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Abstract. Understanding student engagement in online educa-
tion is crucial for optimizing learning outcomes. This paper intro-
duces ECLIPSE dataset (Extended Classroom Learning Insights via
Prolonged Student Engagement), comprising 10,110 annotated im-
ages from a 55-minutes , 30-minutes and 20-minutes online lec-
ture. Annotations include four affective states: engagement, bore-
dom, confusion, and frustration. ECLIPSE enables the investigation
of learner attention dynamics over extended periods, overcoming the
limitations of short-duration datasets. We establish benchmarks for
ECLIPSE using models such as EfficientNet, Vision Transformer,
Residual Attention Network, and GLAMOR-Net. We propose Neu-
ralGaze, a novel framework integrating Neural Cellular Automata
(NCA) with self-attention mechanisms, demonstrating superior accu-
racy in engagement level assessment compared to basic single-frame
models. Furthermore, we introduce CG-SwT, a content-guided Swin
Transformer model, which significantly outperforms the baseline
ViT model on the ECLIPSE dataset (with F1-score improvements
of 21.12%, 12.5%, 16.77%, and 15.41% for engagement, boredom,
frustration, and confusion respectively). Our methods surpass ex-
isting single-frame engagement prediction baselines for both Enga-
geNet and DAiSEE datasets by significant margins (7.4% and 6.2%,
respectively). The code and dataset will be made publicly available.

1 Equal contribution.
2 Equal contribution.

1 Introduction

Ensuring effective content delivery and retention in online educa-
tion is a critical concern[8]. Student engagement, reflecting active
involvement and interest, is traditionally gauged through non-verbal
cues such as body language and facial expressions[16]. These cues
enable real-time adjustments to lesson delivery[32, 19].

However, the shift to digital education complicates the assessment
of engagement due to the absence of physical cues, making it difficult
for educators to monitor understanding and enthusiasm. While digital
platforms offer accessibility, they lack the immediacy of traditional
settings.

Video-based datasets like DAiSEE[12], AffectNet[21],
EngageNet[26], and the Belfast Database[27] have been cru-
cial for predicting engagement levels. Although these datasets use
temporal data for engagement evaluation[30, 13, 18, 1], video-based
analysis is computationally intensive, challenging real-time ap-
plication. Single-image analysis offers a computationally efficient
alternative, particularly in low-resource environments, though
detecting disengagement remains difficult due to dataset imbalances
favoring high engagement.

To address this, we introduce the ECLIPSE (Extended Class-
room Learning Insights via Prolonged Student Engagement) dataset,
capturing 250 participants’ images at 45-second intervals dur-
ing online lectures. Each image is annotated with four emotional
states—boredom, engagement, confusion, and frustration—rated on
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Figure 1. Sample of images in ECLIPSE for different affects at different
levels

a scale from 0 to 3[31]. Unlike existing datasets, ECLIPSE includes
prolonged engagement data, reflecting the decline in engagement
typically observed after 20 minutes of instruction[4].

We evaluate single-frame engagement recognition using
ECLIPSE, DAiSEE, and EngageNet datasets, employing base-
lines such as EfficientNet[28], GLAMOR-Net[15], Residual
Attention Networks[29], and Vision Transformers[10]. We also in-
troduce two new techniques: CG-SwT, integrating watched content
to predict engagement, and NeuralGaze, which combines image
embeddings, facial landmarks, and gaze vectors with Neural Cellular
Automata (NCA)[22]. These methods address class imbalance with
weighted sampling and focal loss, and demonstrate a 7.4% accuracy
improvement over the current best transformer-based approach[26].

Our contributions are:

1. Introduction of the ECLIPSE dataset, including 250 participants
and 10,110 images, to assist in identifying disengaged students.

2. Benchmarking State-of-the-Art Models for single-frame engage-
ment recognition across DAiSEE, EngageNet, and ECLIPSE
datasets.

3. Development of CG-SwT, enhancing classification performance
using content guidance with Swin Transformers.

4. Introduction of NeuralGaze, a framework integrating facial fea-
tures, gaze vectors, and NCAs for competitive performance with
reduced computational overhead.

