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Abstract. We introduce an innovative approach to enhancing
the empirical risk minimization (ERM) process in model training
through a refined reweighting scheme of the training data to enhance
fairness. This scheme aims to uphold the sufficiency rule in fairness
by ensuring that optimal predictors maintain consistency across di-
verse sub-groups. We employ a bilevel formulation to address this
challenge, wherein we explore sample reweighting strategies. Un-
like conventional methods that hinge on model size, our formulation
bases generalization complexity on the space of sample weights. We
discretize the weights to improve training speed. Empirical valida-
tion of our method showcases its effectiveness and robustness, re-
vealing a consistent improvement in the balance between prediction
performance and fairness metrics across various experiments. Code
is available at https://github.com/zhaoxuan00707/Reweighting_for
_sufficiency.

1 Introduction
Machine learning has found extensive application in real-world
decision-making processes, including areas such as health care sys-
tems [1, 2]. Algorithmic fairness has garnered significant attention as
a means to mitigate predictive bias linked to protected features such
as ethnicity, gender, or age. Consequently, numerous fairness notions
catering to diverse objectives have been proposed. While many ex-
isting approaches in classification or regression adhere to indepen-
dence or separation rules (refer to Section 2 and related references)
[29, 39, 13], it’s worth noting that these rules may not always be
suitable in various applications. In such cases, alternative fairness no-
tions, such as the sufficiency rule [12], are favored. In simple terms,
the sufficiency rule, detailed in Section 2, ensures that the condi-
tional expectation of E[Y |Ŷ ] remains consistent across different sub-
groups, providing a more nuanced approach to fairness.

In practical terms, neglecting the sufficiency rule can result in sig-
nificant biases within intelligent healthcare systems. For instance,
many health systems utilize algorithms to identify and support pa-
tients with complex health requirements. These algorithms generate
a score indicating the level of healthcare needs, with higher scores
suggesting greater sickness and the need for more care. Notably, a
study by [32] uncovers a widely used industry algorithm affecting
millions of patients, which exhibits pronounced racial bias. It was
found that for a given predicted score Ŷ = s, black patients tend
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to be considerably sicker than white patients (Eblack[Y |Ŷ = s] >
Ewhite[Y |Ŷ = s]). Moreover, the study highlights that rectifying
this disparity could significantly increase the percentage of black
patients receiving additional care from 17.7% to 46.5%. From an
algorithmic perspective, the sufficiency rule is generally incompat-
ible with concepts such as independence or separation, as demon-
strated in Section 2 and the Appendix [45]. This suggests that exist-
ing fair algorithms designed for independence or separation may not
enhance or could even exacerbate issues related to the sufficiency
rule. Notably, recent work on Invariant Risk Minimization (IRM)
proposed by [3? ] has potential to address this challenge. IRM seeks
to maintain invariant correlations between the embedding (or rep-
resentation) and the true label by incorporating regularization tech-
niques into Deep Neural Network (DNN) training. The criteria of
the sufficiency rule and IRM are intrinsically consistent (see more
details in Section 3.1.1); the idea being that if the correlations be-
tween the embedding (or representation) and the true label remain
robust and unaffected by specific sub-groups, the resulting represen-
tation can be considered fair. To better understand this concept, IRM
addresses the challenge of ensuring that a cow is correctly classi-
fied as a cow in a picture, regardless of whether the background is
Grass or Desert [3]. On the other hand, the sufficiency rule aims to
ensure that a patient predicted to be high-risk is truly high-risk, re-
gardless of whether the patient is Black or White. IRM approaches
have attracted attention due to their promising performance on mod-
est models and datasets [3] and their simplicity in facilitating end-
to-end training. Nevertheless, recent studies have indicated dimin-
ished effectiveness of the regularization terms when applied to over-
parameterized DNNs [9, 25]. For instance, CelebA comprises only
200k training data, whereas ResNet-18 boasts 11.4 million parame-
ters. Overparameterized DNNs can easily diminish the regularization
term of IRM to zero during training while still depending on spuri-
ous features. In such scenarios, applying IRM methods directly for
fairness to uphold the sufficiency rule in relatively larger models is
deemed inappropriate.

