
ActivityGen: Extracting Enabled Activities from
Screenshots

Harry H. Beyel*, Sovin Manuel and Wil M. P. van der Aalst

RWTH Aachen University, Aachen, Germany

Abstract. Many tasks in organizations are performed in a desktop
environment. It is possible to record users’ interactions in a desktop
environment by taking screenshots when an action happens. The re-
sult is an interaction log. By considering the associated images of
a record, it is possible to detect which activity was performed and
which activities were enabled. This information can be extracted,
resulting in a translucent event log. Such a translucent event log is
valuable and can be used as input for dedicated process-mining tech-
niques. The results can be used to analyze human-computer interac-
tions or create bots for robotic process automation. However, current
techniques for extracting information on enabled activities rely on
template matching, which is rigid and sensitive to variations. To solve
this issue, we present our modular framework, ActivityGen. Activi-
tyGen detects and labels graphical user interface elements by also
considering additional information. ActivityGen uses more advanced
techniques to overcome the limitations of previous approaches and
can extract information without a user’s input. Furthermore, it can
be adjusted to a user’s needs. It detects graphical user interface el-
ements more accurately than state-of-the-art techniques and labels
them faster, more robust, and more domain-oriented than state-of-
the-art techniques.

1 Introduction

An enormous amount of tasks in organizations are done in desktop
environments. The analysis of such tasks has great potential. For ex-
ample, interactions between humans and computers can be analyzed.
In this analysis, potential issues concerning interfaces can be identi-
fied. Also, it is possible to create bots for Robotic Process Automa-
tion (RPA) [50]. Such bots are used to automate repetitive tasks in a
desktop environment. To create bots faster and also more robust bots,
data-driven approaches are needed. Such techniques are developed
in the field of Robotic Process Mining (RPM) [31], a subfield of task
mining [20], which is related to process mining [52]. Process-mining
techniques can be grouped into three categories: process discovery
[3], conformance checking [11], and process enhancement [16]. In-
put data for process-mining techniques are provided in the form of
an event log. Such an event log consists of events, each having a
case identifier, an activity, a timestamp, and perhaps additional data
attributes. Thus, to apply process mining in a desktop environment,
digitally capturing the interactions between humans and computers
is essential. There are some tools that capture these interactions, but
they have limitations. WinParrot and JitBit Macro Recorder are un-
suitable due to recording too low-level interactions or not consider-

∗ Corresponding Author. Email: beyel@pads.rwth-aachen.de

Table 1. Example interaction log.

Inter-
action Case Snapshot x y Time-

stamp

i1 100 IMG_01.png 100 150 13:37
i2 100 IMG_02.png 200 900 13:45
i3 200 IMG_23.png 675 320 16:20

Table 2. Example translucent event log.

Event Case Activity Timestamp Enabled
Activities

e1 100 a 13:37 {a, e}
e2 100 b 13:45 {b}
e3 200 c 16:20 {c}

ing enough context. Other tools, like the Action Logger [30], can
only be applied to a limited number of applications. An application-
independent approach can be achieved by using interaction logs. To
create an interaction log, a user’s screen is recorded, capturing an
application’s Graphical User Interface (GUI) such that each entry of
a record is associated with an image showing the state of a screen.
An example is provided in Table 1. By converting an interaction log
into an event log, a translucent event log can be created. A translu-
cent event log is based on an event log and additionally captures in-
formation on activities that can be executed — next to the executed
activity. An example is shown in Table 2. Dedicated process-mining
techniques can be applied to translucent event logs [7, 53].

The current technique to transform an interaction log into a
translucent event log is presented in [6]. The authors use labeled tem-
plates and template matching to extract the information. If a template
is detected in a screenshot, the label is added to the set of enabled ac-
tivities of an entry. This approach has multiple shortcomings. First,
template matching is rigid and sensitive to changes. Such changes
are likely to happen, for example, due to different screen ratios be-
tween users and resizing windows. Second, a user must provide all
templates with corresponding labels that should be detected. Creat-
ing these is time-consuming and prone to errors.

Extracting information on executable activities in a screenshot can
be divided into two parts: detecting GUI elements and labeling them.
Current works of detecting GUI elements, such as [56, 59], do not
consider user input (e.g., providing a template of a GUI element to
detect) or need a lot of training data. In our case, such data are in-
accessible since we only have a limited number of runs of a task.
Current works of labeling GUI elements, such as [4, 27], have inac-
cessible data, cannot be adjusted or need much time for labeling,

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240553

712



���������	
��
����
���

�����
���
�
������
��
������

���������
	
��

�
�
�
��

���������� �
�����
����������

������

������� ������
��
!"������#�$%���&�'����

���(������
%���&�'����

���������

����
��
���(�����
���������

����
�
���(������

)��(�
��� �
���
�������

Figure 1. Overview on ActivityGen.

which leads to a time-consuming transformation from an interac-
tion log into a translucent event log. To overcome the limitations
of existing works, we propose a framework that detects and labels
GUI elements, thus enabling rich extraction of enabled activities. An
overview is provided in Figure 1. Our framework can incorporate
user input but does not rely on it. Furthermore, by design, the un-
derlying methods in our framework can be changed so that various
methods can be used, making it robust for future techniques. The de-
tection and labeling mechanisms do not depend on each other. As
denoted in our evaluation, the quality of the detection mechanisms
is better than state-of-the-art techniques (by 5% concerning the F1
score). The labeling is less hardware intensive and faster than state-
of-the-art techniques, and, as observed in our experiments, it is more
expressive and robust. Due to its design, it can also incorporate in-
formation beyond images.

2 Related Work

2.1 Detecting GUI Components

In [56], UI Element Detection (UIED) is introduced. The approach
is applied to GUIs. UIED combines traditional computer vision tech-
niques, like canny edge detection and flood-filling, with deep learn-
ing to detect GUI components. These components are assigned to
a category using a deep-learning model. UIED uses a top-down ap-
proach for detecting shapes in a screenshot. Therefore, noise does
not influence the detection. In contrast, we train another classifier
on cleaner and more recent data. Furthermore, we allow for a user-
guided detection of components, i.e., template images of GUI com-
ponents are provided by a user and used to detect similar instances.
In [43], mobile interfaces are generated given a drawing. The ap-
proach uses a pre-date deep-learning method, and basic geometric
shapes are detected. These detected shapes are aggregated into more
complex objects, i.e., the approach is a bottom-up technique. Be-
sides shapes, text is also detected. Nevertheless, the approach only
differentiates between text and non-text components. Additionally,
some approaches solely rely on deep-learning [55, 57, 58, 59]. These
methods rely on training deep-learning object-detection models like
YOLO [46] or Faster Region-based Convolutional Neural Networks
(R-CNN) [48]. In [57], YOLO is fine-tuned and used to detect drawn
GUI elements on sketches. In [55, 59], GUI components are ex-
tracted using a trained Faster R-CNN. Applying heuristics to these
components leads to inferring the hierarchical structure of screen-
shots or accessible metadata. However, detecting this structure may
not be possible in our case, e.g., if the background is shaded. Overall,
a drawback of these techniques is that they need an enormous amount
of data to be reliable. Yet, in our scenario, the amount of instances
available for training is limited. Thus, the mentioned approaches are
less applicable.

