncertainty in class
labels due to censoring [55, 56, 25]. Therefore, existing fairness no-
tions cannot be directly applied to censorship settings. For example,
as illustrated in Figure 1 (a), for censored individuals A3 and A7, the
true loan status is unknown because A3 dropped out of the applica-
tion process and for A7, the time of loan decision-making exceeded
the study period among other reasons, leading to uncertainty in the
class labels, i.e., load application status. Due to the inability to handle
censorship information, existing fairness works quantify and mitigate
bias by focusing on the proportion of data with certain class labels.
Consequently, these studies either drop observations with uncertain
class labels [10, 16, 52] or omit censoring information [36, 35, 53].
However, removing this information would bias the results even to-
wards individuals with known class labels [33, 34, 59, 57].

In addition, existing fairness works often treat individual fairness
and group fairness as distinct tasks, failing to consider potential im-
plications among them [17, 56, 58, 55]. However, this separation of
objectives could introduce additional bias into each other. Typically,
an outcome ranking that satisfies statistical constraints on group fair-
ness is considered to achieve group fairness, implicitly suggesting
that individual fairness does not affect group fairness. However, this
dichotomy can sacrifice individual fairness, especially for individ-
uals on the decision boundaries of unprotected groups. For exam-
ple, as illustrated in Figure 1 (b), we have two types of results: the
Performance-Driven Result at the top and the Group Fairness-Driven
Result at the bottom. In the Group Fairness-Driven Result, where
the sensitive attribute is race, it ensures that the loan approval rates
for different racial groups are consistent with achieving group fair-
ness. Additionally, the existing Group Fairness-Driven Result aims
to achieve group fairness while minimizing performance loss. Thus,
although applicants A3 and A4 are less risky than A5 and A6, they
are more risky than A1 and A2 of the same sensitivity group, and
thus A3 and A4 are denied loans to maintain racial balance in loan
approvals and minimize performance loss. This causes individuals
A3 and A4, who are at the margins of decision-making, to always
bear the loss of group fairness, thus introducing individual bias (i.e.,
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Figure 1: An illustration of the challenge of achieving fairness when censorship occurs. Applicants A3 and A4 have a lower risk than applicants
A5 and A6; Applicants A3 and A4 are not approved for a loan to maintain a balanced loan approval ratio across racial groups. Moreover,
applicants A3 and A7 are censored, while others are non-censored.

Purple Rectangle).
Therefore, there is an urgent need to address fairness in the pres-

ence of censorship while simultaneously balancing the impact of
group and individual fairness, which remains largely unexplored and
presents unique challenges: i) Quantifying and Mitigating Bias in

Censored Settings: Most existing concepts in fairness studies rely on
the availability of class labels. However, these assumptions become
inapplicable in a censored setting. Thus, measuring and mitigating
algorithmic bias in cases where class labels are unavailable poses a
significant challenge. ii) Balancing Group and Individual Fairness:

Existing fairness works often treat group fairness and individual fair-
ness as distinct objectives. However, achieving group fairness may
inadvertently lead to differential treatment of instances within un-
protected groups, especially those near the decision boundary. This
introduces additional biases, thereby potentially undermining indi-
vidual fairness. iii) Model Agnosticism: Most fairness approaches
are tailored to specific models. This specialization limits their broad
applicability, often hindering their ability to enhance the fairness of
different models.

In response to these challenges, this paper presents a preliminary
study on censored group fairness under individual and censorship
constraints, aiming to achieve fairness guarantees that align better
with realistic scenarios. Corresponding debiasing algorithms are de-
veloped. To the best of our knowledge, this is the first work to reconcile
both group and individual fairness in the context of censorship set-
tings. Specifically, our strategy integrates the Rawlsian difference
principle [30], ensuring optimized well-being for individuals and sub-
groups in the resultant outcome order. To counter the individual-level
unfairness potentially stemming from enforcing group fairness [17],
we employ a probabilistic distribution of possible valid rankings in
line with distributive justice theory. This ensures uniform individual
fairness loss, culminating in consistent treatment at the individual
level. Further, by using group and individual fairness metrics attuned
to the censorship setting, we embed vital censorship information
into our fairness evaluations, making our methodology fitting for the
censorship setting. The paper’s principal contributions are as follows:

• We propose a new fairness notion-Censorship Group individual
aware fairness, which considers the fairness of the outcome in
terms of both group and individual fairness.

