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Abstract. Concept probing is one prominent methodology for in-
terpreting and analyzing (deep) neural network models. It has, for
example, formed the backbone of several recent works to understand
better the high-level knowledge learned and employed by game-
playing agents, particularly in chess. However, some recent theoret-
ical and empirical studies have questioned the methodology’s reli-
ability and highlighted some limitations. Here, in the game-playing
domain of chess, we investigate the effectiveness of several different
probing architectures and look into the reliability of methods for in-
terpreting their results. We use a world-class chess-playing agent as
our test domain, which allows us, via self-play, to quantify the impor-
tance of the concepts identified in the agent’s neural network by the
concept probes. Our results demonstrate that the widespread practice
of using linear probes and interpreting their accuracy to indicate con-
cept importance is somewhat unreliable and needs to be revised. We
demonstrate several ways of doing that in our domain, particularly
by using more complex probes and amnesic-like probing.

1 Introduction

Artificial intelligence systems employing machine-learning models
are increasingly deployed in real-life settings, partly because of the
recent successes of deep-learning neural-network-based approaches.
Unfortunately, one drawback of that approach is the black-box nature
of the neural networks and the need for more interpretability and ex-
plainability of the decisions they make. Explainable AI (XAI) seeks
to rectify this, offering several methodologies to help improve the
models’ interpretability.

Concept probing is one prominent methodology for interpreting
and analyzing (deep) neural network models [2]. Given a neural net-
work trained on some task, concept probing aims to gain insights into
the extent to which the network’s internal layers have learned to rep-
resent various (high-level) concepts. This is done by training a sepa-
rate classifier/regression model predicting a concept of interest using
a layer’s activations as input. If the resulting classifier performs well,
the presumption is that the layer has learned to represent the given
concept. This methodology has gained momentum and is now widely
used to gain insights into neural network models in diverse domains
such as natural language processing [5], image recognition [9], and
game-playing [18]. However, some recent theoretical and empirical
studies have cast doubt on how reliable this methodology is and high-
lighted some limitations [3, 6, 26].
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Here, we investigate the effectiveness and reliability of concept
probing in game playing using a world-class chess agent as our
testbed, comparing different probing architectures and interpretation
methods. The reasons for choosing this domain are threefold: first,
there have been several recent high-profile works in XAI in game
playing [18, 14, 21]; second, to address concerns raised in that work
as to how reliable the probing results are; and three, because the
domain allows us to quantify (via self-play) the importance of the
identified concepts for the agent’s playing strength (we contrast that
information to the concepts’ importance as judged by the probes).

The primary contributions of the work for our domain are: i) We
empirically demonstrate that the widespread practice of using linear
probes and interpreting their accuracy to indicate concept importance
could be more reliable and should be revisited; ii) We propose ways
of doing that, by using more complex probes and amnesic-like prob-
ing techniques, where applicable; iii) We offer additional insights
into the pitfalls and best practices of concept probing, including con-
crete and relevant examples of potential failures.

The remainder of the paper is organized as follows. The next sec-
tion introduces the terminology and background, followed by our
methods and empirical result sections, respectively. Finally, we con-
clude and discuss future work.

2 Background

This section gives a brief background of model interpretability, gen-
erally and in games, and discusses some of the criticisms raised.

2.1 Interpretability

Interpretability of neural networks has received much-added atten-
tion in recent years due to the popularity of DNNs and the increas-
ing use of ML in real-life situations (see e.g. [4, 19] for a sur-
vey). Interpretability of (black-box) models may be broadly cat-
egorized as either global or local and model-specific or model-
agnostic. Global methods create interpretations valid across all input
instances, whereas local methods’ focus is on interpreting individ-
ual instances. Model-agnostic methods explain any black-box mod-
els, while model-specific methods leverage the model’s architecture
(thus, in reality, not treating the model as an absolute black-box).