2.2 Generating Activity Names

There is work focusing on generating captions for images. Such cap-
tions can be interpreted as activities that we generate in our work. In
[33], WidgetCaption is presented. The work focuses on generating a
natural language description for the functionality of a GUI compo-
nent. They introduce a new dataset based on the RICO dataset [17].
Originally, the RICO dataset contained screenshots from multiple
Android apps. The authors build on the stored screenshots and assign
a label to each element in the images. Each label describes the func-
tionality of an element. The newly created dataset is used to train an
encoder-decoder model that considers the view hierarchy in Android
apps and an image of a component to generate captions. No dedi-
cated pre-training is used. In [27], Pix2Struct is introduced, iterating
on WidgetCaption [33]. It takes a screenshot as input in which the
GUI component is outlined using a bounding box and creates a cap-
tion. To ensure robustness, fine-tuning and pre-training are applied.
For fine-tuning, the WidgetCaption dataset is used. Another work in
this area is Spotlight [32]. Similar to Pix2Struct, it takes a screen-
shot and a region of interest as input and uses an encoder-decoder
model. It is pre-trained on predicting text-based attributes and fine-
tuned on the WidgetCaption dataset [33]. In contrast to Pix2Struct,
other regions of interest are also extracted. Pix2Struct and Spotlight
perform similarly. In [4], Lexi is presented. Lexi aims to learn repre-
sentations of screenshots and their components. The authors propose
a new dataset called UICaption, which was only created for train-
ing Lexi and scraped from how-to guide websites and instruction
manuals. The dataset contains GUI screenshots paired with descrip-
tions of functionality. The dataset is not publicly available. One of
the pre-training tasks is masked language modeling, in which the
model learns to predict parts of the caption in context to other given
words and the image of the component. The different pre-training
tasks and the new dataset allow the model to learn a representation
of the functional properties of different GUI elements. In contrast
to the formerly mentioned approaches, we directly use the informa-
tion available from the GUI components to generate activity names.
This implies that the detection system stays the same. As a result, a
user-specific language model can be deployed to allow for domain-
specific activity names, thus allowing for various application scenar-
ios. Moreover, the bounding boxes of the GUI components are auto-
matically determined using our approach, and thus, it is not neces-
sary to provide them manually. Furthermore, other meta-data can be
incorporated to create the translucent event log. Our approach also
allows us to infer activities w.r.t. to an application’s functionality.

2.3 Extracting Information from Interaction Logs

There are works focusing on extracting various information from in-
teraction logs, especially in the RPM field [20, 31]. However, we
only mention a few since none of the works extract activities from
screenshots. In [26], extracting data from semi-structured documents
using examples is presented. However, it only works on documents,
particularly websites (HTML), spreadsheets, and other text. This in-
formation may not always be accessible; hence, our approach using
screenshots is more general. Also, icons may be used in applications,
making text inaccessible. In [39, 40], the authors detect components
on a screenshot and enrich UI logs, similar to interaction logs, by
extending them with information about the number of instances of a
component class. Our approach differentiates by also detecting user-
given components and inferring the activities that describe them,
which the mentioned approach does not do. In [2], a tool is presented

H.H. Beyel et al. / ActivityGen: Extracting Enabled Activities from Screenshots 713



that converts user interface logs into RPA scripts but does not identify
or label components. Only activity names such as “mouseClick” and
“changeField” are created. Activities can be abstracted to a higher
level, but there is no instruction or reference for performing this step
in the work. In [35], a concept is represented that captures user in-
teraction in a desktop environment to create a process model. While
they mention image recognition, their prototype does not use GUI
component identification and matching.

3 Preliminaries

3.1 Logs

First, we define translucent event logs. Ucase is the universe of case
identifiers, Uact is the universe of activity names, and Utime is the
universe of timestamps.

Definition 1 (Translucent Event Log). Uev is the universe of events.
e ∈ Uev is an event, πcase(e) ∈ Ucase is the case of e, πtime(e) ∈
Utime is the time of e, πen(e) ⊆ Uact is the set of enabled activities
of e, and πact(e) ∈ πen(e) is the activity of e. A translucent event
log L is a set of events L ⊆ Uev .

Concerning e2 in Table 2, πcase(e2) = 100, πact(e2) = b,
πtime(e2) = 13:45, and πen(e2) = {b}. When recording user in-
teractions, we have different information available. In the recorded
interaction log, each entry refers to a case, a timestamp, a snapshot
(an image capturing the screen), and x- and y-coordinates identify-
ing the cursor’s position when the interaction happened. Additional
information, e.g., an application name, is also possible but is not re-
quired.

Definition 2 (Interaction Log). Uin is the universe of interactions,
Usnap is the universe of snapshots, and Uapp is the universe of ap-
plication names. i ∈ Uin is an interaction, πcase(i) ∈ Ucase is the
case of i, πtime(i) ∈ Utime is the time of i, πs(i) ∈ Us is the snap-
shot of i, πx(i) ∈ N and πy(i) ∈ N are the cursor’s coordinate, and
πapp(i) ∈ Uapp is the application name of i. An interaction log I is
a set of interactions I ⊆ Uin.

For i1 in the log presented in Table 1, πcase(i1) = 100, πs(i1) =
IMG_01.png, πx(i1) = 100, πy(i1) = 150, and πtime(i1) = 13:37.

3.2 Computer Vision

In our work, we use a wide range of computer-vision techniques, cov-
ering modern machine-learning and traditional methods. Concerning
machine-learning methods, Convolutional Neural Networks (CNNs)
[1, 22] are used. CNNs are neural networks with a grid-like topol-
ogy and spatial dependencies and use convolutions. These proper-
ties make CNNs ideal for image-processing tasks. Residual Neural
Networks (ResNets) [25] are improved CNNs such that the gradient
does not become smaller during backpropagation. Some algorithms
also use an encoder-decoder architecture [49]. This structure maps an
input sequence to an output sequence with different lengths. Trans-
formers [54] extend the idea of the encoder-decoder architecture. In
contrast to CNNs and ResNets, self-attention layers capture long-
range dependencies. All the aforementioned machine-learning meth-
ods rely on training data. In contrast, traditional methods only need a
provided image. Canny edge detection [10] is applied to detect edges
in images. The flood-fill algorithm [51] detects regions in an image
with the same color. It starts by selecting a seed pixel and pushing it

onto a stack. While the stack is not empty, the algorithm fills the cur-
rent pixel with the desired color and pushes neighboring pixels with
similar colors onto the stack. This continues until the stack is empty,
resulting in a connected region with the same color. Morphological
closing [24] smooths and closes gaps in binary images, where pix-
els are either black or white. This method makes shapes more solid
and continuous. Template matching [9] detects if a given component
is contained in an image, yet the match has to be exact. In contrast,
feature matching [36, 37] is more robust. Sharp edges are needed to
apply this technique.