• We propose a novel framework GIFC designed to achieve both
group and individual fairness. Specifically, we measure the fairness

loss of the sorted distribution based on both group fairness loss
and individual fairness loss. Also, we demonstrate the advantage
of probabilistic ordering over optimal deterministic ordering.

• Extensive experiments on four benchmark datasets show that we
propose GIFC acquires superior performance on both group fair-
ness and individual fairness and achieves comparable prediction
performance in downstream tasks.

2 Related Work and Background

2.1 Censored Data

In numerous real-world scenarios, the primary outcome, or the class
label, can become inaccessible in the presence of censorship. Cen-
sored data is prevalent in various fields, such as clinical prediction
(Support) [24], marketing analytics (KKBox) [25], and recidivism pre-
diction instrument datasets (COMPAS [2] and ROSSI [18]). Censored
data is typically characterized by three pieces of information [38]: i)
the observed covariates/features x, which provide certain information
that is observed for each individual, ii) The survival time, T , rep-
resents the elapsed time from when an individual entered the study
until their last follow-up, indicating when the event of interest was
either observed or censored, and iii) the event indicator δ, denoting
whether or not the event has been observed. If δ = 1, it signifies
that the event is observed, confirming the event time T or class la-
bel, and vice versa. Uncertainty primarily stems from the last two
pieces of information. In contrast to supervised settings, AI fairness
in censored environments presents unique difficulties. Censorship
not only restricts the existing fairness concepts but also amplifies
the uncertainty and complexity within decision-making regions. This
paper centers on the concept of group fairness with individuals within
the context of censorship, a dimension not yet explored by existing
fairness studies that have primarily concentrated on either group or
individual fairness.

2.2 AI Fairness

Extensive research [12, 39, 40, 41, 42, 46] has been conducted to quan-
tify and mitigate the bias of underlying learning algorithms. Existing
fairness measures can be mainly divided into two main categories, i.e.,
group fairness and individual fairness [27]. Specifically, group fair-
ness aims to achieve statistical parity between different groups defined
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by sensitive attributes [19]. On the other hand, individual fairness scru-
tinizes potential bias and discrimination at a much finer granularity,
ensuring that similar individuals receive similar probability distri-
butions over class labels, thereby mitigating unfair treatment [17].
Despite their great success, they typically presume the availability
of class labels and are thus inapplicable in censorship settings where
the class labels are uncertain [61]. In addition, most existing methods
tend to focus on addressing either individual or group biases but rarely
both [43]. This singular focus can overlook the complex interplay
between the two types of fairness, which can be crucial for fully un-
derstanding and mitigating biases in AI systems [4]. While there are
some studies [3, 26, 45] that attempt to bridge this gap by considering
both individual and group fairness, they often strive for globally opti-
mal solutions. These solutions, while theoretically appealing, may not
effectively address the nuances of individual treatment in practical ap-
plications, potentially leading to oversights in fairness at the personal
level.

To jointly address these challenges, our method proposes a holis-
tic approach that aims for group fairness in censored settings while
concurrently ensuring equitable treatment across individuals.