Most prior work on local methods for interpreting models use
feature-based explanations, which alter the input features (e.g., oc-
clude or perturb them) [15, 27]. Such approaches are especially help-
ful in image-based domains and can reveal how different pixels or
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regions in an image contribute to the network’s output classification.
Similar approaches have been used to explain chess positions [24].

However, the feature-based methods are not readily applicable to
intricate concepts and are known to be unreliable [10] and susceptible
to confirmation bias [9]. Thus, to overcome this shortcoming, more
recent explanation techniques, often referred to as concept-based, use
high-level human concepts as their interpretable units.

2.2 Concept Probing

A recent concept-based model-specific interpretability methodology
for "peeking" into DNNs is probing [2]. Based on the intuition that
deep neural networks are primarily about distilling computationally
useful representations, one can monitor the output of different layers
within the network for how well they represent various (high-level)
concepts. By training classification or regression surrogate models
(on a dataset not used for training the network itself) — called probes
— to predict a given concept from a layer’s activations, one can mea-
sure how much information that layer carries regarding the given
concept. The higher the prediction accuracy of the probe, the more
information that layer carries for representing the concept.

When concept probing we train a model, or a probe, g to map
representations fl(x) at layer l to concepts z. As a proxy for how
well f represents the concepts, one evaluates

performance_metric(g(fl(x)), z) (1)

on unseen test data, and reports the results using a relevant perfor-
mance metric, such as accuracy, as we do in this paper. This means
that an accuracy value of 0.5 infers layer l does not contain informa-
tion regarding concept z. In contrast, an accuracy value of one indi-
cates that concept z can be fully decoded from layer l in model f .
The choice of probing architecture, g, will depend on the experiment
and whether the concept is binary or continuous. Researchers still de-
bate the specific choices of probing architecture: some advocate for
simpler linear probes, while others advocate for more complex ones,
such as neural networks. The detailed nuances related to the specific
choice of probing architecture will be discussed further in Section
2.3. For more details on concept probing see e.g. [3].

The model training and probing process requires two separate
datasets: the training dataset Dt = {xi, yi} used to train the model,
f , and a separate probing dataset Dp = {fl(xi), zi}, used to train
the probe g. Where fl(x

i) is the internal representations in layer l
for sample xi and zi is the concept’s value for the corresponding
sample. The probe is usually trained on a balanced dataset for binary
concepts, meaning that the majority class is undersampled.

When designing the probing dataset Dp, a few things need to
be considered, including that the more complex probe architectures
(e.g., neural networks) typically call for larger training datasets than
the simpler ones (e.g., linear). Thus, we opt for an extensive train-
ing datasetDp of one million positions to ensure that all the probing
architectures we compare have had sufficient training data.

2.3 Challenges Related to Concept Probing

What kind of probes are most useful for concept probing is still ac-
tively debated. While some researchers have advocated for simpler
probes [2, 7, 13, 16, 17], others have advocated for more complex
probes [5, 1, 23]. The debate is mainly focused on what kind of re-
sults we can safely interpret from the probes; for example, that too
powerful of a probe could learn its own mappings between the rep-
resentations and the concept (not present in the original model), and

conversely, that too simple probes might not accurately reveal com-
plex (non-linear) representation that the model has learned.

To gain further insight into the probed model, some additional ex-
periments have been proposed to identify to what extent the model
is learning a concept. For example, evaluating a lower- and upper
bound for the value has been proposed to put the probing accuracy’s
numerical value into perspective. A lower bound can be found by
probing an untrained network; this can help identify a few concerns,
for example, to help attribute to which extent the probing accuracy is
because of model learning [5] rather than other factors.

An upper bound can be seen as a way to show how well, theoret-
ically, a mapping from the input to the concept could perform; this
can be achieved by training a dedicated model h(x) to predict the
concept z given the input, x. In theory, this might seem like a viable
option, but it is very resource-intensive because the models required
for such an experiment are likely larger than needed for regular prob-
ing and thus more data-intensive. After all, they might require similar
amount of data to the one used to train the original model f .