3.3 Neural Language Models

The general goal of language models is to predict the next word or
token given a sequence of words [5]. Current models are based on the
transformer architecture [54]. Large-language models are a special
kind of language model consisting of millions of parameters. Visual-
language models [45] combine textual and visual information. Given
an image-text pair, the model learns to encode this information and
to decode text answers.

4 ActivityGen

The goal of our work is to transform an interaction log into a translu-
cent event log. To do so, we need to infer activities from snapshots. In
a desktop environment, various applications can be used, each with
its unique GUI. This uniqueness leads to issues. In each application,
different activities are hidden behind various shapes, such as icons.
At the same time, not all icons refer to an activity. Some may be just
used as an image with no interaction. Also, there are contextual de-
pendencies of interaction elements. For example, a search field can
be placed in different surroundings, resulting in a different meaning.
Therefore, we propose a framework that can be adjusted to a user’s
needs. An overview of the framework is provided in Figure 1. As
depicted, ActivityGen consists of multiple modules. In each module,
components play a vital role. A component is smaller than a snapshot
and reflects an area of interest.

Definition 3 (Component). Ucomp is the universe of components.
If a component c ∈ Ucomp appears in a snapshot s ∈ Usnap, this
is denoted as c � s. πx1(c), πx2(c) ∈ N represent the horizontal
boundaries of a component within a snapshot, πy1(c), πy2(c) ∈ N

refer to the vertical boundaries. In addition, πx1(c) < πx2(c) and
πy1(c) < πy2(c).

Necessary for the detection are provided snapshots. If a user pro-
vides a template, detecting components in the snapshot is also user-
guided. However, this is not required. The general component detec-
tion detects all components of interest independent of possible input.
The collected information is merged, components get classified, and
irrelevant components are filtered out. To generate context-relevant
activities, we provide an optional software category classifier. Fi-
nally, an activity name is generated, and the component gets labeled.
In the following, we spotlight the modules of ActivityGen. Thereby,
we focus on the characteristics and the implementation of the frame-
work.

4.1 General Component Detection

Given an image, this module detects text- and non-text components.
For a snapshot s ∈ Usnap, the general component detection can be

H.H. Beyel et al. / ActivityGen: Extracting Enabled Activities from Screenshots714



described as follows:

gcd(s) = {c ∈ Ucomp | c � s} (1)

Our approach is based on UIED [56]. We first focus on the text-
detection. Subsequently, we explain the detection of non-text com-
ponents. Also, we explain the merging process of the detected com-
ponents. Finally, we explain how non-text components are classified
and provide a classification step for icons.

The image is processed, and if text is detected, it is extracted and
saved for further analysis. To detect text, we use PaddleOCR [19].

To detect non-text components, we use a six-step algorithm. First,
we convert the provided image into a binary image using a gradi-
ent map, which assigns new colors based on brightness. Noise is re-
moved by using morphological closing [24]. Second, we detect con-
nected regions by applying a flood-filling algorithm [51] on the bi-
narized image. Third, the previously detected regions are treated as
components, and we filter them based on their shape and size. Fourth,
we merge intersecting components. Fifth, we investigate whether
components consist of components. To do so, we check whether the
inner side of components is blank, i.e., devoid of pixel values. If that
is the case, a component is recognized as “Block”; else, it is recog-
nized as “Compo”. Last, if components are exceptionally large, we
apply again a flood-filling algorithm [51] to identify potential over-
seen components.

After the detection of text and non-text components, we merge
them based on their overlap. When non-text and text components in-
tersect, the detected text has precedence in merging. Furthermore,
detected text components are aggregated into lines and paragraphs
based on proximity. In this step, we also consider the relation be-
tween components. If a component y is fully included in another
component x, y is saved as a child of component x. This information
is saved in intermediate outputs of ActivityGen.

The component classifier categorizes the detected non-text com-
ponents of type “Compo”. There are various non-textual GUI com-
ponents, such as radio buttons. To categorize components, we use
a deep-learning-based image classifier. In UIED [56], the RICO
dataset is used [17]. In our work, we modified the ReDraw dataset
[41], a labeled dataset of GUI components taken from Android
screenshots and optimized for classifying components. The dataset
contains various component classes. We focus on the following:
“Button”, “CheckBox”, “EditText”, “Image”, “ImageButton” (which
we refer to as icon), “RadioButton”, and “Switch”. We noticed that
the examples of “ImageView” and “ImageButton” are similar, pri-
marily consisting of icon images. Therefore, we removed the “Im-
ageView” class and introduced an “Image” class instead. The “Im-
age” class contains images from the validation set of the Coco vali-
dation set 2017 [34] and the YouTube Thumbnails dataset [42], en-
abling the detection of general website images. We call this dataset
ReDrawcls. We use a ResNet-50 [25] that is pre-trained on the Ima-
geNet dataset [18] and fine-tuned using the dataset that we created.
During the classification, the model outputs a probability for the clas-
sification. The class of a component is only changed if the model is
certain, i.e., the prediction probability is above a pre-defined thresh-
old that a user can define.

Many functions in a GUI are hidden behind icons. Some icons may
be program-exclusive. Therefore, training a classification model on a
predefined set of icons would lead to failures if unseen icons appear.
To overcome this, we adopt an open vocabulary classification ap-
proach using Contrastive Language-Image Pre-Training (CLIP) [45].
An overview of the approach is shown in Figure 2. CLIP is trained on
a dataset of 400 million image-text pairs to determine which image

�������������	
���
���
���

�������������	
���
�������

�������������	
���
����
��

�������������	
���
�����

���

���

���

��������� ����� ����	���
	 ���������

�������������	
���
������������������������������������������������������������	������	������	������	������	������	������	
���
��
���
��
���
��
���
��
���
��
���
�
���
�������������������������������������������	
���
������

�� ��� �
	 ��� ��	��� ��� ���

�
������

�������	
���

������
�������	
���

	
���������������

������������

���

�	
������

�
��

����

��
�

��

���

���

���

�����
������

�����
��������� �	�
��

���� ���������
 �	�
�

!����
����

Figure 2. Overview of icon classification approach.

Figure 3. Results of general component detection.

corresponds to which text. As a result, the model learns to compare
images and texts. Thus, it learns to differentiate between concepts
of an icon. Ultimately, it learns to generalize combinations of mul-
tiple concepts. We use OpenClip [14], trained on the DataComp-1B
dataset [21] by LAION. We name this model ClipLD. In prototype
testing, this version demonstrated the best results for icon classifi-
cation. Results of the general component detection are displayed in
Figure 3.