2.3 Survival Analysis

Censored data, also known as survival data, widely appears in numer-
ous real-world scenarios and underscores the importance of survival
analysis. Survival analysis aims to address the issues associated with
accessing partial survival information from study cohorts [13]. Among
the various survival analysis methods proposed, the Cox Proportional
Hazards (CPH) model [14], a semiparametric model, has gained recog-
nition as the most extensively used. It describes the multiplicative
relation between risk, as expressed by the hazard function, and co-
variates. This model is primarily defined by two key concepts: the
hazard function, which calculates the instantaneous rate of an event
occurring at a specified time t, conditional on survival up to that point.
Mathematically, it is expressed as follows:

h(t|x) = lim
�t→0

Pr (t < T < t +�t|T ≥ t, x)

�t
(1)

The CPH model specifies the hazard function as follows:

h(t|x) = h0(t) exp(β
Tx) (2)

where h0(t) denotes the baseline hazard, which represents the hazard
value independent of features x, and β is a parameter vector. This
can be estimated by applying the partial likelihood estimation, as
Equation 3 shows:

L(β) =
∏

Ti observable

exp(βTxi)∑
Tj≥Ti

exp(βTxj)
(3)

The survival function, which is the probability that the event does
not occur up to time t and can be determined from the hazard function,
and vice versa. Mathematically, it is expressed as follows:

S(t|x) = exp

(
−
∫ t

0

h(t|x)dt
)

(4)

The CPH model assumes that an individual’s risk of an event oc-
curring is a linear combination of the individual’s covariates, referred
to as the linear proportional hazards condition. Developing the CPH
model, in order to solve nonlinear problems, deep neural network
structures have been extended to feature interaction models for sur-
vival data [22]. An alternative research approach involves the use of

tree-based methodology [5, 21]. In this methodology, the splitting
rule is adjusted to accommodate censored data, freeing it from the
proportional assumption inherent in the CPH model.

To evaluate survival models, the concordance index, or C-index, is
commonly used [37]. Specifically, the concordance index is evaluated
by constructing every comparable pair of comparisons for a given
individual. Critically, the consistency score filters out non-comparable
pairs, i.e., the shorter time is censored, and both censored pairs have
identical survival time. For any two comparable samples xi and xj ,
concordance is realized under three circumstances: i) If individual
xi’s survival time ti is briefer than that of tj for xj , the model ought
to designate a more elevated risk score to xi. ii) Conversely, if ti
surpasses tj , xj should be assigned a diminished risk score. iii) When
both individuals share equivalent survival times, and both are uncen-
sored, they should bear matching risk scores. However, in instances
where one individual is censored, the model should attribute a height-
ened risk score to the one not censored. Mathematically, this can be
represented as:

Cxi =
1∑

j �=i 1[δ< = 1]

∑
j �=i

1[h(t|x>) < h(t|x<), δ< = 1]

=
1∑

j �=i 1[δ< = 1]

×
∑
j �=i

1[exp(β�x>) < exp(β�x<), δ< = 1] (5)

where x> and x< are the individuals with a longer, i.e. t> =
max(ti, tj), and a shorter, i.e. t< = min(ti, tj), survival time, and
δ< is the event indicator of shorter survival time. Cxi can be inter-
preted as the fraction of all other individuals whose predicted survival
times are correctly ordered with xi considering their actual survival
times.

Like other AI methods, survival models can suffer from fairness
issues and may make biased decisions about deprived subgroups. Be-
ginning with [55], several lines of research have investigated fairness
under censorship. Specifically, most fairness works [55, 29] under cen-
sorship only consider group fairness, while recent work [55, 51] has
started to address individual fairness in censored settings. However,
they often treat group fairness and individual fairness as separate goals
and lack consideration of the interplay between them. Unlike these
works, our approach explicitly considers the effects of both group
fairness and individual fairness, and modifies the survival model to
balance the additional individual fairness loss from group fairness
constraints. In addition, we explicitly incorporate survival information
to address discrimination in the presence of censorship.

3 Methodology

In this section, we first discuss how to quantify the amount of group
fairness in a censorship setting. Following that, we delve into under-
standing the individual fairness losses that arise due to group fairness
constraints in a censorship setting. Finally, we introduce our proposed
methodology, GIFC.

