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Abstract. In many applications, regulations or best practices often
lead to specific requirements in machine learning relating to four key
pillars: fairness, privacy, interpretability and greenhouse gas emis-
sions. These all sit in the broader context of sustainability in Al, an
emerging practical Al topic. However, although these pillars have
been individually addressed by past literature, none of these works
have considered all the pillars. There are inherent trade-offs between
each of the pillars (for example, utility vs fairness or utility vs pri-
vacy), making it even more important to consider them together. This
paper outlines a new framework for Sustainable Machine Learning.
It proposes FPIG, a general Al pipeline that allows for simultaneous
consideration and a better understanding of the tradeoffs between the
pillars. Based on the FPIG framework, we propose a meta-learning
algorithm to estimate the four key pillars given a dataset summary,
model architecture, and hyperparameters before model training. This
algorithm allows users to select the optimal model architecture for a
given dataset and a set of user requirements on the pillars. We illus-
trate the trade-offs under the FPIG model on three classical datasets
and demonstrate the meta-learning approach with an example of real-
world datasets and models with different interpretability, showcasing
how it can aid model selection.

1 Introduction

Artificial Intelligence has become an emerging tool essential for all
financial sectors [37, 61, 53, 57]. However, the characterisation of
Al extends beyond the realm of technology and permeates into the
precincts of infrastructure [26] and ideology [44], leading to an opac-
ity around the concept of Al [40]. This nebulous nature of Al mag-
nifies the challenges of effectively understanding and governing it
while underscoring the need for malleability and interdisciplinary
dialogue in Al ethics and governance. Consequently, this discourse
does not gravitate towards a rigid definition of Al; rather, it embraces
its polysemous essence and explores Al as a complex system [16].
The current landscape of Al ethics frameworks [32, 39] is pep-
pered with a proliferation of proposed principles and a conspicu-
ous absence of uniformity across these frameworks. The United Na-
tions Climate Change Conferences drove the initial environmental
rights and climate justice movements, and Sustainable Development
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Goals (SDGs) [6], along with the environmental, social and corpo-
rate governance (ESG) frameworks [4]. Unfortunately, while the en-
vironmental implications of Al are gradually entering the discourse
[56], the broader concept of sustainability in Al appears to be largely
overlooked [34]. Recent literature only fostered a narrow vision of
sustainable Al [58], neglecting the interconnected nature of various
Al governance challenges. A holistic view of sustainable Al should
amalgamate three intertwined pillars: social, governance and ecolog-
ical, necessitating a complex systems approach [27].

Financial institutions have particular duties related to Al that must
be paid close attention to. The Information Commissioner’s Office
(ICO) has strict guidance on Al regarding interpretability, data pro-
tection and privacy [8]. Additionally, several recent developments
from significant organisations relating to Al regulations have bol-
stered the importance of sustainable AI’s key features. For example,
the European Union has proposed the Al Act [7], a European law
on Al The Bank of England has also recently updated their model
risk management framework [1], outlining the expectations of the
Prudential Regulation Authority (PRA) for banks’ management of
model risk. They indicate the need for a robust approach to model
risk and discuss five key principles within their framework, from
governance to validation. The particular focus on model risk miti-
gants indicates the importance for banks to consider factors such as
the interpretability and fairness of their models as part of the model
selection stage. In addition, the Financial Conduct Authority (FCA)
has also recently updated its consumer duty expectations [3], rais-
ing the standards required by financial institutions from previous ex-
pectations. With AI’s growing role, there is an increased expectation
from the FCA for consumers to be at the forefront of model design.
The EU Al act [5] has also been proposed recently, focusing on the
risk of Al applications, categorising Al use into four risk levels, and
imposing increased documentation and validation of models.

In this paper, we first advocate for the adoption of the principles
of sustainability science to Al, analysing Al through the lens of an
unsustainable system. We then propose a Fair, Private, Interpretable
and Green (FPIG) framework to address the above-mentioned pillars.
These four features (as illustrated in Fig 1) are tightly associated with
the concept of sustainability but, to the best of our knowledge, have
yet to be tackled together under a single framework.