4.2 User-Guided Detection

User-guided detection can be used but does not have to. Given a snap-
shot s ∈ Usnap and a set of components C ⊆ Ucomp, the user-guided
detection can be described as follows:

ugd(s, C) = {c ∈ C | c � s} (2)

The module consists of three independent parts, for which a user
can decide which to use. These parts are template matching, feature
matching, and Visual Similarity Matching (ViSM). All three parts
detect if a template image is contained in a snapshot. Nevertheless,
they use different approaches. In the following, we present the three
parts and discuss them.

As described, template matching evaluates whether a provided
template is part of an image. GUI components may be identical
across different instances. Therefore, we included template match-
ing in our framework. At the same time, template matching is rigid
and sensitive to variations, as pointed out before.

As introduced, feature matching is a more robust technique than
template matching. Nevertheless, using this technique in our ap-
proach leads to challenges. There may be multiple instances of a
component contained in a snapshot. Nevertheless, only one would
be detected. This issue can be addressed using a sliding window
such that the template or detector is applied at different positions and
scales across the image to detect multiple instances. However, this
approach slows down the matching process. The same approach can
also be applied in template matching to detect multiple instances, yet
template matching is less computationally expensive.

H.H. Beyel et al. / ActivityGen: Extracting Enabled Activities from Screenshots 715



(a) Template
image: “Lila
Button”. (b) Template matching with a threshold of 0.6. (c) ViSM with a threshold of 0.99.

Figure 4. Results of user-guided detection. A correct matching is indicated in green, and an incorrect one in red.

The last part is ViSM, which has increased flexibility. Contrary to
the former approaches, it requires the components detected by the
general component detection. Visual templates are compared with
the detected components. For example, given an image of a checked
checkbox, similar checkboxes are found in components. To accom-
plish this, we utilize ResNet-50 models [25] and SimCLR [13]. Sim-
CLR is a framework designed for self-supervised training of models
to learn visual representations of images. These visual representa-
tions are captured as embedding vectors, which can be compared us-
ing similarity measures. In this context, visual representation refers
to the model’s ability to learn and encode visual cues from images,
enabling subsequent comparisons. In [13], it is demonstrated that this
approach, despite requiring a smaller amount of labeled data (only
1% of the labeled data in relation to the size of the unlabeled data),
achieves comparable or superior performance compared to models
trained using supervised methods. This approach is advantageous for
GUI components, where numerous variations exist within the same
component category, allowing us to compare them visually. For train-
ing, we extend the ReDrawcls dataset by adding synthetically created
buttons. We created 6,000 new images of buttons with different col-
ors, icons, texts, and shapes using Tailwind CSS. Besides its popular-
ity, another reason is that Tailwind CSS offers a basic design system
that provides low-level utility classes rather than pre-designed com-
ponents, making generating different variants easier. The images are
distributed into the different split sets according to the previous dis-
tribution ratio of ReDrawcls. Thus, we allow for more differentiation
between instances. We call the extended dataset ReDrawvism. Results
of the user-guided detection are displayed in Figure 4.

4.3 Software Category Classifier

Understanding the context of an application is crucial to interpreting
actions and words in an application. User interfaces convey informa-
tion about an application’s functionalities and interactions through
keywords. For example, in a to-do application, we commonly find
words like “tasks” and “deadlines”. By comparing this information
to our existing knowledge of categories and their associated informa-
tion, we determine which category an application belongs to. In our
work, we extract text from components using general component de-
tection. The extracted text is embedded into a vector space, allowing
it to measure semantic similarity to other texts. As text embedder, we
use all-MiniLM-L6-v2 [47]. To determine the category, we define a
set of categories and associated keywords. The embedding of each
keyword is compared to the embedding of the extracted text, allow-
ing the assignment of a category. Our approach allows users to assign
categories that are use-case-specific.

4.4 Filtering Components

We filter out components that belong to classes “Image”, “Block”,
or “Compo”. Furthermore, we exclude text components if they con-
tain long text or have a parent component. We used more than three

words as the threshold, but it can be adjusted by a user. In addition,
we exclude text, image, or icon components if their parent compo-
nent is either a button or of class “EditText”. Besides, depending on
their state, we assign checkbox components as inner text “check” or
“uncheck”. If a component has a preexisting activity name, a new
name will not be generated. An optional step is adding surround-
ing text. It determines if a component has a direct ancestor of class
“Block” or “Compo”. If it does, the text contained in this ancestor
component is aggregated and associated with the component. Nearby
text is also added to the “EditText” and “Checkbox” components if
they do not have text inside. This follows the idea that the informa-
tion about what the component does is indicated by nearby text.

4.5 Activity Name Generator

Given merged and filtered components and, if available, their con-
text, this module infers activities associated with the components.
The module consists of three independent approaches. A template-
based natural language approach, a basic language model, and an ex-
tended language model. For simplicity, we refer for any c ∈ Ucomp

its activity by πact(c) ∈ Uact.
The template-based natural language generation is the most stable

option for generating activity names since it uses textual templates.
For example, “Click on the Button 〈inner text〉”, where 〈inner text〉
is the label that a button contains. It is inspired by [29], where cap-
tions are generated for the entire screen by using natural language
templates. Currently, this module supports components of the classes
“Checkbox”, “Button”, and “EditText”.

The basic language model (LMbasic) has the best balance between
reliability and flexibility in terms of generational quality. To over-
come the lack of available training data, we employ the concept of
knowledge distillation [23]. It describes the process of training a so-
called student model with the supervision of a teacher model. As
teacher model, we use gpt-3.5-turbo from OpenAI [44]. An entry in
the dataset consists of the following information: the application’s
name, the component class, the inner text, and the activity name that
the model should predict. The created dataset contains over 10,000
training examples and about 1,200 entries for the test and validation
set. Over 854 different applications are covered. As student model,
we utilize Pythia-410m-deduped [8], a transformer-based language
model. We chose this model because of interpretability research and
different sizes, allowing future researchers to compare the differ-
ences in model sizes. We trained the model on causal language mod-
eling, i.e., next token prediction. We use the best model evaluated by
using the perplexity metric on the validation set.

The extended language model (LMextended) shows how further in-
formation can be used to improve the generation context. The ex-
tended dataset for this model is similar to the former dataset, but we
add two new attributes to each entry: the category of an application
and the surrounding text. As model, Flan-t5-base is used [15]. The
advantage of this model is its prefix methodology for fine-tuning,
which involves fine-tuning the model on a particular task by incorpo-

H.H. Beyel et al. / ActivityGen: Extracting Enabled Activities from Screenshots716



rating a prefix to the input text during training, which is more suitable
for generating different prefixes for different use cases. This allows
the creation of different extensions for future training. The model is
trained on question-answering using the component information as
context. We use the best model evaluated using the ROUGE score on
the validation set.