3.1 Quantifying Bias Under Censorship

3.1.1 Censored Group Fairness

The commonly used notions of group fairness in AI systems typically
require clear and definable class labels to measure fairness. How-
ever, in censorship settings, where data may be incomplete or labels
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uncertain, these traditional metrics cannot be applied directly. This
limitation has prompted the exploration of alternative metrics that can
adapt to the constraints of censored data while accurately quantifying
group bias. Inspired by prior work [54], we employ the Statistical
Concordance Parity Difference (SCPD) to quantify the model’s per-
formance in different subgroups amidst censorship. Fundamentally,
the SCPD aims to determine whether a model consistently underper-
forms for subgroups identified by sensitive attributes. It achieves this
by gauging the discrepancies in the model’s pairwise comparisons
between predicted and actual outcomes for individuals both within
and between these subgroups. The mathematical representation is as
follows:

SCPD = max{∀si, sj ∈ S|CF (si)− CF (sj), i �= j} (6)

where CF (·) represents the concordance fraction (CF) evaluating the
subgroup-wise correct pairwise ordering based on its respective group
members, and the CF for a subgroup si is defined as:

CF (si) =

∑
∀xi∈si

Cxi

CNum(si)
(7)

where Cxi denotes the concordance index of sample xi and
CNum(si) denotes the total number of pairwise comparisons possi-
ble within the subgroup si.

Overall, a fair model should demonstrate consistent performance
across all population groups. Any significant variation in model out-
comes across different subgroups might suggest inherent bias. There-
fore, a lower SCPD score implies a closer agreement between con-
cordance within the subgroups, and thus, a fairer model. Notably, the
SCPD approach goes beyond previous definitions of group fairness
by explicitly incorporating elements of survival time and censorship
information into its computations. This inclusion is vital as it ensures
that crucial censorship data, which could significantly influence the
model’s performance assessment, is not overlooked. By integrating
this data, the SCPD prevents the potential loss of critical information
that could otherwise introduce substantial biases into the fairness
evaluation.

3.1.2 Censored Individual Fairness amidst Group Fairness

Existing metrics for group fairness typically assess the treatment
of subgroups from a global perspective, focusing on statistical par-
ity among groups rather than the experiences of individuals within
those groups. This approach, while effective for detecting and correct-
ing systemic biases at the group level, may inadvertently overlook
how individual experiences differ within these constraints. As a result,
achieving group fairness might not necessarily translate into individual
satisfaction, particularly for those who prioritize personal utility over
collective well-being. To bridge this gap between group fairness and
individual fairness, we introduce a novel metric, the constraint con-
cordance difference (CCD), which specifically measures how group
fairness constraints affect individual fairness. The CCD evaluates
the impact of these constraints by comparing the concordance index
of each individual sample before and after the application of group
fairness measures. This comparison involves pairwise evaluations
of predictions, assessing whether the relative order of outcomes for
individuals is preserved when group fairness constraints are applied.
Mathematically, the CCD is defined as follows:

CCD = C′
xi

− Cxi (8)

where Cxi is the concordance index of sample xi prior to applying
group fairness constraints, and C′

xi
is the concordance index of the

same sample after the constraints have been enforced.
A key advantage of the CCD is its ability to identify individuals

who are disproportionately affected by group fairness constraints. A
lower CCD value suggests that the loss of individual fairness is min-
imal, indicating that the fairness measures are effectively balanced
between the needs of the individual and the group. This is particularly
important in scenarios where the personal impact of AI decisions is
significant, such as in employment, lending, and healthcare settings.
Furthermore, similar to the SCPD, the CCD incorporates critical
elements, i.e., survival time and censorship information into its com-
putations. This inclusion is vital for handling censored data effectively,
ensuring that the CCD can be applied in a wide range of contexts
where data may be incomplete or partially observed. By integrating
these elements, the CCD enhances the robustness of fairness assess-
ments, making it a versatile tool for ensuring fairness in complex
datasets.

3.2 GIFC framework

In this section, we present ranking algorithms specifically designed to
guarantee both group and individual fairness in censored contexts. A
significant hurdle we encounter is the optimality dilemma, wherein the
individual with the most minimal loss in individual fairness, due to the
enforcement of group fairness constraints, tends to disproportionately
bear the majority of the group fairness loss. To address this challenge,
our approach focuses on bolstering individual fairness. We achieve this
by randomizing the probability distribution over possible rankings that
satisfied group fairness. This strategy ensures that every individual,
on average, bears a consistent level of group fairness loss.