In the FPIG framework, we first propose to integrate fairness [35]
into our ML objective function to reduce the loss disparity across
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Figure 1: Privacy, fairness, utility, interpretability and GHG emission
are the practical sustainability metrics that drive the three pillars of
sustainability.

groups. This approach allows us to change the level of fairness re-
quired in our training, varying from a standard optimisation (with no
additional fairness constraints) to a multi-objective scenario, where
trade-offs across different metrics form the Pareto front. Secondly,
we integrate the concept of differential privacy during the model
training process. Adding noise during training ensures that good
models are obtained for all other dimensions across varying degrees
of differential privacy.

The carbon dioxide (CO2) emission during model training and in-
ference pipeline is tracked and monitored by an independent soft-
ware package, CodeCarbon [2]. Ultimately, we propose a new meta-
learning algorithm that helps users to find better AI models and hy-
perparameters (e.g., number of neural network layers) given a dataset
and the three sustainability goals plus model interpretability.

To demonstrate the effectiveness of the FPIG framework, we eval-
uvate it with five independent datasets and four distinctive types of
machine learning (ML) models, varying in interpretability. We com-
pute the results across the different pillars. Our evaluation reveals
common trade-offs from training models using our f rameworks,
such as trade-offs between utility, fairness and privacy. We also in-
dicate the significant features when considering a meta-learning ap-
proach, allowing us to estimate the impact on utility, fairness, privacy
and carbon emissions of training different models without needing to
undertake the cost of actually training them. We demonstrate the use-
fulness of this approach on a particular example.

The rest of this paper is organised as the following. Section 2
gives a brief overview of the related work. We then present the FPIG
framework in Section 3. The experiment results with five distinctive
datasets are presented in Section 4, and the paper is ultimately con-
cluded in Section 5.

2 Sustainability in Artificial Intelligence and
Machine Learning

The notion of "sustainable AI" has been proposed by a variety of
researchers and practitioners [25, 54] intending to emphasise the in-
terconnection between Al and sustainability [58]. Nevertheless, "sus-
tainable" is frequently interpreted as synonymous with "environmen-
tally friendly." For instance, the "Sustainable AI" manifesto issued by
Facebook AI [63] is solely focused on diminishing carbon emissions
from Al systems whilst vowing to "advance the field of Al in an en-
vironmentally responsible manner". This exemplifies the challenge
of encouraging stakeholders to embrace a multifaceted perspective
on sustainability rather than confining it merely to environmental as-
pects.

Fairness is one of the most crucial sustainability metrics accord-
ing to SDGs. Fairness in ML models refers to the absence of bias

Model Explainability
Linear Regression 1
Tree 1

Tunable Hyperparameters

Regularisation strength
Max depth
Number of estimators
Max depth
Max rows to subsample
Number of estimators
Max depth
Learning rate
Fraction of columns to subsample
Max rows to subsample
L1 regularisation
L2 regularisation
Minimum loss reduction for partition
Balance between positive and negative samples
Number of layers
Layer size

Random Forest 2

XGBoost 2

Neural Network 3

Table 1: Models and associated tunable hyperparameters used in our
benchmarking study. Note that we consider a subset of the hyperpa-
rameters that could be tuned; thus, this is not an exhaustive list. A
self-defined measure of explainability from 1 to 3 is included, with 1
being the most and 3 least explainable.

or discrimination in the predictions and decisions made by the mod-
els [50, 59, 15]. Technically speaking, fairness involves identifying
and addressing biases in the data used to train the models and the
algorithms themselves. Techniques such as pre-processing the data
to remove biased patterns, using specialised algorithms that explic-
itly consider fairness constraints during training, and employing fair-
ness metrics to evaluate model performance can help achieve fair-
ness in ML models [17, 18]. Recent research has defined differ-
ent fairness metrics for Al [50, 59, 15]. Among these definitions,
group fairness metrics such as demographic parity [19], equalised
odds [35], and social fairness ensure that different groups based on
a protected attribute are treated equally. The impossibility theorems
on fairness [41, 23] show that these definitions cannot all be satisfied
at once. There is also individual fairness and counterfactual fairness
[42], which are proposed to ensure fairness at individual levels. Fair-
ness can be considered in both supervised and unsupervised learning
settings. Recent research also investigated in incorporating multiple
fairness objectives into ML models given a desired level of fairness,
using group functionals [17, 18].