5 Creating Translucent Event Logs

We use ActivityGen to transform an interaction log into a translucent
event log. For each interaction, we detect the component that was
interacted with and use its activity as an event’s activity. Furthermore,
we use the other detected components’ activities in the snapshot of
an interaction to assign enabled activities to an event. The case and
timestamp remain the same. For a snapshot s ∈ Usnap, πc(s) ⊆
Ucomp denote the set of detected components in a snapshot.

Definition 4 (Transformation). Let I ⊆ Uin be an interaction log
and L ⊆ Uev be a translucent event log. L is the transformed in-
teraction log I if there is a bijective function I → L such that
for any i ∈ I there is an e ∈ L with πtime(e) = πtime(i)
and πcase(e) = πcase(i). Moreover, πact(e) = πact(c) where
c ∈ πc(πs(i)) with πx1(c) ≤ πx(i) ≤ πx2(c) and πy1(c) ≤
πy(i) ≤ πy2(c) such that no other component is intersecting. Ad-
ditionally, πen(e) = {πact(c) | c ∈ πc(πs(i))}.

6 Evaluation

To allow for local execution and to enable broad use of our tech-
niques, we implemented our work and evaluated our approach using
the following settings: We utilized an Intel i5-13600K @ 3.49GHz as
CPU, an Nvidia RTX 4080, 16GB VRAM, Driver version: 532.03,
Cuda 12.1 as GPU, 32GB RAM, WSL2 using Ubuntu 22.04 as
OS. Concerning software, we use opencv-python 4.6.0.66, paddleocr
2.7.0.2, and paddlepaddle 2.5.1. In the following listed settings, we
only point out settings that are not the same as for the original work,
respectively, non-standard settings. The LMbasic is trained with 10
epochs with early stopping, a learning rate of 1e-5, and a batch size
of 32. The weight decay is set to 1e-5, and AdamW optimizer and
a linear scheduler are used. The best model is loaded. Concerning
the component classifier, 15 epochs, a learning rate of 5e-4, an input
size of 224, and a batch size of 32 are used. Also, a step size of 7
and a gamma of 0.1 are utilized. In addition, a momentum of 0.9 for
the SGD optimizer is used. Again, the best model is used at the end.
Concerning the model for ViSM, 50 epochs with early stopping, a
learning rate of 5e-4, an input size of 128, and a batch size of 256
are utilized. Also, the number of hidden dimensions is 128, the tem-
perature is 0.07, and the weight decay is set to 1e-4. The AdamW
optimizer and the cosine annealing scheduler are used. Datasets in
the domain of interfaces that fit our requirements are rare or not pub-
licly accessible, e.g., UICaption [4]. Thus, we are limited to a small
selection of datasets for training and evaluating our approaches. To
compare the labeling methods, we use the Pix2Struct large model
fine-tuned on the WidgetCaption dataset. We refer to that model as
Pix2StructW. Spotlight [32] and Lexi [4] are not publicly available.
Our code and data are available [38].

6.1 Quantitative Evaluation

6.1.1 Detecting GUI Elements

A quantitative analysis is conducted to assess the general detection’s
effectiveness and the bounding boxes’ accuracy. Since our approach

Table 3. Results on the test set of RICO [17] using IoU > 0.9.

Precision Recall F1

UIED all 0.239 0.564 0.337

no text 0.332 0.515 0.404

ActivityGen all 0.233 0.567 0.332

no text 0.390 0.465 0.426

is based on UIED [56], the state-of-the-art technique, we anticipate
that ActivityGen will yield a similar performance. This evaluation
employs the test set from the RICO dataset [17]. The images are
resized to a height of 800 pixels, consistent with the dimensions uti-
lized in the original papers [12, 56]. Despite inherent imperfections
and noise within the RICO dataset, it offers a valuable overall direc-
tion for assessment. To ensure a fair comparison, identical parame-
ters are employed for both ActivityGen and UIED. The comparison
focuses on the detection quality rather than individual classes, mir-
roring the approach taken in the UIED evaluation. The evaluation
is based on Intersection over Union (IoU) > 0.9. IoU quantifies the
degree of overlap between a predicted bounding box and the actual
ground truth bounding box. This metric yields values from 0 to 1,
where higher values indicate better alignment. A predicted bounding
box is considered a true positive if its IoU with the corresponding
ground truth bounding box surpasses the threshold of 0.9. Compar-
ing the metrics shown in Table 3, we denote that the originally re-
ported performance of UIED was not successfully reproducible. The
initial papers documented F1 scores ranging between 0.5 and 0.6 for
both scenarios, attributed to a higher level of precision. We exper-
imented with various parameter configurations, but the reported re-
sults were not achieved. However, it is important to acknowledge that
the reported outcomes in the original UIED papers were documented
in 2020, predating newer additions to the project, which we use as
the base. For instance, the transition from EAST to PaddleOCR for
text detection represents one of the notable modifications. Despite
these transformations, it is worth noting that even with the changes
implemented, the performance of both ActivityGen and UIED re-
mains comparatively similar. Nonetheless, ActivityGen’s F1 score is
roughly 5% better without text. The results are on the lower side,
though this can be attributed to the noisiness of RICO and the high
IoU threshold. The lower values for all components with text com-
pared to those without text can be explained by PaddleOCR and the
definition of bounding boxes in the Android hierarchy.

6.1.2 Inference Time

To assess the inference time required by ActivityGen, we again em-
ploy the test set of the RICO dataset [17]. The evaluation focuses on
measuring the duration of the entire generation pipeline for the initial
100 images within the test set. An image may contain more than one
component. The images undergo a resizing process, bringing them
to 800 pixels in height. We utilize the LMbasic and save previously
generated activity names that convey identical information. All func-
tionalities are activated throughout this assessment except for the
user-guided detection feature. The total time taken for the process
amounts to 162.686 seconds, i.e., roughly 1.6 seconds are needed
on average for each image. For 75% of images, less than two sec-
onds are needed. It can be noted that the more components are con-
tained in an image, the more time is required. This inference speed
stands in contrast to alternative methods. For Pix2StructW, generat-
ing captions for all components can extend beyond 20 seconds for

H.H. Beyel et al. / ActivityGen: Extracting Enabled Activities from Screenshots 717



����������	

(a) Correct caption by
Pix2StructW.

�	
�	
��������

(b) Wrong caption by
Pix2StructW.

������������	��

���	���

(c) Generation by
LMbasic.

Figure 5. Captions generated by Pix2StructW [27] and ActivityGen.
Change in the bounding box is highlighted in yellow.

go to training

go to menu

select screen botton

go to play

select the image

select nutrition

settings

(a) Pix2StructW.

Track health data

Access settings

View upcoming events

Access settings

Track health data 

Track health data

Access app settings

(b) LMbasic.