The core rationale of our approach is to distribute the group fair-
ness loss uniformly across individuals. To achieve this, we construct
a probability distribution over outcomes that adhere to group fairness
and then independently sample from this distribution to determine
our final outcome. As a result, the sample’s empirical characteris-
tics converge to those of the fair distribution. A primary step in this
methodology is to pinpoint the efficient outcome. To this end, we
incorporate the Rawlsian difference principle [30], rooted in John
Rawls’ theory of distributive justice. This principle aims to promote
equity by maximizing the welfare of the most disadvantaged groups.
When in equilibrium, the Rawlsian difference principle ensures that
all groups retain their status quo, as the welfare of the least advantaged
group cannot be further enhanced, ensuring a balanced performance
across groups. In our framework, welfare is synonymous with indi-
vidual fairness in the model, quantified by its individual fairness loss.
The mathematical representation of the Rawlsian difference principle
is given by:

minθ

n∑
s=0

V ar(U(ri, θ)) (9)

where ri is a valid group fairness ranking result and θ represents the
individual fairness loss function, and U(ri,θ) represents the utility
function that assesses the loss across a outcome of samples, utilizing
the model defined by parameters θ.

Building on the aforementioned principle, we formally character-
ize an effective ranking as an alteration in ranking that meets the
group fairness constraint while simultaneously optimizing the util-
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ity for the most vulnerable individual. Specifically, we take into ac-
count a set of outputs from the survival analysis model, denoted as
Rori = {x1, x2, . . . , xn}, ordered in descending sequence based on
risk scores, from the highest to the lowest. For the sake of clarity, we
presume that each individual possesses a distinct risk score. Moreover,
we establish constraints grounded on the group fairness metric delin-
eated in Section 3.1.1, represented as SCPD ≤ ω. Here, ω, lying in
the interval [0, 1], acts as a modulating parameter dictating our group
fairness tolerance threshold. We represent R = {r1, r2, . . . , rn} as
the entire set of rankings for Rori that satisfy group fairness, and
S ⊆ R stands for the ensemble of all permissible rankings. The
mathematical representation is presented below:

S = argmin{∀ ri ∈ R,SCPD ≤ ω|
n∑

i=0

CCD(xi)} (10)

For each valid ranking si ∈ S, we associate it with an individual
xi ∈ X , yielding a real-valued satisfaction measure f(S, xi). We
define a randomized algorithm, denoted as F , that for a given prob-
lem instance Q, deterministically selects a solution F(Q) ∈ S. This
algorithm F induces a probability distribution D over S such that
P (S) = P (F(Q) = S). The expected satisfaction for each xi ∈ X
under D is represented as D[u] = ES∼D[f(S, xi)]. A distribution D
over S is deemed group-individual aware fairness for (X,F) if it is
infeasible to enhance the expected satisfaction of any individual with-
out diminishing it for another individual in a comparable or worse-off
position, i.e., for all distributions D over S and all xi ∈ X . Consider
two distributions: a group-individually just distribution, denoted as D,
and another arbitrary distribution, denoted as D. At any given instance
xi, if the level of satisfaction under D exceeds that under D, it implies
that individual xi achieves a superior level of satisfaction with the D
distribution compared to the D distribution. However, the core princi-
ple behind a collectively-individual fair distribution is the equitable
distribution of satisfaction across all individuals. Consequently, if xi

enjoys an elevated satisfaction level under D, it becomes imperative,
for the sake of overall fairness, that there exists another instance xj

wherein the satisfaction under D is diminished compared to D. To
sustain this fairness, the satisfaction of xj under D should not surpass
the satisfaction of xi under D. This arrangement is pivotal in ensuring
that a mere alteration in distribution cannot indiscriminately elevate
everyone’s satisfaction. To amplify the satisfaction of one individual,
another individual, with an equal or lesser satisfaction level, inevitably
experiences a reduction.