Privacy in ML models pertains to preserving the confidential-
ity and security of sensitive data used for training and inference
[55]. Privacy protection involves implementing mechanisms that pre-
vent unauthorised access, use, or disclosure of personal information.
Techniques like data anonymisation, encryption, and secure multi-
party computation can be employed to protect privacy in ML models.
Differential privacy (DP) has also been regarded as the gold standard
in academia as it provides a well-defined theoretical guarantee. It can
be applied to ensure that individual data points are not distinguish-
able, thereby safeguarding privacy while maintaining the utility of
the models [9]. Adding noise during training is one way to incorpo-
rate DP into ML models. For example, Differentially private stochas-
tic gradient descent (DP-SGD) [30] makes deep learning models dif-
ferentially private by modifying the mini-batch stochastic optimisa-
tion process during gradient descent [21, 20, 38]. Other approaches
incorporate DP to data synthesis [45, 60] and than train the model on
the DP synthetic data, making these models more robust against DP
attacks with exponentially many queries.

Interpretability in ML models refers to understanding and ex-
plaining the reasoning behind the model’s predictions or decisions
[51]. Interpretability techniques involve feature importance analysis,
rule-based approaches, and model-agnostic techniques [28]. These
techniques provide insights into the factors influencing the model’s
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Figure 2: The moving average (we consider a rolling 500 trial period.) of Accuracy, Group Disparity, and Emissions metrics over time (number
of trials), for (a) Adult income, (b) COMPAS, (c) LSAC, (d) Loan Default, (¢) Support2 datasets.

output and enable humans to comprehend and validate the decision-
making process. Also, layer-wise relevance propagation (LRP) or at-
tention mechanisms can help identify relevant features or parts of
the input contributing to the model’s predictions. A few works inves-
tigated the trade-offs between computational efficiency and model
explainability [33, 46].

Greenhouse Gas (GHG) emissions associated with ML models
refer to the carbon footprint generated during the model’s lifecycle,
including data processing, training, inference, and deployment [36].
At a technical level, reducing GHG emissions involves optimising
the computational resources used for training by employing energy-
efficient hardware and algorithms. Techniques like model compres-
sion, which reduces the model’s size or complexity, can also con-
tribute to lower energy consumption during inference [22]. Addition-
ally, adopting hardware acceleration techniques, using distributed
computing, and leveraging renewable energy sources can help min-
imise the environmental impact of ML models [43]. [62] consider
the ecological impact of AI’s growth across the whole pipeline, from
data to system hardware.

While extensive literature is working on improving model effi-
ciency, leading to lower GHG emissions, explainable Al (xAl) has
become an emerging area that attracts research [28, 51]. A few
works investigated the trade-offs between computational efficiency
and model explainability [33, 46]. Nevertheless, to our knowledge,
this paper is the first to introduce a framework encompassing all four
sustainability goals, including fairness, privacy, model interpretabil-
ity and low GHG emissions.

3 The FPIG Framework

We propose a framework incorporating the four sustainability fea-
tures into the model training pipeline. Specifically, we are optimizing
along different dimensions (e.g., model performance, explainability,
carbon emission and fairness with some level of privacy).

3.1 Single-Objective Optimization

Traditionally, the hyper-parameters of a machine learning model are
tuned to maximize one metric of interest, for example, the area under
the curve. Once the metric of interest is defined, the objective is to
minimize the quantity in Eq. (1):

minimize  f(x)

x e X M

subject to
where x € X C R% is the set of d hyper-parameters, X C R? is the
search space and f(-) is the objective function, for example, a loss
function to be minimized.

In the case of a single-objective scenario, such as the one shown
in Eq. (1), the Tree-structured Parzen Estimator (TPE), initially pro-
posed for neural networks [14], is widely used for optimizing a wide
number of machine learning models. The key idea is to separate the
likelihood function p(x|y) in two components to identify which re-
gion the best hyper-parameters are likely to be in:

T ()
plxly) {g(x)

ify <y”
. . @)
ify >y
where y* is usually a quantile of the observed values y (e.g, 80%),
and [(-) and g(-) are the probability density functions formed us-
ing the observations {x(”} below and above y*, respectively. This
methodology begins with several random observations {x}(’) and
proceeds iteratively by adding one observation at a time such that the
expected improvement is maximized. As shown in [14], the expected
improvement is proportional to
-1
«, 9(x) .
EIL,« 1-— .

In other words, the aim is to sample with higher probability under
I(x) (i.e., the portion of the density with the most promising hyper-
parameters) and lower probability under g(x).