If concept probing is a reliable tool for identifying the presence of
concepts, in theory, it should be able to guide the removal of informa-
tion from the network. However, the work in [11] demonstrated that
it fails to remove the concepts entirely and, in some cases, destroys
other task-relevant features because the probing classifier is likely to
use non-concept features to predict the presence of the concept.

Although concept probing only measures how well model repre-
sentations can be mapped to a concept, it is tempting to infer that the
model uses the concept. However, researchers have found evidence
of false positives, meaning that high-accuracy probing does not nec-
essarily mean that the concept benefits model’s f task [6]. In that
respect, a nice property of the game-playing domain we use is that
we can quantify via self-play how useful a concept is for a model.

To further investigate how to interpret these experiments, re-
searchers have proposed various interventions that provide further
contrast to the results; one such experiment is to erase the concept
from the model training data (as we also do in this paper) Do =
{xi, yi} [26]. By erasing the concept from the training data, we can
monitor performance degradation on the original task, which puts
the importance of the concept into perspective, as well as changes in
probing accuracy. Interestingly, Ravichander et al. [26] showed that
by removing a concept from the training data, the probe may still be
able to predict some properties of the concept.

Elazar et al. [6] coined the term amnesic probing, an extension to
conventional probing, to describe an approach for studying behav-
ioral changes of a model after removing concept information from
its representations using Iterative Nullspace Projection (INLP) [25].
They show that even after removal, subsequent layers can recover
some of the removed properties which, to some extent, speaks to
the importance of non-linear information within the model because
INLP only removes its linear components. In this paper we will refer
to probing for concepts removed from the training set as amnesic-
like probing due to its similarity with amnesic probing [25] – both
methods probe for removed information.

Since this is still active research, a few things are still uncertain,
e.g., to what extent can we infer that the model uses the concept while
predicting, and second, perhaps more importantly, what are some ac-
tionable insights that may be gained through concept probing?

2.4 Interpretability in Games

Interpretability research in game-playing has received added atten-
tion in recent years. Game-playing is a domain with diverse chal-
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lenges; for example, chess, which we use as a testbed in this research,
has pieces with different roles and relatively simple rules yet sophisti-
cated playing strategies, which makes for exciting challenges related
to explainability.

The saliency method SARFA [24] is a perturbation approach to
evaluating action-focused saliency that tackles specifically the prob-
lem that pieces affect value function differently. E.g., if removing a
queen affects all future states similarly, including the proposed ac-
tion, it is irrelevant to the proposed action.

The concept-probing work reported in McGrath et al. [17, 18]
investigates the concepts that AlphaZero’s neural network learned.
They use Stockfish’s hand-crafted concepts (among others) as a
proxy for human-understandable knowledge. Using concept probing,
they show that the network represents many human-understandable
concepts and how and when they emerge during training. They
demonstrate that material concepts get represented early in training,
while more complex and subtle ones appear later. Furthermore, the
paper briefly discusses alternative probing architectures; they advo-
cate for simpler linear classifiers due to the danger of the concept
probe learning its own complex relationships rather than capturing
the structure in AlphaZero’s representations.

The work in Pálsson and Björnsson [21] showcases how it is
possible to identify what Stockfish’s neural network has learned us-
ing interpretability methods, including concept probing. It exposed
Stockfish’s neural network emphasis on dynamic concepts and how
it evaluates king safety differently than its hand-crafted counterpart.

Lovering et al. [14] analyzes high-level concepts learned by an
AlphaZero-style Hex playing agent, demonstrating that the search
discovers concepts during self-play before the neural network learns
to encode them. Furthermore, it shows that short-term endgame plan-
ning is encoded in the final layers of the model, while long-term plan-
ning concepts are encoded in the middle layers of the model.

Tomlin et al. [32] extracted keywords from move-by-move Go
commentary and compared them with simpler pattern-based con-
cepts. Using a linear probe, they show that the keyword-based con-
cepts (which are used as a proxy for concepts of higher-level abstrac-
tion) are better represented in the model’s later layers. In contrast, the
pattern-based concepts are better represented in the earlier layers.