View training programs

View excercise list

View the calendar for actvity

View activity graph

View body measurements

View nutrition information

(c) LMextended.

Figure 6. Captions generated by Pix2StructW and ActivityGen.

a picture (5 times more than ActivityGen’s maximum time for the
whole pipeline). ActivityGen’s faster performance can be attributed
to its lower hardware demands, which are reflected in the VRAM
usage. While the whole system uses 9979 Megabytes when using
Pix2StructW, the whole system needs, when running ActivityGen, at
most, 7794 Megabytes; 7000 Megabytes is the median usage.

6.2 Qualitative Evaluation

6.2.1 Detecting

To test out the robustness in detecting design variations, we use our
dataset ReDrawvism. This dataset allows for assessing the system’s
ability to identify variations. The results concerning the general com-
ponent detection are depicted in Figure 3. As we observe, general
detection is robust to variations of different components. Most but-
tons are correctly classified independently of color, rotation, shape,
and size. However, there are tendencies to wrong classifications due
to similarity to other components. For instance, a button with an an-
gry face is interpreted as a radio button due to the roundness of the
icon with nearby text. Also, the text and buttons’ icons tend to merge
due to PaddleOCR. Next, we investigate the detection capabilities of
user-guided detection. We focus on template matching and ViSM. As
a template, we use the button depicted in Figure 4(a). The results con-
cerning template matching are depicted in Figure 4(b), and the results
concerning ViSM are shown in Figure 4(c). Template matching with
a threshold of 0.9 yields no results. With a threshold of 0.6, some but-
tons are detected, but the detection is noisy, and the bounding boxes
are incorrect, which shows the shortcomings in template matching.
In contrast, the detection using ViSM is better. Only relevant but-
tons are detected, regardless of their size. However, distortions like
rotation cannot be detected due to the model’s training data.

6.2.2 Labeling

We first evaluate the stability. The result is shown in Figure 5. While
Pix2StructW is prone to changes in the bounding box, our approach
does not suffer from such changes. As we detect the bounding boxes
of detected components, we automatically extract the component’s
information and pass it to the language model, making the process
robust against the positions of elements.

X

Log in to
your

account
X X

X

Enter email
adress Continue with login

Enter new password

Add new file Enter new folder
name

Set up automated
folders

Create new
folder X

Uploadifiy
files

X

Add file to
share

Enter new email
address

Share file
and folders

X

XCreate new
link

Login

Add folder

Share

Upload file

Figure 7. Process model generated by applying the Inductive Miner [28]
on the generated translucent event log.

Next, we evaluate the differences between the generated labels
by different methods. We use one image of the RICO dataset [17],
and the results are depicted in Figure 6. The generation time for
Pix2StructW was 8.9 seconds. In contrast, both methods of Activi-
tyGen were significantly faster, each requiring only 2.2 seconds for
the same task. As the real application name is unknown, we use the
placeholder “Mobile App”. LMextended generates concise and action-
able labels. At the same time, the model is biased since settings are
associated with fitness. LMbasic occasionally generates reasonable ac-
tivity names, although more broad. It recognizes the subject of the
application. The results of Pix2StructW are less topic-sensitive than
the others.

6.2.3 Case Study

To demonstrate ActivityGen’s capabilities for process mining, we
conduct an end-to-end case study using Dropbox. The cases are as
follows. First case: The user logs in by entering email and password.
After that, the user gets to the main dashboard. There, the user creates
a folder. A folder dialog appears to set up the folder (name and other
options). After that, a file is uploaded to the folder. Lastly, a link is
generated to share the folders with others. A dialog appears where
the user can add recipients, and then the user copies the link for shar-
ing. Second case: At first, a folder is created. After that, multiple files
are uploaded. Using the Celonis Task Mining tool, we create an in-
teraction log and then apply ActivityGen. We use ActivityGen with
LMbasic. For activity name generation, we use the application name
“Dropbox” and the current view of the application, e.g., “Dropbox -
Login”. We only consider activities as enabled activities if they are
also executed at some point. The process model that can be discov-
ered on the created event log is depicted in Figure 7. Generally, the
activity names are captured well by ActivityGen and are reasonable.
They describe the interaction well and lead to a correct model for the
workflow. The activity name generation shows summarizing abilities
for longer (checkbox) labels: The option “Set up this folder to au-
tomatically handle tasks like organizing your content and converting
files. You will set up your automation after we create the folder.” is
automatically interpreted as “Set up automated folders”. The activity
names are also consistent across different variations. As such, du-
plicates from case two are recognized as a possible loop, indicating
that uploading can be done more than once and to login is not nec-
essary every time. ”Log in to your account” is seen twice, as the first
and last components in the login procedure have the same inner text.
Nevertheless, there are some minor errors. “Uploadify files” stands
for “Upload files” but is mistaken due to errors in detection, where a
nearby arrow icon is interpreted as text “1”. This error is forwarded to
the activity generation, which leads to an inconsistent output, as the
training data do not contain such noise, and “Enter new password” is
erroneous as no new password is entered in interactions. By combin-

H.H. Beyel et al. / ActivityGen: Extracting Enabled Activities from Screenshots718



ing ActivityGen with process mining, we are able to get insights into
the interactions between humans and computers. At the same time,
the output can be used to identify potential for automation by using
dedicated RPM or process mining techniques.

7 Conclusion

We presented the modular framework ActivityGen. As presented, the
framework can perform its task independently from user input and
can be adjusted to a user’s needs. Since a user can still provide in-
put, we ensure that use-case-relevant elements can be detected. The
framework performs at least state-of-the-art results in detecting GUI
elements, labels them faster than state-of-the-art techniques, and gen-
erates more specific labels. Also, additional information, e.g., the ap-
plication name, can be used. Due to the small inference time, it is
beneficial for transforming an interaction log into a translucent event
log. Besides the transformation, potential applications include doc-
umentation purposes and creating manuals. Also, visually impaired
people may use it since relevant interaction elements are detected,
and well-representative captions are generated quickly, which can be
read to the user. Parts of our method rely on training data. Many stan-
dard interfaces use the same assets and design principles, like the law
of proximity. Hence, a potential lack of data might not be an issue.
For custom interfaces, such as legacy software with little available
data, user-guided detection offers valuable assistance.

However, the classification could be better, as shown by the mis-
classification based on misinterpreting an emoticon. Also, activity
names may not always fit. There are also points for future work.
First, our proposed framework does not focus on users’ privacy. Even
though the underlying interaction log is anonymized, snapshots can
be used to conclude a user’s identity. In addition, a preprocessing
step, including redacting parts of screenshots, seems beneficial to
prevent the sharing of sensitive information, e.g., email addresses.
Second, users may perform their tasks by solely relying on the key-
board. Since we capture the cursor’s position, some techniques, for
example, the assignment of activities, may not work in such a case.
Third, it is possible that users have to scroll before their interaction.
However, we only focus on the screen when the interaction happens,
not what is outside the displayed content. Therefore, potential ac-
tivities are not captured. Fourth, since the generation of translucent
event logs is improved, more dedicated process-mining techniques
can be developed. This can lead to a better understanding of human-
computer interactions.