3.2 Multi-Objective Optimization

In a multi-objective scenario, we are interested in the minimization
(or maximization) of many objectives that usually conflict. The opti-
mization problem is defined as follows:

f(x) = (fr(x),...
x e X

minimize , fn(X)) 3)

subject to

where, as in Eq. (1), x € X C R% is the set of d hyper-parameters,
X C R? s the search space. The difference is that this time, we
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define a vector of cutoffs Y* = (yi,...,yn), that is, a cutoff for
every objective, and the TPE estimator is generalized a follows:

p(xly) = {l(x) Yy s Y uyiY )
g(x) ifY" =y
where the >, > and || operators denote dominant, weakly domi-
nant and non-comparable relationships, respectively, as per [52]. This
time, as shown in Eq. (4), the most "promising" solutions are those
that dominate the cutoff Y™ or those that are not comparable to Y ™.
The less promising models are those that are weakly dominated by
Y " and, thus, contribute to forming the density function of the least
"promising” hyper-parameters g(x). Splitting the data into two sets
is, in this instance, achieved via the Hype method [12]; however, the
methodology is, in principle, the multi-objective equivalent of Eq.

(1).

3.3 Incorporating Fairness

Several metrics exist for quantifying machine learning models’ fair-
ness and algorithmic bias. Amongst them, the most popular and often
considered are equalized odds, equal opportunity, and demographic
parity [49]. Without loss of generality, in our framework, we opti-
mized for demographic parity, which is satisfied when the condition
below holds true:

P(Y|A=0)=P(Y|A=1).

In other words, the protected attribute A (e.g., sex or age) does not
influence the model’s outcome. In reality, demographic parity can
never be exactly zero because the protected attribute A usually cor-
relates with other features the model uses. Hence the objective is
minimizing group disparity (Y, A) as

f(Y,A) = |P(Y|A=0)—-P(Y|A=1)|. )

3.4 Incorporating Privacy

To include privacy in our framework, we consider the concept of dif-
ferential privacy [29, 30], which we use to include privacy guarantees
in the model.

Definition 1. A randomized mechanism M : D — R satisfies
(e, 8)-differential privacy if for any two adjacent inputs d,d’ € D,
and any S C R fulfil the inequality below:

P(M(d) € §) < e P(M(d') € S) + 6. (6)

To incorporate Differential Privacy into diverse model architec-
tures, we didn’t take the common route where privacy is applied via
training, such as the popular Differentially-Private Stochastic Gradi-
ent Descent (DP-SGD) [9]. Instead, we exploit the idea that converts
data into differentially private synthetic data, which can be exploited
by different model architectures universally. Various DP data synthe-
sis approaches were proposed for different modalities. For example,
[60] and [47] can generate DP synthetic data for tabular and images,
respectively.

In this work, we adopted DPView [45], a state-of-the-art DP-aware
high-dimensional data synthesis for tabular data. For a given privacy
requirement e, it utilises the domain size of attributes and the corre-
lation among attributes to analytically optimise both privacy budget
allocation and consistency in producing synthetic data points. Their

evaluation demonstrated that the approach is versatile (when applied
to tabular data from vest applications) and can effectively preserve
model utilities. Compared to traditional gradient-based approaches
(e.g., DP-SGD [9]) where privacy can still be breached by querying
the model multiple times and the total privacy budgets are required to
split across users, DPView is more robust as it does not suffer from
the same issues since noises are directly applied to data instead of the
model during training.

3.5 Incorporating Interpretability

In this framework, we introduce interpretability into the objective
function by assigning different model types to an ordinal value to
illustrate their interpretability. The lower the value, the more inter-
pretable the model is considered to be. The objective is to minimise
this value during the training process.

3.6 Evaluating GHG Emissions

We included a GHG emission tracking with CodeCarbon [48]
throughout our training and inference pipeline to monitor the carbon
emissions from each model training. It helps to track the overall car-
bon emission by accumulating the power consumption of individual
hardware components and converting it into GHG emission based on
the energy mixture of local power grids. At the end of the training,
the overall GHG emission amount is output along with the model
parameters.