This paper introduces a novel approach to address the aforemen-
tioned limitation by proposing a model-agnostic sample reweight-
ing method. Our method transforms the parameter search space of
the model into one of sample weights by formalizing the learning
of sample reweighting as a bilevel optimization problem. Within the
inner loop, we train DNN on the weighted training samples. In the
outer loop, we employ the IRM criterion as the outer objective to
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guide the learning process of the sample weights, thereby enforcing
the sufficiency rule. We iteratively alternate between the inner and
outer loops, ultimately obtaining a set of weights w with an advanta-
geous characteristic: utilizing only learned sample weights on train-
ing samples, we can conduct weighted empirical risk minimization
(ERM) training to achieve superior fairness.

Our contributions are summarized as follows:

1. We introduce a model-agnostic sample reweighting approach
rooted in bilevel optimization for IRM learning to promote fair-
ness. This method offers notable advantages, particularly in trans-
forming the optimization problem from the parameter space of
DNNs to the space of sample weights. This shift effectively
mitigates the overfitting issues commonly encountered by IRM
regularization-based methods.

2. Our method formulate the fairness issue as a bilevel optimization
and does not impose specific fairness constraints, thus avoiding
the issue of determining critical hyperparameters for fairness reg-
ularization.

3. We substantiate the superior performance of our approach through
empirical evaluations across diverse tasks, showcasing its effec-
tiveness compared to state-of-the-art methods.

The structure of this paper is as follows. In Section 2, we present a
comprehensive review of the notation and background related to fair-
ness notions, IRM, and reweighting methods. Section 3 outlines our
sample reweighting method in detail. In Section 4, we conduct ex-
periments to compare the accuracy and fairness across four datasets
against state-of-the-art methods, illustrating the robustness and effec-
tiveness of our framework.

2 Preliminaries and Related Work
2.1 Sufficiency Rule in Fairness

We denote the predictive features asX ∈ X , the ground truth label as
Y ∈ Y , and the algorithm’s output as Ŷ ∈ Y . We consider a binary
protected feature or two sub-groupsD0 andD1. Then, in accordance
with [26], the sufficiency rule is defined as follows:

ED0 [Y |Ŷ = s] = ED1 [Y |Ŷ = s], ∀s ∈ Y (1)

2.1.1 Sufficiency Gap

Eq. (1) indicates that the conditional expectation of the ground truth
label Y is consistent across both D0 and D1, given the same predic-
tion output s. In [37], the sufficiency gap is proposed as a metric for
fairness measurement. In binary classification, the sufficiency gap is
naturally defined as follows:

∆Suf =
1

2

∑
y∈{0,1}

|PD0(Y = y|Ŷ = y)− PD1(Y = y|Ŷ = y)|

(2)
The sufficiency gap ∆Suf ∈ [0, 1]. A value close to 0 indicates

equality between two sub-groups, which have close Positive Predic-
tive Values (PPV) and Negative Predictive Values (NPV). To grasp
the significance of this metric, consider a healthcare system that only
outputs binary scores: High Risk or Low Risk. As highlighted in
[32], if PDblack (Y = High Risk|Ŷ = Low Risk) � PDwhite (Y =
High Risk|Ŷ = Low Risk), then the severity of illness is underesti-
mated more for black patients than for white patients. Therefore, a
small value of ∆Suf indicates that racial discrimination is addressed.

2.1.2 Relation to Other Fairness Notions

We briefly contrast the Sufficiency rule with the commonly employed
Independence and Separation rules in binary classification. For com-
prehensive justifications and comparisons, please consult Appendix
[45].

The Independence rule is:

ED0 [Ŷ ] = ED1 [Ŷ ] (3)

In binary classification, the Independence rule is often referred to as
demographic parity (DP) [42]. Furthermore, it can be argued that if
PD0(Y = y) 6= PD1(Y = y) (indicating distinct label distribu-
tions in the sub-groups), it is impossible for both the Sufficiency and
Independence rules to hold simultaneously [5].