2 Related Work

Student Engagement Prediction: Identifying student engagement
in classroom settings is a critical challenge. Janez and Andrej et al.
[33] developed a system using Kinect sensors to estimate attention
levels, leveraging visual features like gaze, head motion, and body
posture, applying machine learning models to predict attentiveness.
Goldberg [11] found that gaze features and facial action units were
highly indicative of engagement in seminar videos, achieving a 0.44
correlation with manual annotations.

Recent efforts underscore the need for extensive, labeled datasets
for training and evaluating engagement prediction models. However,
despite numerous studies, only a few publicly accessible datasets are
available.

The DAiSEE dataset by Gupta et al. [12] measures students’ in-
volvement in e-learning courses with videos from 112 participants,
annotated for engagement, boredom, confusion, and frustration us-
ing crowd-sourced ratings from 0 to 3. The HBCU dataset [31] in-

cludes data from 34 individuals, manually labeled for different en-
gagement levels. Kaur et al. [14] introduced the EngageWild dataset,
featuring videos from 78 individuals with crowd-sourced annotations
classifying engagement into four levels. Sathayanarayana et al. [24]
presented the SDMATH dataset, containing videos from one-to-one
tutoring sessions, offering richly labeled data with both video and
audio modalities. The EngageNet dataset [26] focuses on classify-
ing engagement into four levels, with 31 hours of video from 127
participants, aged 18-37, with original videos divided into 10-second
clips.

Table 1. Comparison of engagement labeled datasets

Dataset Students Setting Parameters
Labelling

Method

DAiSEE 112 Virtual
classroom

Engagement,
Confusion,
Frustration,
Boredom

Wisdom
of Crowd

HBCU 34 Training
study Engagement

Manual
labeling

by
experts

EngageWild 78 In the wild Engagement Crowd
sourced

SDMATH 20 In Person
Tutoring

Deictic
Gestures

Manual
Labeling

ECLIPSE
(Ours) 250 Virtual

Classroom

Engagement,
Confusion,
Frustration,
Boredom

Manual
& Semi
Super-
vised

Labeling

Table 1 compares existing datasets relevant to our work. Beyond
these datasets, research into student engagement detection has lever-
aged various resources, including the EmotiW datasets [17, 6], the
Engagement Recognition (ER) database [20], and other video-based
collections [25, 34].

Neural Cellular Automata: Cellular automata (CA) [5] generate
complex behaviors through rule-based interactions. Neural cellular
automata (NCA) [22] extend this concept by using neural networks
to define update rules, making them adaptable for various tasks. Due
to their efficient architecture, NCAs have gained traction in image
generation [23]. Unlike conventional deep learning models analyz-
ing entire images simultaneously, NCAs focus on individual pixels,
making them lightweight and efficient.

Limitations: A significant challenge in predicting student engage-
ment is the lack of appropriate public datasets and the issue of class
imbalance, particularly affecting the analysis of disengaged students.
Existing datasets often focus on short video segments, limiting the
assessment of engagement over extended durations. Previous stud-
ies rely heavily on video-based methods, which are impractical for
real-time assessment in low-resource environments. A more feasible
alternative involves analyzing engagement at specific time intervals
using single-frame prediction methods. However, there is a notice-
able gap in research on gauging engagement levels through single
frames.

3 ECLIPSE Dataset

3.1 Data Collection

A 55-minute online classroom lecture on human-computer interac-
tion was viewed by participants in this study, who were first-year un-
dergraduate students between the ages of 17 and 18. For the purpose
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of accommodating changes in participant attention across longer
video durations, participant snapshots were taken at 45-second inter-
vals during the session. The lower processing demands for individ-
ual image analysis made snapshots the favored method of capturing
images. Since meaningful shifts in facial cues and affective states
usually occur over one minute, the literature suggested that shorter
durations lack contextual depth and may not adequately capture the
temporal dynamics of student affect [9, 31]. This led to the decision
to extract snapshots at 45-second intervals. Furthermore, our dataset
pioneers the capture of student affective states for durations longer
than twenty minutes, consistent with studies showing a drop in at-
tention beyond twenty minutes [4]. To the best of our knowledge, no
engagement evaluation dataset that is made accessible to the public
includes photos taken over longer than 20 minutes.