Most concept-based methods now rely on predefined concepts;
however, Schut et al. [28] explores ways to extract and successfully
teach top chess grandmasters concepts beyond human knowledge.

3 Methods

In this section, we first describe Stockfish’s neural-network evalua-
tion function, followed by a description of the probing methods we
use. Subsequently, we describe the Autoencoder used in the first ex-
periment and the calculation of piece-specific importance, as well as
discuss the chess-specific concepts implemented for the research.

3.1 Stockfish’ Neural Network

Stockfish (since version 12) uses a neural network called NNUE [20]
(EUNN Efficiently Updatable Neural Network) for evaluating game
states. The network architecture was invented for the game Shogi but
later ported to chess/Stockfish, immediately resulting in an 80 Elo
point increase in playing strength (and more since then) [30, 31].

The NNUE architecture uses a (shallow) design with linear and
clipped ReLU layers, as shown in Figure 1. Notable design choice
is routing the inference through different LayerStacks, or sub-
networks, depending on the game’s phase (number of pieces on the

Figure 1. Stockfish’ NNUE architecture [31]. It processes the values
differently depending on the game phase. Depending on the total number of

pieces left on the board, it will assign a bucket value and choose the
corresponding path depending on the value. The bucket value is calculated

by bucket = (piece_count− 1)/4).

Table 1. Autoencoder design, output sizes of each layer of the autoencoder.

Layer Size
Input 768
Layer 1 1024
Layer 2 64
Layer 3 32
Layer 4 64
Layer 5 1024
Layer 6 (reconstruction) 768

board). Thus at each time, only one of eight LayerStack is used to
calculate the evaluation. The LayerStacks follow only a single linear
layer shared between all LayerStacks. This design choice is interest-
ing from a concept-probing perspective because one would expect
each LayerStack to re-implement much of the same concepts.

The NNUEmodel is relatively shallow, and in our experiments, we
probe the model solely after two layers (Layer 2). After a single lin-
ear layer, static information (invariant of the learning process) from
the input is still relatively accessible. The probe only needs to decode
the weights of a single linear layer; therefore, we want to look deeper.
However, going even deeper into the neural network introduces new
challenges; the computation splits into multiple pathways depending
on the game phase, making the experimental evaluation more intri-
cate. Thus, we chose layer two as the best practical compromise.

3.2 Probing Architectures

We experiment with three types of probing architectures in this pa-
per; a linear probe using ridge [22] classification (Ridge), a neu-
ral network probe (NN), and a LightGBM [8] decision tree probe
(LGBM) . The neural network probe uses feedforward architecture
with ReLu nonlinearity and two hidden layers of sizes 100 and 10.
For the linear probe, we perform a hyperparameter search over alpha
values (the L2 term multiplier) of [0.01, 0.1, 0.5, 1, 5, 10, 50, 100,
500, 1000]. The decision tree probe is used with default parameters.
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Table 2. The name and description of concepts used in the probing
experiments.

Concept Description
white_has_queen White has a queen
white_queen_on_ White has a queen on D1
initial_square
Queen Advantage Only one has a queen(s)
Rook Pair Advantage Only one has a rook pair
Bishop Pair Advantage Only one has a bishop pair
Knight Pair Advantage Only one has a knight pair
Opposite Color Bishop Both have only one bishop

of opposite color
5 Dark Square Pawns 5 pawns are on dark squares

Figure 2. The frequency of the concepts in relation to the phase of the
game, or bucket. Each value on the graph represent the proportion of each
bucket that the concepts’ value was true(and thus removed during training).
The bucket indicates the number of pieces left on the board, where bucket 7

has the most and 0 has the fewest.