A significant obstacle we encounter is the potentially exponential
nature of viable solutions and distributions. Consequently, guaran-
teeing that outcomes are computed within exponential time becomes
an intricate task. In light of this, we operate under the assumption
that a weighted optimization oracle is present when the formulated
distribution D does not epitomize utmost fairness. By augmenting
the weights of individuals that D fails to satisfy, we can harness the
weighted optimization oracle to derive a new, more equitable solution,
denoted as D. Subsequently, we enhance the weights corresponding
to these individuals, effectively "pushing D towards optimal fairness."
Consequently, the anticipated satisfaction of the collective-individual
fairness distribution can be ascertained within polynomial time.

To derive the group-individual fair distribution, denoted as D, we
begin by initializing it as an empty set. We progressively prove all
of its expected satisfactions, CCPxi , by continually expanding the
subset D. The heart of the proof involves expanding D incrementally
until D encompasses the entirety of X . A pivotal tool in our approach

is the separating oracle. Assisted by a weighted optimization oracle,
we construct a separating oracle tailored for the dual problem. This
particular oracle ensures the minimal loss of both group and indi-
vidual fairness. Its function isn’t merely to verify the feasibility of
a proposed solution; when confronted with an infeasible solution, it
returns the constraints that have been violated. To efficiently tackle
the dual problem, we utilize the ellipsoid method, ensuring that a
solution is ascertainable in polynomial time. The output from linear
programming then guides the update for the set D. We iterate through
this procedure until the subset D spans the entirety of the set X . It’s
vital to note that our reliance on the ellipsoid algorithm necessitates
only a finite number of calls to the Separation Oracle. As a result, we
only need to account for the constraints returned by the Separation
Oracle, enabling the crafting of a more compact linear programming
challenge. Owing to the diminished constraint count, we can tackle
this problem within polynomial time, culminating in the desired dis-
tribution. Thus, although the size of the effective solution set may be
exponential, we can still obtain it in polynomial time.

Overall, GIFC ensures consistent expectations of individual fairness
loss under group fairness constraints. This is achieved by introducing
randomization to create probability distributions for group-individual
fairness rankings. As a result, each individual can be assured that they
are not the most disadvantaged when adhering to the group fairness
requirement.

4 Experiment

4.1 Datasets

We evaluate our approach on four real-world datasets that include
socially sensitive attributes coupled with censorship. Detailed charac-
teristics of these datasets are provided in Table 1. The ROSSI dataset
features data on individuals who were convicted and released from
Maryland state prisons, and subsequently monitored for a year post-
release [18]. The COMPAS dataset, known for its significance in
algorithmic unfairness research, includes data utilized for predicting
recidivism rates in Broward County [2]. The KKBox dataset, sourced
from WSDM-KKBox’s Churn Prediction Challenge 2017 [25]. Fi-
nally, the Support dataset incorporates data on patients admitted to
five tertiary care academic medical centers, allowing for an explo-
ration into healthcare scenarios [24]. Notably, these datasets contain
explicit survival information, enabling us to specifically account for
censoring during our analysis.

Table 1: Summary of the datasets used in the evaluations.

Dataset ROSSI COMPAS KKBox Support
Sample# 432 10,325 2,814,735 8,873
Feature# 9 14 18 14
Sensitive
Attribute Race Race Gender Gender

Sensitive
Value

African
American

African
American Female Female

Censored# 318 7,558 975,834 2,840
Censored

Rate% 73.6% 73.2% 34.7% 32.0%

4.2 Comparison Methods

To evaluate our proposed method, we benchmarked it against six state-
of-the-art methods: GFCPH [23], FSRF [55], CPH [14], RSF [21],
DeepSurv [22] and IFS [60]. GFCPH and FSRF are the methods
considered for group fairness in survival analysis. CPH represents a
classical approach to survival analysis. In contrast, RSF is a modern
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model employing random forests for censored data analysis, DeepSurv
integrates deep learning into survival analysis, and IFS aims to achieve
individual fairness in a censorship setting. We excluded other fairness
methods from our comparison since they don’t cater to censoring.
Uniquely, our work is the pioneering effort to harmoniously address
both individual and group fairness under a censorship setting.