4 Evaluation

This section presents an experimental analysis of an Al pipeline im-
plementing the proposed FPIG framework. All the code is imple-
mented in Python 3.9, and the experiments are performed on an 16
CPU instance consisting of 64GB memory. The evaluation is divided
into two parts. Firstly, we run 2000 trials for each dataset using dif-
ferent models and hyperparameters using the FPIG framework. We
then identify the relationships between the key metrics (accuracy,
fairness, emissions) using results across all trials. Secondly, we use
the results of the trials to develop a sustainable meta learning algo-
rithm, aiming to learn the relationship between the meta-features of
the model and dataset used, and the outputted accuracy, fairness and
emissions.

4.1 Dataset, Differential Privacy and Protected
Attributes

We included the five public datasets in our evaluation:

e Adult Income [13] is a public multivariate social dataset for an-
nual income classification (i.e., if annual income is above 50K).
It comprises 48,842 records with 14 attributes such as education,
occupation, and work class.

o COMPAS Recidivism Racial Bias [11] is a popular commercial
algorithm judges and parole officers use to score criminal defen-
dants’ recidivism likelihood. This dataset compares the algorithm
outputs and the ground truths, which shows that the algorithm is
biased in favour of white defendants and against black inmates,
based on a 2-year follow-up study.

e LSAC [24] is a public dataset originally collected for a "'LSAC
National Longitudinal Bar Passage Study’ study. It includes back-
ground information and if (and how) candidates passed the bar
exam to become lawyers in the United States.



838

R. Pagliari et al. / A Comprehensive Sustainable Framework for Machine Learning and Artificial Intelligence

Dataset Best Model w.r.t. | Model Architecture | Accuracy | Group Disparity | Differential Privacy | Explainability | Carbon Emissions
Accuracy xgboost 0.861 0.167 10.5 2.0 3.92 x 10~6
- =6
Adult income [13] Falrne'ss ' x'gt'yoost 0.767 0.000 10.0 2.0 3.18 x 10
Carbon Emissions decision tree 0.726 0.446 10.5 1.0 2.26 x 10~ %
Equal Importance xgboost 0.767 0.000 10.0 2.0 3.05 x 10~©
Accuracy decision tree 0.671 0.095 10.5 1.0 1.65 x 107
COMPAS [11] Faimess ' xgt'yoost 0.460 0.000 0.5 2.0 6.59 x 10~
Carbon Emissions decision tree 0.630 0.079 1.5 1.0 7.00 x 10~ 8
Equal Importance logistic regression 0.614 0.007 0.5 1.0 5.02 x 10~7
Accuracy neural network 0.949 0.003 10.5 3.0 9.71 x 10—°
LSAC [24] Faimegs ' xgboost 0.946 0.000 2.0 2.0 7.58 x 10~ 7
Carbon Emissions xgboost 0.946 0.000 2.0 2.0 7.58 x 107
Equal Importance xgboost 0.946 0.000 2.0 2.0 7.58 x 10~ 7
Accuracy neural network 0.999 0.013 10.5 3.0 2.56 x 10~ %
Loan Default [65] Fairne§s - dec%s?on tree 0.745 0.000 10.5 1.0 3.59 x 10~6
Carbon Emissions decision tree 0.745 0.000 10.5 1.0 3.59 x 10~ 6
Equal Importance random forest 0.848 0.0003 10.5 2.0 1.44 x 10~°
Accuracy xgboost 0.977 0.0259 10.5 2.0 3.01 x 10~°
: ; =6
Support2 [65] qurne.ss ' x.gt'yoost 0.255 0.000 2.5 2.0 1.64 x 10
Carbon Emissions decision tree 0913 0.021 10.5 1.0 6.16 x 107
Equal Importance decision tree 0.956 0.005 10.5 1.0 7.02 x 10~7

Table 2: The best models across different datasets, concerning different sustainability metrics. We consider accuracy, fairness, carbon emissions
and an equal importance approach, as defined in Section 4.3. The results shown are on an out-of-sample test set.
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Figure 3: Scatter plots of accuracy against group disparity for different datasets for all 2000 trials. Different models are shown in different
colours, and different levels of carbon emissions are shown using different sizes.

e Loan Default [65] is a public multivariate financial dataset for
loan default classification. It includes 139,202 records with 34 at-
tributes such as income, gender, and loan purpose. Note that we
randomly sampled 40,000 records from this dataset in our evalua-
tion.

e Support2 [31] is a public multivariate health dataset for predict-
ing survival over a 180-day period for seriously ill hospitalized
adults. It comprises 9,105 records and 42 attributes, such as age,
sex, and follow-up days.