3.2 Data Annotations

The dataset we have includes four affective states that are impor-
tant for user involvement: engagement, annoyance, bewilderment,
and boredom, similar to the DAiSEE dataset. Each state is catego-
rized using a four-level scale: (1) extremely low, (2) low, (3) high,
and (4) very high. This labeling method deliberately excludes a "neu-
tral" state. The initial trials demonstrated that crowd annotators have
a proclivity to choose the label "neutral" when they are unsure, which
hampers the development of a strong and reliable dataset. The pur-
pose of the four-level scale was to ensure that participants make pre-
cise selections regarding their affective state, hence enhancing the de-
pendability of the dataset. A group of three annotators collaborated to
assign engagement classifications to each frame of the participants.
We implemented a cross-labeling strategy to verify and rectify any
errors in the annotations. Three annotators categorized participants
in images into classes based on their level of engagement, boredom,
confusion. and frustration.

Table 2. Weighted Cohen’s kappa for the three annotators

State Labeler 1 vs 2 Labeler 1 vs 3 Labeler 2 vs 3

Boredom 0.839 0.735 0.749
Engagement 0.891 0.981 0.875
Confusion 0.855 0.719 0.702
Frustration 0.813 0.805 0.708

We utilized weighted Cohen’s Kappa with quadratic weights as
the performance metric to assess the consistency among annotators.
This metric measures the degree of agreement across numerous an-
notators who categorize the same data points, thereby evaluating the
inter-rater reliability. A Kappa value ranging from 0.70 to 0.80 is
considered to be satisfactory. The Kappa coefficients for our dataset
are located in Table 2.

3.3 Dataset statistics

The dataset consists of photos from 250 students, with 100 students
contributing exclusive photographs over 20 frames, each captured at
45-second intervals. These images significantly enhance the repre-
sentation of the "Barely Engaged" and "Not Engaged" classes, ad-
dressing the class imbalance seen in prior datasets. The class dis-
tribution is: Highly Engaged (15.05%), Engaged (34.79%), Barely
Engaged (21.53%), and Not Engaged (28.61%) as shown in Figure
3. Unlike previous datasets such as Gupta et al. (2016) and Singh et
al. (2023), which struggled with class imbalance, our dataset offers

a more balanced distribution, particularly for the lower engagement
classes, as depicted in Figure 2.

Table 3. ECLIPSE Dataset: Affective State Label Composition

Affective State Very low Low High Very High

Engagement 28.61% 21.53% 34.79% 15.05%
Boredom 32.96% 16.46% 28.78% 21.78%
Confusion 62.40% 14.38% 17.73% 5.47%
Frustration 63.38% 18.68% 14.13% 3.8%

Figure 2. Engagement affect’s class distribution for comparison between
EngageNet, DAiSEE & ECLIPSE

3.4 Research Ethics and Participant Protections

Prior to participating, all subjects were required to offer informed
consent, which was documented by their signature. Participation was
plainly optional, and participants maintained the right to withdraw at
any time without providing a reason. In order to protect the privacy of
the participants, a distinct identifier was allocated to each individual,
ensuring that it had no connection to their personal information.

4 Proposed Methodology

We aim to fuse local facial features, such as expressions, facial land-
marks, and gaze vectors, with global image details like surround-
ing context, body pose, and hand movements. Facial expressions and
gaze direction provide emotional and focus cues, while body pose
and hand movements offer broader contextual insights into engage-
ment. Integrating these elements, our analysis encompasses subtle
facial expressions and broader behavioral cues. To achieve this, we
devise a model architecture and methodology inspired by GLAMOR-
Net[15], tailored for capturing engagement prediction data. Figure 3
gives an overview of our model with the NCA-based feature extrac-
tion module for engagement classification.