4.3 Evaluation Metrics

We evaluate our proposed method, GIFC, and existing methods in
terms of 5 different metrics. In this section, we first introduce the
fairness metrics and then describe performance metrics. For evalu-
ating model fairness, the proposed group fairness metric SPCD and
individual fairness metric CCD are employed. It’s important to note
that existing widely-used fairness metrics could not be applied as they
are not adaptable to censorship settings. For evaluating model perfor-
mance, we utilized a suite of performance metrics: i) C-index [20]:
This metric evaluates the concordance between predicted and actual
event times. It gauges the probability that for any chosen pair of in-
dividuals, their predicted event times align with their actual event
times in terms of relative order, where a high value denotes better
performance. ii) Brier score [6]: This measures the mean squared
difference between predicted probabilities of outcome assignments
and the actual outcomes. A superior prediction is denoted by a lower
Brier score. iii) Time-dependent AUC [8]: This evaluates the likeli-
hood that, given a random pair of individuals at time t, where one has
experienced the event and the other has not, they are correctly ranked
in terms of risk, with a high value indicating better performance.

4.4 Experiment Results

4.4.1 Effective Evaluation of GIFC.

In this section, we first evaluate the performance and fairness of our
proposed model GIFC. Note that CPH, RSF, DeepSurv, and IFS are
not group fairness-away by design. Consequently, we cannot compute
CCD for them. we experiment on four datasets with the comparison to
the baselines. Each experiment is conducted 10 times. The best results
are highlighted in bold. As Table 2 shows, the results indicate that the
GIFC model consistently outperforms the baseline models in terms
of the SCPD and CCD metrics. A lower SCPD value indicates better
group fairness, as it shows smaller disparities in treatment outcomes
across different subgroups. In all four datasets, GIFC demonstrates
superior group fairness with lower SCPD percentages compared to
the baselines. Additionally, the reduced CCD values highlight that the
GIFC model achieves this enhanced fairness with fewer sacrifices in
individual fairness. This improvement is attributed to GIFC’s explicit
consideration and balancing of individual losses resulting from group
fairness constraints, rather than solely optimizing for minimal perfor-
mance loss. While performance metrics such as C-index, Brier Score,
and Time-dependent AUC exhibit variance, GIFC maintains competi-
tive scores, either surpassing or closely trailing the best-performing
models. Overall, the GIFC model demonstrates a remarkable capabil-
ity to balance group fairness and individual losses effectively across
diverse scenarios. This balance is crucial in high-stakes environments
where decisions influenced by AI can have significant impacts on
individuals’ lives. The ability of GIFC to maintain competitive perfor-
mance on traditional metrics while significantly improving fairness
metrics positions it as a potent solution for enhancing fairness in
AI-driven decision-making processes.

Figure 2: Study on the group and individual fairness and accuracy
trade-off on fairness tolerance ω.

4.4.2 The Effect of ω on Model Utility and Fairness.

In this section, we evaluate the effect of fairness tolerance ω on the
model’s performance. We consider the following settings: i) Default
Setting: This setting is inspired by the four-fifths rule [1], a legal
criterion from employment law which suggests that the selection rate
for any race, sex, or ethnic group should not be less than four-fifths
(or 80%) of the rate for the group with the highest rate. Applying
this principle, we set ω such that the performance disparity between
any two sensitive subpopulations does not exceed 20%. ii) Enforced
Fairness: In this more stringent setting, ω is adjusted to enforce nearly
identical performance across all sensitive subpopulations, essentially
aiming for perfect group fairness. This setting tests the boundaries
of fairness by minimizing performance discrepancies to an almost
negligible level, ensuring that no group is disproportionately favored
or disadvantaged by the model. The results shown in Figure 2 indi-
cate that while a tighter group fairness constraint can improve group
fairness performance, it may substantially degrade overall model per-
formance and adversely impact individual fairness. This suggests that
a larger proportion of individuals might bear the costs associated with
stricter group fairness constraints.