Separation Rule is:

ED0 [Ŷ |Y = s] = ED1 [Ŷ |Y = s], ∀t ∈ Y (4)

In binary classification, the Separation rule is also referred to as
Equalized Odds (EO) [18]. Additionally, [4] have further illustrated
that if PD0(Y = y) 6= PD1(Y = y) and the joint distribution of
(Y, Ŷ ) has a positive probability in D0 and D1, then it is impossible
for both the Sufficiency and Separation rules to coexist [5] (please
refer to Appendix [45] for further details).

2.2 Invariant Risk Minimization

IRM operates under the assumption that there are multiple environ-
ments E := {e1, e2, ..., eE} within the sample space X × Y , each
characterized by distinct joint distributions. Furthermore, it assumes
that the correlation between the spurious features and labels varies
inconsistently across these environments. The predictor f(·; θ) in
IRM is expressed as a composite function of a representation φ(·; Φ)
and a classifier h(·; v), formulated as f(·; θ) = h(φ(·; Φ); v), where
θ = {v,Φ} represents the trainable parameters. The fundamental
idea is that if a predictor f(·; θ) performs effectively across all envi-
ronments, it suggests that the correlation between the spurious fea-
tures and labels is not accurately captured[35, 3]. In these cases, the
data representation function φ elicits an invariant predictor across en-
vironments E if and only if for all latent z in the intersection of the
supports of φ(Xe) we have E[Y e|φ(Xe) = z] = E[Y e

′
|φ(Xe′) =

z], for all e, e′ ∈ E (For loss functions such as the mean squared
error and the cross-entropy, optimal classifiers can be written as con-
ditional expectations). Please refer to Appendix [45] for more details.
Consequently, IRM aims to minimize a specific IRM risk to identify
such a robust predictor. Several approaches have been proposed to
enhance IRM: [23, 40] advocate for penalizing the variance of risks
across different environments, while [7, 41] attempt to estimate the
violation of invariance by training neural networks. Moreover, theo-
retical guarantees for IRM on linear models with adequate training
environments are provided by [3, 36, 8].

Two popular risks are:

RIRMv1(D, θ) :=
∑
e

L(De, θ) + λ‖∇vL(De, θ)‖22 (5)

RREx(D, θ) :=
∑
e

L(De, θ) + λVe[L(De, θ)] (6)

whereD =
⋃eDe denotes the data drawn from all environments,

where De represents the data from environment e. The expression
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Ve[L(De, θ)] signifies the variance of the loss across various envi-
ronments.

However, it has been observed that IRM exhibits diminished ef-
ficacy when applied to overparameterized neural networks [17, 11].
[25] elucidates that this limitation can largely be attributed to the
problem of overfitting. Consequently, utilizing these methods di-
rectly for addressing fairness concerns is not straightforward.

2.3 Reweighting

Sample reweighting constitutes a classical approach for addressing
various tasks such as distribution shifts, imbalanced classification,
and fairness concerns. Here, we specifically delve into reweighting
methodologies associated with fairness considerations. Fairness with
Adaptive Weights [6] imposes constraints on the sum of weights
across sensitive groups to ensure equality, assigning weights to each
sample based on its likelihood of misclassification. Adaptive Sen-
sitive Reweighting to Mitigate Bias [22] assigns weights to samples
based on their alignment with the unobserved true labeling. [24] intri-
cately models the impact of each training sample on fairness-related
metrics and predictive utility. Additionally, [43] utilizes Neural Net-
works to reweigh samples, aiming to achieve causal fairness. To the
best of our knowledge, no reweighting method has been specifically
applied to achieve the sufficiency rule in fairness. Furthermore, our
method stands apart from heuristic reweighting methods, as it does
not necessitate complex hyper-parameter selection processes.