Each dataset is split into a training set (70%) and a test set (30%).
We then apply DPView [45] to each training set and generate twenty
Differentially Private (DP) synthetic data (having the same num-
ber of data points as the training sets) with different DP levels
e = [0.5,10.0], where smaller € indicates higher DP. Also, we only
consider one protected attribute, that is, gender, for all five datasets.
We only consider binary protected attributes (thus generating two
groups in each case) and measure fairness via disparity, i.e., the ab-
solute difference in the average loss between both groups. This is for
simplicity, but our approach can easily carry over to other metrics
and more complex settings.

4.2  Models and their Parameters

‘We built the FPIG framework using various models with varying de-
grees of complexity. We consider a range of hyperparameters for

each model, as detailed below. Varying the model complexity and
parameters will give different performance metrics and, better or
worse, fairness and GHG emissions. Complex models like Neural
Networks are expected to worsen fairness due to overfitting. The
trade-offs between fairness and accuracy and GHG emissions should
always be considered when designing new models. Table 1 illustrates
our study’s models and associated hyperparameters. We also include
a self-defined measure of each model’s explainability. This ranges
from 1 to 3, with 1 being the most explainable model and 3 least
explainable.

4.3 Search Space and Pareto-Front Analysis

We exploited Optuna [10], a state-of-the-art hyper-parameter op-
timization package, as our optimization engine to find the Pareto
Fronts of the objectives defined in the FPIG framework. For each
dataset, we run 2000 trials. For each trial, we select a value between
0.5 and 10 for differential privacy, where 10 indicates lower differen-
tial privacy and vice versa. We then use the respective differentially
private dataset based on this value. We also include the option of no
differential privacy. The objectives are listed below:

e Fairness: we exploited demographic parity [49] as our fairness
metrics. The objective is to minimise the group disparity f in
Equation (5).
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o Interpretability: ML models are assigned an ordinal value in
{0, 1, 2, 3} to illustrate their interpretability as in Table 1, the low-
est indicating the simplest models. Models range from decision lo-
gistic regression to decision trees, random forests, XGBoost, and
neural networks.

e Carbon emission: CodeCarbon [48] is used to measure GHG
emission in practical settings. The GHG emission is reported in
the unit of the kilogram.

e Accuracy: given that all the five tasks are classification, we use
classification accuracy [0, 1] as the performance metric evaluating
model utility.

e Equal Importance: To find the best models concerning accuracy,
fairness and carbon emissions, we consider a naive approach for
trading off each of them with equal importance. To define this, we
scale the values of each metric to be between 0 and 1 to obtain vfj,

the scaled value for each trial ¢ € {1,---,2000} for each metric

j € {Accuracy, Fairness, Carbon Emissions}, for each dataset D.

The best trial is defined to be

.D . D D D
= argmlni ((1 - Uz‘,Accuracy) +Uz‘,Faimess +Ui,Carb0n Emissions) ) (7)

as we wish to maximise Accuracy, whilst minimising Fairness and
Carbon Emissions.

4.4  Optimisation under the FPIG Framework

We use Optuna to search through the hyperparameter space and find
the Pareto-Frontier. Table 2 summarises the best models and their
overall performances concerning the performance metrics - Accu-
racy, Fairness, Carbon Emissions - and their corresponding model
Explinabilities and Differential Privacy levels. We further illustrate
(in a rolling average of 500 trials) the trade-offs between the three
performance metrics over time in Figure 2. Below, we summarise
our observations.

Although the degree may vary, the trade-offs between objectives
always exist. The results showed that Accuracy can always trade
for Fairness across all five datasets. This observation aligns with the
heuristic, where better fairness usually leads to worse model utility.
However, the degree of trade-offs varies. As can be seen in Table 2,
Adult Income demonstrates a small accuracy reduction from 0.861 to
0.767 when improving the group disparity from 0.167 to 0.0, whilst
Support2 shows significant accuracy reductions from 0.977 to 0.255
when improving the group disparity from 0.0259 to 0.0. Similarly,
we can train a model with lower Carbon emissions by trading Ac-
curacy and Fairness. Compared to Accuracy, the trade-offs between
Carbon Emission and Fairness are more significant across all five
datasets. For example, when applying the model with the lowest Car-
bon Emission model to the Adult income dataset, the Accuracy and
Group Disparity were reduced by 0.135 and increased by 0.279, re-
spectively, compared to the optimal for Accuracy and Fairness.