3.3 Autoencoder

We designed an autoencoder experiment to contrast the different
probing architectures. Within this controlled environment, we can
investigate whether the different probes are a good proxy for the in-
formation stored within the representations. When we encode and
decode information, we can observe the reconstructed state to know
how much information passes through the network - for us to decode
information successfully, it must also be available in the encoded
state. This method monitors the probing accuracy during training in
the most compressed and reconstructed states. It allows us to observe
inconsistencies in probing accuracy values and trends.

Inside the autoencoder, we expect considerable compression of in-
formation, which is relevant when probing a small neural network,
such as Stockfish’s NNUE, where the concept representations are
likely more compressed than in a larger neural network.

The autoencoder consists of two parts, an encoder and a decoder,
which are trained to compress and reconstruct the input space. In this
case, the encoder and decoder mirror each other in terms of the num-
ber of layers and neurons in each layer. The design uses a sequence
of fully connected linear layers with ReLU activations.

The input into the autoencoder is a tensor of size 768, or 64
(squares) × 6 (piece types) × 2 (color), and the output size of each
layer is listed in the Table 1.

Table 3. Description of Δ piece value concepts.

Concept Name Description

ΔP Difference in number of pawns
ΔN Difference in number of knights
ΔB Difference in number of bishops
ΔR Difference in number of rooks
ΔQ Difference in number of queens

3.4 Piece Importance

By training and interpreting a linear surrogate model, we can evaluate
how different piece-specific concepts impact the evaluation relative
to each other. We perform this analysis to illustrate the model’s be-
havior and alleviate concerns that we might be causing more harm to
the model than intended.

For example, to identify the relative importance of different pieces,
we can train the linear surrogate model:

wp∗ΔP+wn∗ΔN+wb∗ΔB+wr ∗ΔR+wq ∗ΔQ = f(x) (2)

where f(x) is the model evaluation, the ΔP ... ΔQ concepts (seen
in Table 3) indicate the difference in a number of pieces, e.g.,ΔB in-
dicates the difference in the number of bishops present on the board.

In this case, the linear weights for the different concepts will serve
as a proxy for importance, and we can, for example, compare the
weights wp and wq . Thus, we interpret

wq

wp
as the queen value eval-

uated in a number of pawns as we do in Figure 4.

3.5 Custom Concepts

We implemented several chess-specific concepts for this research, all
listed in Table 2.

First, we implement two straightforward concepts for the
autoencoder experiment, white_queen_on_initial_square and
white_has_queen. The concept white_queen_on_initial_square
is represented by a single bit in the autoencoder’s input, while
white_has_queen can be represented by any of a total of 64 bits,
assigned to represent the queen(s) position(s) on the board.

The latter concepts, also listed in Table 2, are used for training
handicapped agents where we hide each one of these concepts, in
turn, from the agents. This approach allows us to objectively eval-
uate the importance of each of these concepts by comparing the re-
sulting agents’ playing strengths. We chose concepts known from
the chess literature either as essential or not. For example, having a
pair of bishops or knowing how to dynamically evaluate the queen’s
strength compared to the other pieces (e.g., vs. two rooks or three
minor pieces) is critical, whereas having a pair of knights or rooks is
less so. The concept of having exactly five pawns on a dark square
was explicitly contrived with the expectation of being irrelevant to
evaluating a chess position. Although the choice of the above con-
cepts was inspired by established human-based chess knowledge of
what is important and what is less so, we furthermore ran experi-
ments to quantify objectively how important these concepts were for
the neural network model (see Section 4).

When defining the concepts for the restricted agents, we also had
a few considerations in mind. First, the concept can not be too fre-
quently active, as we do not want to reduce the size of the training
set too much when removing a concept (in the worst case, an altered
dataset got reduced by less than 14%). Removing positions from the
training dataset with a given concept will inevitably affect the dis-
tribution of seen training positions over the different game phases;
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Figure 3. Probing accuracy results performed during training of the
autoencoder. Results are for the concept white_has_queen (top) and

white_queen_on_initial_square (bottom).

however, we verified that all game phases are still well represented,
as seen in Figure 2. Second, it is important that when the concepts be-
come active, they can also become deactive, so we do not remove all
endgames associated with the concept and other concepts that may
arise later in the game.