3 Reweighting to Achieve Sufficiency Rule
3.1 Bilevel Formulation of Reweighting

Given a dataset D constituted as a set {(xi, yi)}ni=1, where each
(xi, yi) is drawn from X × Y , the weighted empirical loss is de-
fined as L(D, θ;w) := 1

n

∑n
i=1 wil(f(xi; θ), yi), with f(·; θ) rep-

resenting a neural network parameterized by θ, l(·, ·) indicating the
loss function (e.g., cross-entropy or least squares loss), and wi ∈ R+

denoting the non-negative weight assigned to each sample.
We formulate the objective of learning sample weights to mitigate

reliance on sensitive features as the subsequent bilevel optimization
problem:

min
w∈W

R(D, θ∗(w)), (7)

s.t. θ∗(w) ∈ arg min
θ

L(D, θ;w)

Here, w denotes a vector of sample weights with a length of n,
indicating the importance of each training sample, where each com-
ponent wi of w satisfies wi ≥ 0. Any IRM Risk R(D, θ) discussed
in Section 2 can function as the outer objective. In our subsequent
experiments, we employ the risk (5), denoted as IRMv1. Within the
inner loop, we minimize the weighted ERM loss on the training sam-
ples to derive a model θ∗(w), while within the outer loop, we eval-
uate the learned model’s reliance on sensitive features through IRM
Risk and adjust the sample weights accordingly. By iteratively alter-
nating between the inner and outer loops, the sample weights grad-
ually adjust to a state where they can yield satisfactory IRM/fair-
ness performance via straightforward ERM training. It’s worth not-
ing that, instead of different environmental settings as in the IRM sce-
nario, the fairness problem involves distinct sensitive groups, such as
D0 and D1, as depicted in Section 2. Although we showcase our ap-
proach within the context of binary sensitive groups in this section, it

can be readily extended to scenarios involving multi-categorical sen-
sitive groups (refer to the experimental details on the toxic comments
dataset and COMPAS dataset in Section 4).

Our approach provides the following benefits: 1) by establishing
an implicit mapping from the sample weight space to the model pa-
rameter space in the outer loop, where the former consistently re-
mains smaller than the latter in deep learning tasks (as detailed in
Section 1), we effectively address overfitting issues typically asso-
ciated with IRM regularization-based methods (the objective of the
outer loop); 2) our approach avoids the need to impose specific fair-
ness constraints, thereby circumventing the challenge of determining
critical hyperparameters for fairness regularization to achieve a better
trade-off between fairness and accuracy.

3.1.1 Connection to the Sufficiency Rule:

We elaborate the connection between the outer loop of our bilevel
objective and the Sufficiency Rule [37].

Proposition 1. In a classification task, minimizing the loss in the
outer loop as illustrated in details in Section 2.2 is tantamount to:

ED0 [Y |Z = z] = ED1 [Y |Z = z], (IRM definition) (8)

ED0 [Y |Ŷ = h∗(z)] = ED1 [Y |Ŷ = h∗(z)] (9)

where h∗0, h∗1 are the optimal predictor for each sub-group, h∗ =
h∗1 = h∗0 and z = φ(x).

Proposition 1 illustrates that the objective of the outer loop loss
aligns with the sufficiency rule in binary classification.

3.2 Enhance Reweighting by Sparsity and
Continuation

We discretize the optimization method [46] here,

min
m∈C
R(D, θ∗(m)), (10)

s.t. θ∗(m) ∈ arg min
θ

L(D, θ;m)

where the maskm ∈ {0, 1}n represents a binary vector, andmi =
1 denotes that sample i is included in the training set, otherwise it
is excluded. K is a positive integer that determines the size of the
selected set, and C = {m : mi ∈ {0, 1}, ‖m‖0 ≤ K} denotes the
feasible region of m. Essentially, the inner loop trains the network
to converge on the selected set to obtain the model θ∗(m), while the
outer loop assesses the loss of θ∗(m) on the entire set and optimizes
it to guide the learning of m.

The distinction between our discrete bilevel formulation (10) and
the original bilevel formulation (7) lies in the absence of individual
weights wi for each sample in the sparse formulation (10). We opt
for this sparse formulation for several reasons: 1) empirical results
demonstrate satisfactory performance even without these weights; 2)
it simplifies the development of an efficient training algorithm; 3)
excluding noisy data enhances the robustness of the model.