Multiple objectives can be improved during model tuning. Al-
though trade-offs (disregarding their degree) are seen across all
datasets tested, as shown in Table 2, we also observed that multiple
objectives could still be improved simultaneously. First, the models
selected by optimising the Equal Importance (Eq. (7)) demonstrate
balanced performances between all three metrics - Accuracy, Fair-
ness and Carbon Emission, indicating that it is possible to find a
suitable solution across all datasets. For example, we find a model
in which the Accuracy and Fairness are reduced by only 0.057 and
0.007, respectively, with the COMPAS dataset. Second, from Fig-
ure 2 we observed that the trade-offs between objectives varies as

Model Inputs Dataset
Adult | COMPAS | Loan | LSAC | Support2
Logistic Regression | 0.518 0.439 -0.348 | 0.300 -0.202
Decision Tree 0.472 0.383 -0.608 | 0.253 -0.321
Random Forest -0.072 0.526 -0.612 | 0.137 -0.054
XGBoost 0.519 0.871 -0.283 | -0.093 -0.188
Neural Network 0.485 0.449 0.493 | -0.570 0.028

Table 3: The correlation between Accuracy and Group Disparity.

per dataset. For example, Accuracy and Group Disparity are posi-
tively correlated (i.e., higher accuracy and lower fairness) in Adult
Income and COMPAS datasets, whilst the same correlation in the
LSAC and Support 2 datasets is negative. Although it is possible
to improve multiple objectives simultaneously, the trajectory toward
optimal (concerning the surrogate objective, such as the Equal Im-
portance in Eq. (7)) can vary as per dataset.

The models yielding lower Group Disparity are usually more def-
erentially private. Heuristically, we know that protected attributes
(e.g., gender in our experiments) could potentially be utilised to iden-
tify individuals. Therefore, differential privacy (DP) could also be
improved when building fair models for those protected attributes.
Our experiment results shown in Table 2 confirm the above hypoth-
esis. The best model concerning fairness always provides better DP
(fulfilling smaller privacy budget €) compared to other scenarios.

Simpler models are usually more explainable and carbon-
friendly. This observation reinforces our heuristic regarding the
trade-offs between model complexity and explainability. As seen in
Table 2, the best models for Carbon Emission adopt the decision tree
architecture (i.e., more explainable and easy to compute) across four
datasets. In contrast, Neural Network (NN) and XGBoost, having ex-
tensive capability to approximate any continuous function with lower
Explainability, achieved the best Accuracy across four datasets. Fur-
ther observations regarding the impact of model architecture will be
presented in the following subsection.

4.5 The Impact of Model Architecture

The choice of model architecture also plays a significant role when
searching for better solutions under the FPIG framework. The best
model architecture varies significantly across datasets. We further
see this in Figure 3, where we compare accuracy and fairness for
the three datasets - Loan Default, COMPAS and LSAC. We plot
a line that best fits each model type and dataset. As can be seen,
the trade-offs not only vary between datasets but also differ between
model architectures. The correlations between Accuracy and Group
Disparity when applying different model architectures across the five
datasets shown in Table 3 also support this observation. In the COM-
PAS dataset, we see similar behaviour across all model types. As
we increase Accuracy, this must come at the expense of Fairness, as
Group Disparity also increases. This is shown by the positive gradi-
ent of the lines of best fit in Figure 3 and the positive correlations in
Table 3. In contrast, the correlation becomes negative when applying
NNs to the LSAC dataset, which means that the NN models could
improve Accuracy and Group Disparity simultaneously compared to
other model architectures. This difference is less obvious in Loan
Default and COMPAS datasets.