4 Results

Here, we present the results of our experiments. First, we describe
the experimental setup, followed by the results of the autoencoder,
concept importance, and probing accuracy with respect to concept
importance experiments, respectively.

4.1 Experimental Setup

We use version 15.1 of Stockfish, which was the latest release at the
start of the research.

For training, we use a dataset generated by Leela Chess Zero that is
listed as a quality dataset (training_data at [29]). For concept prob-
ing, we sample one million chess positions from a Lichess dataset
generated from standard rated chess games [12]. When training a
modified agent, fres,ci , where concept ci is hidden, we check each
sample for concept ci. If it is present, we discard the sample and con-
tinue sampling until the desired batch size is reached. Each agent is
trained for 500 epochs using Stockfish’s official training script (with
slight modifications to remove chosen concepts during training) with
recommended hyperparameters: batch size was set to 16384, initial
learning rate as 8.75e-4, and γ (learning rate decay rate) as 0.992.

The autoencoder was trained using Adam with learning rate 5e-4.
It achieved an 0.9973 accuracy and a 7.27e-3 Binary Cross Entropy
loss, meaning that it was able to reconstruct its input almost perfectly.

All models were trained on a GeForce RTX 3080 graphics card.
The error bars provided in the figures show one standard deviation
above and below the mean from cross-validation over five splits.

4.2 Autoencoder Experiment

In this section, we present the results from the concept probing exper-
iment where we monitor what happens during autoencoder training,
shown in Figure 3. By observing the concept probing accuracy at the
reconstructed layer, we can form an expectation of a lower bound for
the amount of information present in the most compressed layer; it
should be at least as much as in the reconstructed layer. Because if it
is present at the reconstructed layer, it should also be present at the
most compressed layer. Therefore, we base our interpretation of the
results on observing how the concept probing accuracy in the recon-
structed state evolves during training and comparing it to the concept
probing accuracy in the most compressed layer.

At each training epoch, we probe for two simple concepts,
white_has_queen and white_queen_on_initial_square. The con-
cept’s value is true if the statement is true and false otherwise. The
probing is performed at the most compressed layer as well as the
reconstructed layer. The encoded size is 32, while the reconstructed
size is 768 – like the input.

The most important takeaway is that interpreting the probing ac-
curacy at the most compressed state using the linear probe will lead
to misleading results. For both concepts, the linear probe’s (Ridge)
probing accuracy decreases after saturating in the most compressed
layer. At the same time, we see that at the reconstructed layer,
the probing accuracy is either increasing or has reached saturation
at 100% accuracy. Meanwhile, the neural network probe more ac-
curately represents the presence and trend of information passing
through the autoencoder as reflected by the reconstructed layer.

Albeit this is a somewhat contrived experimental scenario, this re-
sult nonetheless shows that linear probes may be insufficient to detect
information present in the internal layers of a neural network, espe-
cially when one expects the information to be highly compressed.

4.3 Estimating Concept Importance

The attractive characteristic of the game-playing domain is that we
can easily compare agents by making them compete, thus assessing
their strength without relying on a potentially biased datasets. For
this experiment, we choose six concepts well-suited for removal dur-
ing training.

In order to identify the importance of a concept, we will: i) train
an agent with and without the knowledge of a concept, ii) make them
compete to assess the performance decline, and iii) expose how they
evaluate positions differently. The tournament will be in a gaunt-
let style, where the restricted agents play against the regular agent
(trained on the entire dataset). From the results, we then calculate the
relative Elo rating of all agents, where the difference in Elo points
serves as (a proxy for) the importance of the concept.

In Table 4, we see the results from the tournament. The Queen
Advantage concept is the most important, resulting in a drop in per-
formance of 31.6 Elo points, while the concept 5 Dark Square Pawns

Table 4. Results in a gauntlet style tournament, where all agents only play
against the Regular agent. Each modified agent plays 3000 matches at search

depths 14, 15 and 16 each, thus a total of 9000 matches.