Given the discrete nature of the mask m, directly solving the
bilevel optimization problem (10) is intractable due to its NP-hard
nature. Hence, we adopt a continualization approach [46] via proba-
bilistic reparameterization to render gradient-based optimization fea-
sible. We treat each mask mi as an independent binary random
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variable and transform the problem into the continuous probabil-
ity space. Specifically, we reparameterize mi as a Bernoulli ran-
dom variable with probability si for being 1 and 1 − si for be-
ing 0, i.e., mi ∼ Bern(si), where si ∈ [0, 1]. Assuming inde-
pendence among the variables mi, the distribution function of m
becomes p(m|s) =

∏n
i=1(si)

mi(1 − si)
(1−mi). Thus, we con-

trol the selected size through the sum of probabilities si, since
Em∼p(m|s)[‖m‖0] =

∑n
i=1 si. Consequently, C can be relaxed into

C̃ = {si : 0 ≤ si ≤ 1, ‖s‖1 ≤ K}. Finally, problem (10) naturally
relaxes into the following:

min
s∈C̃

Ψ(s) = Ep(m|s)[R(D, θ∗(m))], (11)

s.t. θ∗(m) ∈ arg min
θ

L(D, θ;m)

where C̃ = {si : 0 ≤ si ≤ 1, ‖s‖1 ≤ K} is the domain.
Several beneficial aspects of our formulation (11) include:

1. Our formulation serves as a close relaxation (though not equiva-
lent) of Problem (10). This is evident for the following reasons:

(a) It is apparent that mins∈C̃Ψ(s) ≤ minm∈CΨ(m) since any
deterministic binary mask m can be represented as a specific
stochastic one by setting si to either 0 or 1.

(b) Our constraint C̃ induces sparsity on s through the l1-norm and
the range [0, 1], resulting in most components of the optimal s
being either 0 or 1. Therefore, our eventually learned stochastic
weight is nearly deterministic.

2. Due to the sparsity constraint, the size of the selected set in the
inner loop, remains small, which greatly enhances the efficiency
of optimizing θ∗ (refer to details in Appendix [45]).

3. As indicated in Eq. (13), our outer objective Ψ(s) is differentiable,
enabling the utilization of general gradient-based methods for op-
timization.

3.3 Optimization Method

Current bilevel optimization algorithms [34, 16] typically incur high
computational costs owing to the resource-intensive implicit dif-
ferentiation inherent in their chain-rule-based gradient estimator.
Specifically, if employed in our context, they commonly approximate
the gradient in the following manner:

∇sΨ(s) ≈ ∇sθ∗(m)∇θR(D, θ∗(m)) (12)

Hence, they need to compute the implicit differentiation of the
inner loop optimum, i.e, ∇sθ∗(m), which is expensive since they
have to compute the inverse of a huge hessian matrix or unroll the
backward propagation for multiple steps. Even though some efficient
bilevel optimization algorithms have been proposed to alleviate the
computational burden (for instance, [28] adopted Neumann series to
approximate the hessian inverse), the approximation is nevertheless
time-consuming.

The probabilistic formulation (11) of the bilevel problem allows us
to circumvent costly computations by computing the gradient using
forward propagation instead of backward propagation. This can be

illustrated by the following equations:

∇sΨ(s) = ∇sEp(m|s)[R(D, θ∗(m))]

= ∇s
∫
R(D, θ∗(m))p(m|s)dm

=

∫
R(D, θ∗(m))

∇sp(m|s)
p(m|s) p(m|s)dm

=

∫
R(D, θ∗(m))∇slnp(m|s)p(m|s)dm

= Ep(m|s)[R(D, θ∗(m))∇slnp(m|s)] (13)

This indicates that R(D, θ∗(m))∇slnp(m|s) serves as an unbi-
ased stochastic gradient of ∇sΨ(s). Consequently, with the inner
loop optimum θ∗(m) at hand, we can update s (probability) via pro-
jected stochastic gradient descent:

s← PC̃(s− ηR(D, θ∗(m))∇slnp(m|s)) (14)

It’s evident that this approach does not entail any implicit differ-
entiation, and its componentR(D, θ∗(m)) can be computed through
forward propagation. Additionally, lnp(m|s) exhibits a straightfor-
ward form, and the projection possesses a closed-form solution [46]
given the simplicity of the constraint C̃. Consequently, we can effi-
ciently update s.