4.1 NCA-based Feature Extraction Module

We develop a Neural Cellular Automata[22](NCA) based encoding
module to extract meaningful image embedding. The hidden chan-
nels per pixel capture global information learned by propagating lo-
cal information surrounding a pixel over multiple time steps. Each
pixel in an image is treated as a cell, with each cell containing a
set of learned channels. These channels capture local pixel interac-
tions and are updated using learned rules. Instead of generating new
images, we use the final state of these channels as rich feature rep-
resentations for downstream classification tasks. This shared update
rule, which leads to extensive parameter sharing, reduces the over-
all parameter count ensuring parameter efficiency, fast training, and
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Figure 3. Model architecture with NCA-based feature embedding module combined with Multi-head self-attention and facial landmarks

Figure 4. NCA-based feature extraction module consists of 2 NCA
models. For NCA1, the original image is concatenated with 16 additional
hidden channels. The output of NCA1 is downsampled using MaxPooling

and given as input to NCA2 after the addition of 32 additional channels

convergence, making the model lightweight and deployable with low
computational resources. Thus, NCAs provides a valuable approach
for creating image embeddings because they efficiently capture local
and global information.

The complete encoding module utilizes two NCA models. The
output of the first NCA model undergoes a MaxPool with a pool size
and stride of (4,4). Subsequently, the reduced embedding is passed
to a smaller NCA model, NCA2, with increased channel length to
capture more information. Empty channels are concatenated to the
downsampled embedding from NCA1 and sent to NCA2. The final
output embeddings learned from NCA2 undergo downsampling us-
ing a MaxPool layer with a pool size and stride (4,4). For the feature
extraction module of Global content, an additional MaxPool opera-
tion is applied with a pool size of (2,2) and stride 1. This ensures that
both facial and global context features are dimensionally aligned for
subsequent processing. Refer to Figure 4 for a detailed illustration of
the NCA feature extraction module and a single NCA step.

The NCA model captures feature embeddings by considering
the pixel’s important neighborhood locations and propagating that
knowledge across the image. MaxPooling layers extract the most

significant features, while the second NCA model refines the em-
beddings through additional iterations.

Multi-head self-attention (MHSA) is then applied to the output of
the second NCA, enhancing the embeddings with attention informa-
tion. This attention mechanism determines the relevance of specific
features. This NCA-based attentive feature extraction module is re-
peated for both Facial and Global Context to extract their respective
encodings. The student’s face is cropped out for the facial context,
and the facial region is blacked out for the global context before using
the complete image. Taking cues from GLAMOR-Net, the context
module aims to actively acquire valuable data from the environment
rather than redundant facial details.

4.2 Global-Local Attention module

The GLAMOR-Net-inspired idea of having a global-local atten-
tion(GLA) module is adapted to combine the global and local feature
embeddings. The outputs of the facial and context NCA-based fea-
ture extraction module are concatenated and sent to another MHSA
block. The output from the MHSA block is then added to the com-
bined concatenated features to get an attention-aware representation.
This attention-aware representation is then passed through layer nor-
malization and global average pooling to get the final vector embed-
ding, which combines the global and local features. This GLA mod-
ule implementation is entirely different from that used in GLAMOR-
Net.

4.3 Head Pose and Facial Features

The extracted head pose and facial features, such as facial landmarks
and gaze vectors, extracted using OpenFace[2], are combined with
the GLA feature vector in the fusion module before performing the fi-
nal classification. Multi-head self-attention is applied to the extracted
features. The output is added to the original feature vector to enhance
representation, which is used further.

Motivated by experiments [26] conducted using GLAMOR-Net
with and without OpenFace features and getting better results in the
former, we include the OpenFace facial features in the final proposed
architecture.
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4.4 Fusion Module and Classification Network

Combining outputs from the Global-Local Attention module, which
has attention-aware combined and condensed embeddings of the Fa-
cial and Context information, with the improved OpenFace Facial
Features, we get the final features for downstream classification. Sep-
arate neural networks calculate the score for GLA and OpenFace
module outputs. The score is then normalized using the softmax
function to obtain the corresponding weights. The weighted vectors
are concatenated to be sent to a Fully Connected Neural Network for
final classification.

5 Experiments

5.1 Dataset Splits

We introduce a novel data-splitting approach that has resulted in
higher accuracy and reduced loss.

Generalization: In order to ensure the applicability of our model
in various classroom environments, we partitioned the dataset into
several training, validation, and testing sets, each comprising differ-
ent groups of students. This approach promotes the creation of strong
models by accurately assessing their performance. The testing set
offers an impartial evaluation of the model’s capacity to excel with
completely novel student data. We allocated participants in the train-
ing, validation, and test sets using an 80:10:10 ratio.