Figure 3: Ablation study results for GIFC and GIFC-NI.

4.4.3 Ablation Study.

We conducted an ablation study to assess the contributions of the
two optimizations in our proposed framework. For benchmarking, we
introduced the GIFC-NI variant, emphasizing only the group fairness
optimization objective. The results show in Figure 3, the GIFC-NI
variant, with its sole optimization focus, did not display significant
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Table 2: Evaluation results of different models with the best results marked in bold. The numbers in parentheses represent the relative performance
improvement of GIFC compared to the best baseline. (Bolding indicates the best results).

Dataset Method
Metrics SPCD% (↓) CCD% (↓) C-index% (↑) Brier

Score% (↓) Time-dependent
AUC% (↑)

ROSSI

GFCPH 9.32 32.77 52.28 14.68 63.92
FSRF 6.71 27.53 61.44 14.66 65.12
CPH 13.41 - 64.24 19.45 65.46
RSF 17.17 - 65.47 15.05 79.54

DeepSurv 13.43 - 66.67 14.52 80.12

IFS 23.61 - 65.78 14.79 77.63

GIFC 5.63 11.94 63.95 15.01 78.53
(16.10%) (56.63%) (-4.08%) (-2.56%) (-1.98%)

COMPAS

GFCPH 13.27 35.18 62.16 12.37 60.30
FSRF 10.41 31.38 52.28 13.78 63.92
CPH 24.51 - 69.24 18.89 67.72
RSF 27.64 - 72.61 13.02 71.33

DeepSurv 18.18 - 75.21 12.54 73.68

IFS 31.87 - 73.83 12.98 71.67

GIFC 7.65 13.91 71.47 12.73 70.67
(26.51%) (55.67%) (-4.97%) (-2.91%) (-4.09%)

KKBox

GFCPH 16.61 36.72 72.61 13.55 73.31
FSRF 13.75 32.85 78,53 13.57 79.72
CPH 18.32 - 80.02 17.42 78,47
RSF 21.41 - 82.32 13.84 80.22

DeepSurv 20.45 - 83.01 14.32 80.69
IFS 25.12 - 81.97 14.41 80.04

GIFC 10.47 14.65 82.56 14.42 81.75

(23.85%) (55.40%) (-0.54%) (-7.53%) (1.31%)

Support

GFCPH 13.53 27.14 62.58 13.04 72.72
FSRF 11.15 22.47 59.28 12.98 73.92
CPH 26.92 - 69.31 20.31 77.64
RSF 29.17 - 71.73 15.50 80.77

DeepSurv 21.44 - 72.32 14.89 81.13
IFS 34.67 - 70.03 15.37 81.38

GIFC 9.17 17.40 70.81 13.67 78.53
(17.76%) (22.56%) (-2.09%) (-5.37%) (-3.50%)

variations in group fairness or overall performance relative to the
full-fledged GIFC. Nevertheless, a marked deterioration in individual
fairness was observed. This highlights that overlooking individual
fairness while imposing group fairness constraints can inadvertently
introduce notable biases in population treatment. While such biases
might not directly correlate with specific sensitivity attributes, they
might cause a subset of the population to perceive discrimination, thus
making the model of individual fairness further degraded.

5 Conclusion

In this paper, we explore a novel research question regarding the
achievement of both group and individual fairness in the context of
censorship. We introduce a strategy where each individual’s experi-
ence of group fairness loss is made consistent through randomiza-
tion. This equalization of the group fairness overhead ensures that no
member of the group feels discriminated against. Furthermore, our
proposed group-individual fairness ordering distribution offers robust
fairness guarantees, ensuring in-group meritocracy and preserving
access to outcomes within exponential timeframes. The methodolo-
gies and concepts presented here hold promise for quantifying and
mitigating biases in various socially sensitive real-world applications.
Beyond this, our work delineates a fresh avenue of inquiry, paving
the way for future research endeavors aiming to holistically address
fairness in AI.
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