Thus, we can tackle our bilevel optimization problem (11) by alter-
nately: 1) sampling m, i.e., a selected set, from p(m|s) for the inner
loop and training the model on this selected set to obtain θ∗(m); 2)
updating the probability s. The details are shown in Algorithm 1.

Algorithm 1 Reweighting for the Sufficiency Rule

Require: a neural network parameterized by θ, a dataset D, and a
selected set size K.

1: Initiate probabilities s1 as K
|D|1.

2: for iteration t of training, where t is from 1 to T . do
3: Sample m based on the probability vector st.
4: Continue training the inner loop until convergence achieved:

θ∗(m)← argmin
θ

L̂(θ;m)

5: Sample a mini-batch K from the dataset D :
K = {(x1, y1), ..., (xK, yK)}

6: Update s according to θ∗(m) and K.
st+1 ← PC̃(s

t − ηRK(D, θ∗(m))∇slnp(m|st))
7: end for
8: Output: The selected set {(xi, yi) : mi = 1 and (xi, yi) ∈ D}

where m is sampled from p(m|sT+1).

4 Experiments
We adopt the aforementioned sufficiency gap as the fair metric and
accuracy as the metric for utility. Our neural network models are
trained on an Intel(r) Core(TM) i7-8700 CPU. The networks in our
experiments are built using the Pytorch package [33].

4.1 Baselines

We compare our method with (I) Empirical Risk Minimization
(ERM) which trains the model without considering fairness; (II)
No Utility-Cost Fairness via Data Reweighing (NUF) [24]; (III)
Fair Representation Learning through Implicit Path Alignment (IPA)
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Table 1: Accuracy and ∆Suf in Toxic comments (left) and CelebA datasets (right)

Toxic comments Accuracy(↑) ∆Suf(↓)
ERM(I) 0.768±0.004 0.173±0.008

NUF(II) 0.762±0.007 0.190±0.008

IPA(III) 0.745±0.007 0.091±0.012

AR(IV) 0.756±0.006 0.128±0.097

Ours(V) 0.763±0.004 0.028±0.004

IRMv1(VI) 0.753±0.004 0.068±0.008

CelebA Accuracy(↑) ∆Suf(↓)
ERM(I) 0.956±0.005 0.210 ±0.094

NUF(II) 0.947±0.007 0.104±0.004

IPA(III) 0.938±0.103 0.092±0.161

AR(IV) 0.950±0.012 0.197±0.007

Ours(V) 0.953±0.094 0.045±0.004

IRMv1(VI) 0.946±0.009 0.088±0.007

Table 2: Accuracy and ∆Suf in Adult (left) and COMPAS datasets (right)

Adult Accuracy(↑) ∆Suf(↓)
ERM(I) 0.831±0.014 0.160±0.007

NUF(II) 0.815±0.017 0.068±0.015

IPA(III) 0.810±0.004 0.058±0.024

AR(IV) 0.820±0.023 0.230±0.014

Ours(V) 0.827±0.016 0.036±0.007

IRMv1(VI) 0.825±0.018 0.032±0.012

COMPAS Accuracy(↑) ∆Suf(↓)
ERM(I) 0.652±0.024 0.276±0.094

NUF(II) 0.633±0.032 0.156±0.008

IPA(III) 0.647±0.017 0.097±0.009

AR(IV) 0.659±0.019 0.285±0.018

Ours(V) 0.647±0.004 0.068±0.015

IRMv1(VI) 0.645±0.008 0.078±0.017

[37], an approach in the fair representation learning to achieve
also the sufficiency rule; (IV) Adversarial Reweighting Guided by
Wasserstein Distance for Bias Mitigation (AR) [44]. Notably, the
baseline (IV) is grounded in Demographic Parity (DP), illustrating
their general incompatibility with addressing the sufficiency rule.
Additionally, we include the original Invariant Risk Minimization
regularization [3], denoted as IRMv1, which incorporates a gradient
penalty to encourage invariance across different groups. Even though
it is designed for another purpose, as shown earlier in Section 3, it has
potential to address fairness to reach the sufficiency. Results are aver-
aged over five repetitions. Further experimental results are provided
in Appendix [45].