Personalization: We implement subject-specific personalization
by dividing each participant’s 55-minutes , 30-minutes , 20-minutes
video image sequence into separate training, validation, and testing
sets. Contrary to the generality technique, each train, test, and val-
idation set contains specific frames for every student. The model is
trained to identify the distinct patterns and temporal changes in how
each student expresses their emotional state. This technique of per-
sonalization establishes the foundation for future refinement of mod-
els with minimal more data from the classroom. It allows for quick
adjustment to new students and changing patterns of interaction. The
photos of each participant were divided into training, testing, and
validation sets in an 80:10:10 ratio, respectively.

We used the complete EngageNet dataset, as shown in Table 4, to
evaluate and compare the effectiveness of different models in pre-
dicting engagement levels across multiple classes and binary classes.
The results reported correspond to the validation split of the orig-
inal dataset. In order to assess the effects of dataset generalization
and customization on the EngageNet dataset, a subset of 3000 pho-
tos was selected. This subset was carefully chosen to ensure that each
degree of interaction was equally represented, as shown in Table 8.

5.2 Baseline Models

We compare the results of the benchmarks created using
EfficientNet[28], Vision Transformers[10], Residual Attention
Networks[29], and GLAMOR-Net[15] with the original baselines
for DAiSEE and EngageNet. We also compare the results of our
proposed Content-guided Swin Transformer and NCA-based Self-
Attention framework, NeuralGaze, to capture Global and Local in-
formation.

EfficientNet: EfficientNet[28] is a compact yet accurate con-
volutional neural network designed for efficiency at scale through
compound scaling. We fine-tune the final classification layer of the
EfficientNet-B0 model, initially pre-trained on ImageNet[7].

Residual Attention Networks: Residual Attention Networks[29]
combine residual connections for gradient flow optimization with at-
tention modules to enhance model optimization and representation
learning in computer vision. Key facial features like eyes and mouth
are emphasized in tasks like engagement assessment. We train the
end-to-end RAN on the datasets.

Global-Local Attention (GLAMOR-Net): GLAMOR-Net[15]
integrates facial expressions and contextual cues for emotion recog-
nition, utilizing separate convolutional neural networks (CNNs) for
feature extraction from the face and surrounding context. These fea-
tures undergo a global-local attention mechanism to highlight salient
aspects. Finally, the fused features are used for emotion predic-
tion. Our extension of GLAMOR-Net incorporates additional fea-
tures such as OpenFace head pose, eye gaze, and Facial Action Units
(FAU) into the fusion module, alongside the utilization of Focal Loss
(FL). Through ablation studies, detailed in Table 9, we demonstrate
the efficacy of these enhancements in enriching contextual informa-
tion and improving model performance.

Vision Transformer (ViT): The ViT [10] model represents im-
ages as sequences of patches, converted to embeddings capturing
appearance and spatial information. Self-attention in a transformer
encoder analyzes these embeddings for local and global contexts,
followed by classification via an MLP head. We fine-tune its final
classification layer for engagement-level prediction by utilizing the
pre-trained ViT model on the ImageNet-21k [7] dataset.

Content-guided Swin Transformer model (CG-SwT)

We extended the SwT model to incorporate the content the user
had viewed for 45 seconds. We achieve this in the following steps: 1)
Given an image xi ∈ I where I:={ set of images }, we take the out-
put of the final layer of the Swin Encoder(E1) as feature vector(f1

i );
2) Given video segment vi ∈ V where V:={ set of 45s video seg-
ments }, we take the output of the final layer of TimeSformer[3]
Encoder(E2) as feature vector(f2

i ); 3) We concatenate both these
vectors and pass it through an MLP head(MLP ) for engagement
classification(o).

f1
i = Efreeze

1 (xi); f
2
i = Efreeze

2 (vi)

fi = {f1
i ||f2

i }; oi = MLP (fi)

We pre-train the Swin Transformer model on the DAiSEE dataset,
freeze the pre-trained Swin Encoder and TimeSformer layers, and
only train the classification layer on the ECLIPSE dataset. Results
can be found in Table 7, where we observe significant improvement
in the trained ViT on adding content information.