Description Win-rate % Elo drop
Queen 45.51(±0.54) 31.6(±3.8)
Bishop Pair 46.91(±0.51) 21.7(±3.6)
Rook Pair 48.33(±0.49) 11.7(±3.4)
Knight Pair 48.57(±0.49) 10.0(±3.8)
Opposite Color Bishop 49.04(±0.48) 6.7(±3.3)
5 Dark Square Pawns 49.74(±0.48) 1.8(±3.3)
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Figure 4. (upper left) When we remove a bishop pair advantage from the
training data, the model associates lower importance to the second bishop.
(upper right) Removing a knight pair advantage from the training data the

model puts greater importance on the second knight. (lower left) Removing a
rook pair advantage from the training data has little impact on the value it
puts on having a second rook. (lower right) Never seeing examples where

only one player has a queen, the model associates a lower value to the queen.

shows a non-significant drop in performance. The difference be-
tween Knight Pair Advantage and Rook Pair Advantage is also non-
significant, and it is approximately half of the importance of Bishop
Pair Advantage. Overall, this result correlates well with the estab-
lished human-knowledge chess literature.1

To demonstrate the behavioral changes that result from the in-
terventions and alleviate some concerns that we might be causing
unnecessary harm to the agents, we apply an explainable surrogate
model to evaluate the piece-specific values. In Figure 4, we can see
how not learning about these different piece-specific advantages af-
fects the value it places on the pieces. For example, the agent that did
not learn how valuable a bishop pair advantage is will underestimate
the value of the second bishop (compared to the other agents). Con-
versely, the agent that did not learn the value of the knight pair ad-
vantage overestimates the value of the second knight. Furthermore,
not learning about having a queen advantage results in the queen’s
value being approximately half a pawn less.

4.4 Concept Importance and Probing Accuracy

In this section, we will interpret the concept importance, how it cor-
relates to probing accuracy, and what kind of recommendation we
can give about interpreting the results from such experiments.

1 For example, the chess literature strongly emphasizes the synergy of having
the bishop pair (influencing both the light and the dark squares) in contrast
to, e.g., having a pair of knights. The only (slight) surprise is that one might
have expected the model to show more benefits for having the pair of rooks
(e.g., as contrasted to a knight pair), as rooks typically work well together
when connected, for example, on open files or in the endgame.

Figure 5. The probing accuracy of the regular model as well as models
trained without seeing a concept.

Figure 5 shows different probing results. We probe i) the Regular
model, freg , trained on the whole dataset, ii) the restricted models,
fres,ci , with concept ci removed from the training set, and iii) an
untrained model, funt (with weights uniformly initialized). For all
models, we probe with the three probing architectures. Furthermore,
in Figure 6, we see the relationship between the probing accuracy
(in Layer 2) and the concept’s importance, measured in Elo rating
points.

We observe a moderate correlation between the probing accuracy
and the importance of the concepts, as also emphasized in Table 5,
which we will analyze later in this section. The most important con-
cept, Queen Advantage, has the highest probing accuracy, and the
unimportant one, 5 Dark Squared Pawns, has the lowest, with the
other concepts falling in between, which is reassuring. Nonetheless,
we also see that concepts that receive near identical probing accuracy
may differ significantly in importance, such as the concepts Bishop
Pair Advantage and Knight Pair Advantage. The former concept is
more important in our model as our self-play experiments clearly
showed. Furthermore, this is in line with the established chess liter-
ature, which strongly prefers having the bishop pair over other mi-
nor piece combinations, including the knight pair. This result clearly
shows that one has to take all probing results with some grain of salt
and be extra cautious in interpreting their results.