Acknowledgements

We thank the Alexander von Humboldt (AvH) Stiftung for support-
ing our research.

References

[1] C. C. Aggarwal. Neural Networks and Deep Learning - A Text-
book. Springer, 2018. ISBN 978-3-319-94462-3. doi: 10.1007/
978-3-319-94463-0.

[2] S. Agostinelli, M. Lupia, A. Marrella, and M. Mecella. Automated gen-
eration of executable RPA scripts from user interface logs. In BPM
- Blockchain and RPA Forum, pages 116–131. Springer, 2020. doi:
10.1007/978-3-030-58779-6_8.

[3] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi, A. Mar-
rella, M. Mecella, and A. Soo. Automated discovery of process models
from event logs: Review and benchmark. IEEE Trans. Knowl. Data
Eng., 31(4):686–705, 2019. doi: 10.1109/TKDE.2018.2841877.

[4] P. Banerjee, S. Mahajan, K. Arora, C. Baral, and O. Riva. Lexi: Self-
supervised learning of the UI language. In EMNLP, pages 6992–7007.
Association for Computational Linguistics, 2022.

[5] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural proba-
bilistic language model. J. Mach. Learn. Res., 3:1137–1155, 2003.

[6] H. H. Beyel and W. M. P. van der Aalst. Creating translucent event logs
to improve process discovery. In ICPM Workshops, pages 435–447.
Springer, 2022. doi: 10.1007/978-3-031-27815-0_32.

[7] H. H. Beyel and W. M. P. van der Aalst. Translucent precision: Exploit-
ing enabling information to evaluate the quality of process models. In
RCIS, pages 29–37. Springer, 2024. doi: 10.1007/978-3-031-59468-7_
4.

[8] S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien,
E. Hallahan, M. A. Khan, S. Purohit, U. S. Prashanth, E. Raff,
A. Skowron, L. Sutawika, and O. van der Wal. Pythia: A suite for an-
alyzing large language models across training and scaling. In ICML,
pages 2397–2430. PMLR, 2023.

[9] R. Brunelli. Template Matching Techniques in Computer Vision: Theory
and Practice. John Wiley & Sons, 2009. ISBN 978-0-470-51706-2. doi:
10.1002/9780470744055.

[10] J. F. Canny. A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell., 8(6):679–698, 1986. doi: 10.1109/TPAMI.
1986.4767851.

[11] J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich. Conformance
Checking - Relating Processes and Models. Springer, 2018. ISBN 978-
3-319-99413-0. doi: 10.1007/978-3-319-99414-7.

[12] J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, L. Zhu, and G. Li. Object
detection for graphical user interface: old fashioned or deep learning
or a combination? In ESEC/FSE, pages 1202–1214. ACM, 2020. doi:
10.1145/3368089.3409691.

[13] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple frame-
work for contrastive learning of visual representations. In ICML, pages
1597–1607. PMLR, 2020.

[14] M. Cherti, R. Beaumont, R. Wightman, M. Wortsman, G. Ilharco,
C. Gordon, C. Schuhmann, L. Schmidt, and J. Jitsev. Reproducible
scaling laws for contrastive language-image learning. In CVPR, pages
2818–2829. IEEE, 2023. doi: 10.1109/CVPR52729.2023.00276.

[15] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus,
Y. Li, X. Wang, M. Dehghani, S. Brahma, A. Webson, S. S. Gu,
Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, A. Castro-Ros, M. Pellat,
K. Robinson, D. Valter, S. Narang, G. Mishra, A. Yu, V. Zhao, Y. Huang,
A. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean, J. Devlin, A. Roberts,
D. Zhou, Q. V. Le, and J. Wei. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

[16] M. de Leoni. Foundations of process enhancement. In Process
Mining Handbook, pages 243–273. Springer, 2022. doi: 10.1007/
978-3-031-08848-3_8.

[17] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar. Rico: A mobile app dataset for building
data-driven design applications. In UIST, pages 845–854. ACM, 2017.
doi: 10.1145/3126594.3126651.

[18] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In CVPR, pages 248–255.
IEEE Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848.

[19] Y. Du, C. Li, R. Guo, X. Yin, W. Liu, J. Zhou, Y. Bai, Z. Yu, Y. Yang,
Q. Dang, and H. Wang. PP-OCR: A practical ultra lightweight OCR
system. Preprint arXiv:abs/2009.09941, 2020.

[20] M. Dumas, M. L. Rosa, V. Leno, A. Polyvyanyy, and F. M. Maggi.
Robotic process mining. In Process Mining Handbook, pages 468–491.
Springer, 2022. doi: 10.1007/978-3-031-08848-3_16.

[21] S. Y. Gadre, G. Ilharco, A. Fang, J. Hayase, G. Smyrnis, T. Nguyen,
R. Marten, M. Wortsman, D. Ghosh, J. Zhang, E. Orgad, R. Entezari,
G. Daras, S. M. Pratt, V. Ramanujan, Y. Bitton, K. Marathe, S. Muss-
mann, R. Vencu, M. Cherti, R. Krishna, P. W. Koh, O. Saukh, A. J.
Ratner, S. Song, H. Hajishirzi, A. Farhadi, R. Beaumont, S. Oh, A. Di-
makis, J. Jitsev, Y. Carmon, V. Shankar, and L. Schmidt. Datacomp: In
search of the next generation of multimodal datasets. In NeurIPS, 2023.

[22] I. J. Goodfellow, Y. Bengio, and A. C. Courville. Deep Learning. MIT
Press, 2016. ISBN 978-0-262-03561-3.

[23] Y. Gu, L. Dong, F. Wei, and M. Huang. Minillm: Knowledge distillation
of large language models. In ICLR. OpenReview.net, 2024.

[24] R. M. Haralick, S. R. Sternberg, and X. Zhuang. Image analysis using
mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell., 9
(4):532–550, 1987. doi: 10.1109/TPAMI.1987.4767941.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778. IEEE Computer Society, 2016.
doi: 10.1109/CVPR.2016.90.

[26] V. Le and S. Gulwani. Flashextract: a framework for data extraction

H.H. Beyel et al. / ActivityGen: Extracting Enabled Activities from Screenshots 719



by examples. In PLDI, pages 542–553. ACM, 2014. doi: 10.1145/
2594291.2594333.

[27] K. Lee, M. Joshi, I. R. Turc, H. Hu, F. Liu, J. M. Eisenschlos, U. Khan-
delwal, P. Shaw, M. Chang, and K. Toutanova. Pix2struct: Screenshot
parsing as pretraining for visual language understanding. In A. Krause,
E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors,
ICML, pages 18893–18912. PMLR, 2023.