5.3 Implementation Details

The models are trained for a maximum of 60 epochs with a batch size
of 8, the best validation model is saved, and the corresponding results
on the test dataset are recorded. Adam optimizer uses a learning rate
scheduler that decays the learning rate after regular intervals starting
from 5× 10−4 with a decay of 0.1. The hyperparameters chosen for
the NCA feature extraction module include NCA channel size for the
hidden feature of 16 channels for NCA1 and 32 additional channels
for NCA2, a fire rate of 0.5, and a dense layer hidden dimension of
128. The NCA model initializes the additional hidden channels with
a 0 value. The exact architecture can be seen in Figure 3. All the
Multi-head Attention modules use eight heads of attention. All the
dense neural networks are single-layer Neural Networks with hidden
layer dimensions 128. Focal Loss has been used. Classification ac-
curacy is chosen as the evaluation metric due to its widespread use
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within the domain. In our four-class classification, we use the origi-
nal levels of "very low," "low," "high," and "very high." However, in
our two-class classification, we combine the levels of "very low" and
"low" into one category labeled "low," and the levels of "high" and
"very high" into another category labeled "high."

6 Results

Table 4 summarizes multi-class and binary classification results for
three datasets: DAiSEE, EngageNet, and ECLIPSE, focusing on dif-
ferent levels of the engagement affective state. The results highlight
GLAMOR-Net as the top performer across all datasets, especially
when combined with OpenFace facial features and focal loss for
handling class imbalance. GLAMOR-Net combined with focal loss
surpassed the other models by a significant margin. For the Enga-
geNet dataset, our models integrating GLAMOR-Net with focal loss
and GLAMOR-Net with both facial features and focal loss achieve
an accuracy of 0.750, surpassing Singh et al.’s benchmark of 0.676
[26]. Unlike Singh et al.’s transformer-based approach to analyzing
videos, our methodology focuses on single-frame analysis for classi-
fication. This not only reduces computational requirements but also
enhances efficiency.

Table 5 reveals that for confusion, boredom, and frustration,
GLAMOR-Net coupled with OpenFace features and focal loss
demonstrates superior performance, followed by our proposed Neu-
ralGaze method for the DAiSEE dataset. Notably, in two-class classi-
fications, especially for categories such as Boredom and Frustration,
NeuralGaze surpasses GLAMOR-Net. These categories showcase a
more equitable distribution of data points across various engagement
levels. This achievement underscores the efficacy of NeuralGaze in
situations where a balanced dataset is accessible.

On the ECLIPSE dataset, our findings indicate that the GLAMOR-
Net model, when combined with OpenFace features and focal loss,
consistently attained the highest accuracies in classifying affective
states such as confusion, boredom, and frustration, both in four-class
and two-class classification tasks. This suggests the effectiveness of
OpenFace features, including eye gaze, head pose, and facial action
units, in interpreting affective states. Furthermore, the incorporation
of weighted loss functions such as focal loss led to improved accu-
racy by mitigating the disproportionate influence of majority classes.

Our analysis of various video-based models on DAiSEE, detailed
in Table 6, underscores the potential for extracting valuable insights

Table 4. Engagement level Classification Results for DAiSEE, EngageNet,
and our dataset ECLIPSE.

Method EngageNet DAiSEE ECLIPSE

EfficientNet-B0 0.606 0.526 0.394
ViT 0.604 0.456 0.382
RAN 0.604 0.541 0.387
GLAMOR-Net (4 class) 0.586 0.568 0.412
GLAMOR-Net + FL
(4 class) 0.75 0.569 0.75

GLAMOR-Net + FA + FL
(4 class) 0.75 0.572 0.389

NeuralGaze (4 class) 0.604 0.551 0.366
Transformer (benchmark
for EngageNet) 0.6761 - -

GLAMOR-Net (2 class) 0.871 0.95 0.532
GLAMOR-Net + FL
(2 class) 0.878 0.95 0.5

GLAMOR-Net + FA + FL
(2 class) 0.882 0.9 0.561

NeuralGaze (2 class) 0.871 0.953 0.471

Table 5. Confusion, Frustration, and Boredom results for DAiSEE and
ECLIPSE dataset for various models