4.2 Datasets and Experiment Setups

The toxic comments dataset [20] presents a binary classification
challenge in natural language processing (NLP), aiming to determine
whether a comment exhibits toxicity. Originally, the labeling process
for this dataset is not binary due to involvement from multiple anno-
tators, leading to potential discrepancies. To address this, we adopt a
straightforward strategy where a comment is classified as toxic if at
least one annotator marks it as such, similar to the approach in [37].
Notably, some comments in this dataset are annotated with identity
attributes such as gender and race. It has been observed that the race
attribute correlates with the toxicity label, posing a risk of predictive
discrimination. Therefore, we designate race as the protected fea-
ture and specifically focus on two sub-groups: Black and Asian. For
computational efficiency, we begin by leveraging a pre-trained BERT
model [15] to extract word embeddings, resulting in vectors of 748
dimensions.

The CelebA dataset [27] comprises approximately 200K images
featuring celebrity faces, each associated with 40 human-annotated
binary attributes such as gender, hair color, and age. For our exper-
iment, we randomly partitioned the dataset, selecting approximately
82K images for training and 18K for validation. We employed the
ResNet-18 architecture [19], pre-trained on ImageNet [14], omitting

the final fully-connected layer to obtain embeddings of 512 dimen-
sions for simplicity. Within the CelebA dataset, our specific task in-
volves predicting hair color ({blond, dark}) based on the image input.
Notably, the gender attribute ({male, female}) is correlated with hair
color.

For experiments on tabular data, we use the Adult dataset [21]
and the COMPAS dataset [30] (For more details of the datasets,
please refer to Appendix [45]). Adult dataset used personal informa-
tion such as education level and working hours per week to predict
whether an individual earns more or less than $50,000 per year. We
use gender as the sensitive feature in Adult dataset. COMPAS dataset
is a popular commercial algorithm used by judges and parole offi-
cers for scoring criminal defendant’s likelihood of reoffending. We
use race as the sensitive feature. Here we report the sufficiency gap
between two sub-groups of African American and Caucasian even
though that ethnicity group is a multi-categorical feature. Please re-
fer to Appendix [45] for more data and training details.

4.3 Analysis

4.3.1 Performance Comparison

In Table 1 and Table 2, we present the accuracy and sufficiency gap
metrics. Notably, we observe that the Demographic Parity (DP) based
fair method (IV) is incompatible with the sufficiency rule, as ev-
idenced by its tendency to increase ∆Suf even surpassing that of
ERM. On the other hand, baselines (III, VI), which aim to track the
sufficiency rule, exhibit improved sufficiency gap ∆Suf with com-
parable accuracy, albeit inferior to our approach in Table 1. This
discrepancy may stem from an overparameterization issue, as pre-
viously discussed. Our method consistently demonstrates a supe-
rior Accuracy-Fairness trade-off, significantly enhancing sufficiency
without substantial accuracy loss. We observe a similar performance
pattern on tabular datasets (Table 2). However, the performance drop
of baselines (III, VI) is less pronounced. This discrepancy may be at-
tributed to the comparatively smaller DNN models utilized in train-
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(a) Accuracy vs. Noise ratio on Toxic
comments

(b) Sufficiency gap vs. Noise ratio on
toxic comments

(c) Accuracy vs. Noise ratio on
CelabA

(d) Sufficiency gap vs. Noise ratio on
CelabA

Figure 1: Change of accuracy and sufficiency gap under different noise ratios on Toxic comments and CelebA datasets, which shows that our
method is robust when the data label is noisy.

Figure 2: The evolution of probability score distribution during the search process reveals a trend where most probabilities tend to converge
towards either 0 or 1. This convergence ultimately leads to deterministic weights and convergence of the algorithm.

ing on tabular datasets, which are less susceptible to overparameter-
ization compared to the toxic comments dataset and CelebA dataset.