4.6 Sustainable Meta Learning

In the previous subsection, we studied the trade-offs between sus-
tainable objectives and realised that the preferred hyperparame-
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Model Inputs Sustainability Feature Coefficients
Accuracy | Group Disp. GHG
No DP Applied 1.118 0.843 -0.153
Classifier NN (y/n) 0.537 -0.200 1.902
DP 5.5 (y/n) 0.446 0.008 0.008
DP 7.0 (y/n) 0.402 0.215 -0.018
DP 10.0 (y/n) 0.326 0.180 0.091
Dataset Column Number 0.322 -0.416 0.006
DP 3.0 (y/n) 0.306 0.326 0.018
# of categorical features 0.069 -0.413 0.071
# of NN layers -0.024 0.021 0.417
Size of NN layer -0.067 -0.006 0.102
Feature cardinality -0.094 0.317 -0.016
Variance of target -0.461 -0.149 0.034

[ E-net RZ On Test Set [ 0.6967 [ 0.3799 [ 0.6806 [

Table 4: Meta-learning model: Ridge Regression (v = 1) of accu-
racy, fairness (group disparity) and GHG emissions on selected fea-
tures of the combined datasets. Coefficients impose the importance
of each feature on the metric of interest. Accuracy and fairness are
sensitive to differential privacy (lower is more differentially private),
whilst GHG emissions depend on the size of the original training set
and the model used.

ters and model architectures vary as per dataset. A single solu-
tion does not exist that fits all scenarios. Following the method-
ology in [64], we trained regression models M; for each of ¢ €
[accuracy, disparity, emissions] that learn the relationship between
the key objectives (i.e. accuracy, group disparity, and GHG emis-
sion), based on features of the dataset dx (e.g., number of features,
number of entries) as well as features on the model and training d,,
( e.g., hyperparameters of the model architecture, number of train-
ing epochs) and finally privacy level requirements, dj,. This is based
on the FPIG framework’s trained models using Optuna. We aim to
offer users a framework to determine which architecture and "sus-
tainable hyperparameters" to pick given requirements before train-
ing, which is typically time-consuming and leads to extensive energy
consumption and GHG emissions. This is the first step towards devel-
oping broader frameworks and attempting to define a meta-learning
approach that will allow for a more automated ML system.

Table 4 summarises the results by running separate regression
models against each objective of interest and showing the learnt co-
efficients of selected inputs. We list the most essential features in
the Table. Our experiment demonstrates the relationship between
dataset, model hyperparameters and sustainability features. We ob-
serve that using a less differentially private dataset increases the ac-
curacy, thus illustrating the trade-off between accuracy and privacy
previously discussed. We also note that using neural networks tends
to increase accuracy, whilst using a dataset with a significant variance
in the target will decrease the model’s accuracy. Further, group dis-
parity tends to decrease with more privacy. Using no differential pri-
vacy is the most significant factor in having a more extensive group
disparity, with a coefficient of 0.843. Lastly, we note that using Neu-
ral Networks has the most significant impact on GHG Emissions,
thus increasing with model complexity. There doesn’t seem to be
any significant relationship between privacy requirements and car-
bon emissions.

Algorithm 1 demonstrates how the meta-learning algorithms can
be used in practice. This takes in a dataset X, a set of candidate
model architectures dﬁ’,«f ) for k = 1,---, K, along with user require-
ments 7 on the minimum accuracy, maximum disparity and maxi-
mum emissions the user is willing to accept. The algorithm then re-
turns only the model architectures whose estimated metrics sit within
the thresholds based on the meta-learning models. From this, users

Algorithm 1 Candidate Model Evaluation
Require: Dataset X,
i €
7_ =

meta-learning  models M,  for
[accuracy, disparity, emissions], user requirements
[Tace, Tdisps Tem], Privacy requirement d,, candidate
model architectures d') for k = 1,--- K.

Compute d, for dataset X

fork=1,--- , K do

Compute
M = Maucaney[da, dp, diy|
mio = Maispariy[da, dp, d5]
miy = Menissions|da, dp, 13|
end for
return {dgf): mf.fc) > Tace, mfﬁksz, < Tdisps m;’? < Tem}

can select their chosen model based on preference across the metrics.

5 Conclusion

This paper introduces the FPIG framework for Sustainable Machine
Learning, considering a multi-objective optimisation problem in-
volving accuracy, fairness, privacy, explainability and carbon emis-
sions. We demonstrate this approach on five datasets and show the
trade-offs between these sustainable objectives and the possibility of
finding models to balance these trade-offs. We also extended these
observations by building a meta-learning approach to predict these
critical metrics based on the dataset and model characteristics. The
results further validate our above observations and show that fairness,
as one of the sustainable objectives, is more data-dependent, mean-
ing that it is more difficult to provide guarantees by selecting suitable
model architectures and corresponding hyperparameters.
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