In Figure 5, we compare the probing accuracy of the regular model
versus a model trained on data with the concept in question removed
from the training data. For the most important concepts, Queen Ad-
vantage and Bishop Pair Advantage, there is a notable drop in prob-
ing accuracy; in contrast, the accuracy remains similar for the less
important concepts.
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Figure 6. The relationship between probing accuracy and the importance
measured in Elo points for all probes, as well as the mean value of all three

probes.

Table 5. Pearson correlation between concept probing results and
importance.

Probe, j Pj(freg) Pj(freg) − Pj(freg) −
Pj(fres,ci ) Pj(funt)

Ridge 0.69 0.83 0.64
LGBM 0.68 0.87 0.67
NN 0.73 0.92 0.72

To see what concept probing results mostly correlate with the im-
portance, we analyze the Pearson correlation between the importance
and i) Pj(freg), ii) Pj(freg) − Pj(fres,ci) and iii) Pj(freg) −
Pj(funt). Where Pj(f) is the probing accuracy of probe Pj ap-
plied to model f . The results can be seen in Table 5, from which
we can draw two conclusions. First, when analyzing the probing
results of the Regular model, Pj(freg), the neural network probe
has the highest correlation with importance. Second, the change in
probing accuracy after removing a concept from the training set,
Pj(freg) − Pj(fres,ci), offers an even higher correlation with im-
portance for all probes, and again with the neural network probe per-
forming best.

To check to what extent we can predict the importance using the
probing results, and provide a bit more context to previous results, we
train a linear model to predict the importance and report the mean
absolute error using leave-one-out cross-validation. The results are
shown in Table 6 where we see again that the neural network probe
is performing the best, and using the difference in probing accuracy
between the Regular and Restricted models results in the highest ac-
curacy, with a mean absolute error of 3.68 Elo points.

Table 6. The mean absolute error in Elo points, using a leave-one-out cross
validation, of a linear model predicting the importance, given the concept

probing results.

Probe, j Pj(freg) Pj(freg) − Pj(freg) −
Pj(fres,ci ) Pj(funt)

Ridge 9.61 5.68 10.48
LGBM 9.77 5.83 10.15
NN 8.84 3.68 8.90

5 Conclusion

In this work, we cast some light on how effective and reliable concept
probing is, using a contrived autoencoder and a state-of-the-art game-
playing agent as our test domain. The main takeaways are:

• The widespread practice of using linear probes and interpreting
their accuracy to indicate concept importance gives some, albeit
limited, insights into concepts learned by the network. The probes’
accuracy and feature importance is only moderately correlated.
Additionally, interpreting concept importance based on probe ac-
curacy alone is unreliable. For example, we saw a concrete ex-
ample of concepts indistinguishable that way — possessing the
Bishop or Knight pair, the former highly beneficial and the latter
not (as judged by both our self-play experiments and established
chess-domain knowledge).

• However, a far better correlation is achievable using a more com-
plex probe (neural network) and reading into the results using
amnesic-like probing techniques. Doing this, where applicable, is
recommended; however, we acknowledge that this may not always
be possible (e.g., when unable to retrain the model).

• Using an untrained model as a baseline for the probing (e.g., as
suggested in [5, 33]) did not prove helpful in our domain.

We see this work as valuable input into the ongoing discussion of
the pros and cons of different probing architectures, especially in the
game-playing domain. Furthermore, it provides some guidance for
best practices in interpreting probing results.

As for future work, we plan to address some of the limitations of
this study. First, we use only a handful of chess concepts, and adding
more would improve confidence in the correlation metric. Second,
we use the effects on playing strength by omitting a concept from
model training as an importance metric. Albeit useful, as demon-
strated, this is not necessarily the entire truth; we might be causing
unintended harm to the models by removing other valuable corre-
lated concepts. Although we were mindful of this when defining the
concepts and when examining the models for unexpected behavior,
such as the experiment in Figure 4, a more in-depth investigation of
such correlated concepts is warranted.

Finally, retraining a model from scratch while holding out some
concepts is not always feasible cost-wise or even impossible; thus,
developing more practical ways to restrict a model without having to
retrain from scratch might be worthwhile.
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