4.3.2 Robustness with Noisy Data

We extend our experimentation to scenarios where the dataset incor-
porates corrupted labels, aiming to demonstrate the robustness of our
approach. Following the model configuration outlined in Section 4.2,
we introduce symmetric noise [38] into the dataset. Notably, as illus-
trated in Figure 1, our method exhibits robustness towards variations
in the dataset’s label quality, as evidenced by consistent performance
in both accuracy and sufficiency gap metrics. This robustness can
be attributed to the comprehensive information assimilated through
iterative sampling, leading to the construction of the final weight vec-
tor w. Essentially, the sparsity induced by our method facilitates the
elimination of noisy data samples, thus preserving the model’s effec-
tiveness.

4.3.3 Sensitivity to Choices of K

The selected sizes for the Toxic comments and CelebA experiments
are 5000 and 10000, respectively, as shown in Figure 3. As the se-
lected sizes increase, we observe an improvement in both accuracy
and sufficiency gap performance. Yet, beyond a certain threshold,
this improvement plateaus, aligning with the corset concept [31].
Corset theory suggests that there exists a small subset capable of
summarizing the larger dataset effectively. Training exclusively on

this condensed set yields competitive performance compared to train-
ing on the entire dataset.

4.3.4 Convergence of Probabilities during Search

A simplified approach is taken by selecting 1000 samples from a
larger pool of 10000 training data instances (CelebA). Figure 2 illus-
trates the evolution of probability distributions throughout the search
process. Initially, all sample probabilities are uniformly distributed
at 0.1. Over the course of the search, most of these probabilities tend
to converge towards either 0 or 1, indicative of diminishing uncer-
tainty. Consequently, a sparse mask with minimal variance is formed,
reflecting a nearly deterministic pattern in weight assignment. This
trend ultimately leads to the establishment of deterministic weights,
signifying algorithmic convergence.

4.3.5 Gradual Change of Group Weights

In Figure 4, we depict the training dynamics of sample weight frac-
tions from our CelebA experiment. Initially, all sample weights are
uniformly set to 1. The weight fraction of the (Male, Blond Hair)
group begins at a mere 0.085%. Following 100 iterations of up-
dates, this fraction gradually increases to approximately 20%. Si-
multaneously, the weight fraction of the (Male, Dark Hair) group
decreases to approximately 20%, while both the (Female, Dark Hair)
and (Female, Blond Hair) groups stabilize at approximately 30%. In-
terestingly, in [6], the assumption is that bias is introduced due to
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(a) size K for Toxic comments dataset

(b) size K for CelebA dataset

Figure 3: Choices of K (selected set size). The size is set to 5000 for
Toxic comments and 10000 for CelebA.

under-representation of the minority groups, hence, they upweight/-
downweight sensitive groups to the same importance level. Figure 4
demonstrates that even though we do not constrain on the group level
importance, somehow, our method possesses the ability to dynami-
cally adjust the weight fraction of (sub)-groups automatically.

5 Discussion and Conclusion

We presented a model agnostic sample reweighing method to achieve
the sufficiency rule of fairness. We formulated this problem as a
bilevel optimization to learn sample weights. We further enhance our
method with sparsity constraints to improve training speed. Then, we
analyzed the sufficiency gap and prediction accuracy of the reweight-
ing algorithm, demonstrating its superior performance over state-of-
the-art approaches. The empirical results also show that our method
is robust towards noisy labels. One limitation of our framework is
that the overall performance of IRMv1, in terms of test accuracy, con-
sistently improves when there is a significant difference between the
training environments [10]. This suggests that, in terms of fairness,
IRMv1 is more effective when there is greater disparity between the
sensitive sub-groups.
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Figure 4: The fluctuation in the distribution of group weight frac-
tions for ResNet-18 on the CelebA dataset is notable. Specifically,
there’s a shift to 20% for both the (Male, Blond Hair) and (Male,
Dark Hair) gourps. Similarly, the (Female, Dark Hair) and (Female,
Blond Hair) groups see their fractions adjusted to 30%. These ob-
servations suggest that our methodology is capable of autonomously
adapting weight fractions across various (sub)-groups.
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