[28] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discov-
ering block-structured process models from event logs - A construc-
tive approach. In PETRI NETS, pages 311–329. Springer, 2013. doi:
10.1007/978-3-642-38697-8_17.

[29] L. A. Leiva, A. Hota, and A. Oulasvirta. Describing UI screenshots in
natural language. ACM Trans. Intell. Syst. Technol., 14(1):19:1–19:28,
2023. doi: 10.1145/3564702.

[30] V. Leno, A. Polyvyanyy, M. L. Rosa, M. Dumas, and F. M. Maggi. Ac-
tion logger: Enabling process mining for robotic process automation.
In Proceedings of the Dissertation Award, Doctoral Consortium, and
Demonstration Track at BPM, volume 2420 of CEUR Workshop Pro-
ceedings, pages 124–128. CEUR-WS.org, 2019.

[31] V. Leno, A. Polyvyanyy, M. Dumas, M. L. Rosa, and F. M. Maggi.
Robotic process mining: Vision and challenges. Bus. Inf. Syst. Eng., 63
(3):301–314, 2021. doi: 10.1007/s12599-020-00641-4.

[32] G. Li and Y. Li. Spotlight: Mobile UI understanding using vision-
language models with a focus. In ICLR. OpenReview.net, 2023.

[33] Y. Li, G. Li, L. He, J. Zheng, H. Li, and Z. Guan. Widget captioning:
Generating natural language description for mobile user interface ele-
ments. In EMNLP, pages 5495–5510. Association for Computational
Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.443.

[34] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft COCO: common objects in
context. In ECCV, pages 740–755. Springer, 2014. doi: 10.1007/
978-3-319-10602-1_48.

[35] C. Linn, P. Zimmermann, and D. Werth. Desktop activity mining - A
new level of detail in mining business processes. In INFORMATIK -
Workshops, pages 245–258. GI, 2018.

[36] D. G. Lowe. Object recognition from local scale-invariant features. In
ICCV, pages 1150–1157. IEEE Computer Society, 1999. doi: 10.1109/
ICCV.1999.790410.

[37] D. G. Lowe. Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis., 60(2):91–110, 2004. doi: 10.1023/B:
VISI.0000029664.99615.94.

[38] S. Manuel, H. H. Beyel, and W. M. P. van der Aalst. Code and data for
"ActivityGen: Extracting Enabled Activities from Screenshots", 2024.
Available at: http://doi.org/10.5281/zenodo.13375064.

[39] A. Martínez-Rojas, A. J. Ramirez, J. G. Enríquez, and H. A. Reijers.
Analyzing variable human actions for robotic process automation. In
BPM, pages 75–90. Springer, 2022. doi: 10.1007/978-3-031-16103-2_
8.

[40] A. Martínez-Rojas, A. J. Ramirez, J. G. Enríquez, and H. A. Reijers.
A screenshot-based task mining framework for disclosing the drivers
behind variable human actions. Inf. Syst., 121:102340, 2024. doi: 10.
1016/J.IS.2023.102340.

[41] K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, and D. Poshy-
vanyk. Machine learning-based prototyping of graphical user interfaces
for mobile apps. IEEE Trans. Software Eng., 46(2):196–221, 2020. doi:
10.1109/TSE.2018.2844788.

[42] P. Mukhopadhyay. Youtube thumbnail dataset. https://www.kaggle.
com/datasets/praneshmukhopadhyay/youtube-thumbnail-dataset,
2022. Accessed: 2023-08-14.

[43] T. A. Nguyen and C. Csallner. Reverse engineering mobile applica-
tion user interfaces with REMAUI (T). In ASE, pages 248–259. IEEE
Computer Society, 2015. doi: 10.1109/ASE.2015.32.

[44] Open AI. https://platform.openai.com/docs/models/gpt-3-5, 2023. Ac-
cessed: 2023-08-14.

[45] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever.
Learning transferable visual models from natural language supervision.
In ICML, pages 8748–8763. PMLR, 2021.

[46] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You only
look once: Unified, real-time object detection. In CVPR, pages 779–
788. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.91.

[47] N. Reimers, O. Espejel, and P. Cuenca. https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2, 2021. Accessed: 2023-08-
14.

[48] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-
time object detection with region proposal networks. In NeurIPS, pages
91–99, 2015.

[49] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning

with neural networks. In NeurIPS, pages 3104–3112, 2014.
[50] R. Syed, S. Suriadi, M. Adams, W. Bandara, S. J. J. Leemans,

C. Ouyang, A. H. M. ter Hofstede, I. van de Weerd, M. T. Wynn, and
H. A. Reijers. Robotic process automation: Contemporary themes and
challenges. Comput. Ind., 115:103162, 2020. doi: 10.1016/j.compind.
2019.103162.

[51] S. Torbert. Applied Computer Science, Second Edition. Springer, 2016.
ISBN 978-3-319-30864-7. doi: 10.1007/978-3-319-30866-1.

[52] W. M. P. van der Aalst. Process Mining - Data Science in Action,
Second Edition. Springer, 2016. ISBN 978-3-662-49850-7. doi:
10.1007/978-3-662-49851-4.

[53] W. M. P. van der Aalst. Lucent process models and translucent event
logs. Fundam. Informaticae, 169(1-2):151–177, 2019. doi: 10.3233/
FI-2019-1842.

[54] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In
NeurIPS, pages 5998–6008, 2017.

[55] T. D. White, G. Fraser, and G. J. Brown. Improving random GUI testing
with image-based widget detection. In ISSTA, pages 307–317. ACM,
2019. doi: 10.1145/3293882.3330551.

[56] M. Xie, S. Feng, Z. Xing, J. Chen, and C. Chen. UIED: a hybrid tool for
GUI element detection. In ESEC/FSE, pages 1655–1659. ACM, 2020.
doi: 10.1145/3368089.3417940.

[57] Y.-S. Yun, J. Jung, S. Eun, S.-S. So, and J. Heo. Detection of gui el-
ements on sketch images using object detector based on deep neural
networks. In ICGHIT, pages 86–90, Singapore, 2019. Springer Singa-
pore.

[58] C. Zhang, T. Shi, J. Ai, and W. Tian. Construction of GUI elements
recognition model for AI testing based on deep learning. In DSA, pages
508–515. IEEE, 2021. doi: 10.1109/DSA52907.2021.00075.

[59] X. Zhang, L. de Greef, A. Swearngin, S. White, K. I. Murray, L. Yu,
Q. Shan, J. Nichols, J. Wu, C. Fleizach, A. Everitt, and J. P. Bigham.
Screen recognition: Creating accessibility metadata for mobile appli-
cations from pixels. In CHI, pages 275:1–275:15. ACM, 2021. doi:
10.1145/3411764.3445186.

H.H. Beyel et al. / ActivityGen: Extracting Enabled Activities from Screenshots720