Method Dataset Confused Bored Frustrated

EfficientNet-B0 DAiSEE 0.671 0.462 0.777
ECLIPSE 0.578 0.382 0.571

ViT DAiSEE 0.672 0.481 0.777
ECLIPSE 0.576 0.227 0.626

RAN DAiSEE 0.672 0.468 0.777
ECLIPSE 0.561 0.392 0.485

GLAMOR-Net DAiSEE 0.682 0.484 0.782
ECLIPSE 0.586 0.365 0.602

GLAMOR-Net
+FL (4 class) DAiSEE 0.688 0.492 0.789

ECLIPSE 0.572 0.360 0.657

GLAMOR-Net
+FL+FA
(4 class)

DAiSEE 0.691 0.491 0.793

ECLIPSE 0.584 0.413 0.636
NeuralGaze
(4 class) DAiSEE 0.688 0.479 0.790

ECLIPSE 0.582 0.300 0.629
GLAMOR-Net
(2 class) DAiSEE 0.91 0.74 0.742

ECLIPSE 0.719 0.564 0.784
GLAMOR-Net
(2 class) + FL DAiSEE 0.92 0.73 0.751

ECLIPSE 0.726 0.596 0.783
GLAMOR-Net
+FA + FL
(2 class)

DAiSEE 0.94 0.74 0.755

ECLIPSE 0.725 0.654 0.786

NeuralGaze
(2 class) DAiSEE 0.916 0.790 0.967

ECLIPSE 0.718 0.420 0.784

from video data. However, computational feasibility and cost consid-
erations are critical factors that must be addressed through method-
ological enhancements.

The results in Table 6 compare the performance of our model
with existing single-frame-based and video-based benchmarks. Our
proposed architecture, NeuralGaze, and modification to GLAMOR-
Net to incorporate Facial Action Units and Head Pose surpass the
single-frame classification benchmark and have competitive perfor-
mance with other video-based benchmarks that use multiple frames
per video for analysis. We observed increased accuracy with increas-
ing frames processed for a single video classification. This suggests
the potential for further exploration of temporal domain classifica-
tion methods, with a specific interest in incorporating Local-Global
Attention embeddings and computationally effective video data anal-
ysis methods in future studies.

The content-guided Swin Transformer model investigates the re-
lationship between the content being viewed and the participant’s

Table 6. Engagement level prediction comparison with single-frame and
video-based benchmarks. Our model gives competitive performance to

video-based models and surpasses existing single-frame benchmarks. We set
new benchmarks with GLAMOR-Net+FA+FL and NeuralGaze

Configuration Frames Accuracy

EmotionNet (DAiSEE) 1 0.5107
NeuralGaze (Ours) 1 0.554

GLAMOR-Net + FA + FL 1 0.572

DFSTN 20 0.5884
Marlin + FA + BodyPose Features 30 0.59
ResNet + TCN 50 0.639
LRCN (DAiSEE) 250 0.579
BERN 300 0.60
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engagement level. Our CG-SwT model results, as shown in Ta-
ble 7, demonstrate that integrating content information into the
model trained on participant expression significantly improves per-
formance. These findings provide strong evidence of the impact of
instructional content on student behavior, highlighting the potential
for educators to strategically design lecture content to foster a more
engaged classroom environment.

Table 7. Results for binary classification of Content-guided Swin
Transformer model on the ECLIPSE dataset vs ViT model without video

features

Classes F1-score Improvement

with content without content

Confusion 60.82% 52.70% 15.41%
Boredom 82.76% 73.57% 12.5%
Frustration 71.01% 60.82% 16.75%
Engagement 81.92% 67.64% 21.12%

6.1 Ablation Study

6.1.1 Personalization of Data

Table 8 presents a comprehensive assessment of single-frame en-
gagement recognition on ECLIPSE and EngageNet with dataset
generalization and personalization. We employ GLAMOR-Net and
GLAMOR-Net combined with OpenFace features for binary and
multi-class classification tasks. Key findings demonstrate that dataset
personalization and integration of OpenFace features improve the
model’s accuracy.Furthermore, as shown in Table 8, personalizing
EngageNet achieves a remarkable 92.12% accuracy for binary en-
gagement classification. The EngageNet dataset is notably imbal-
anced, favoring the "engaged" class. By merging the highly-engaged
and engaged categories into a single "engaged" class, and the not-
engaged and barely-engaged categories into a "not engaged" class,
when transitioning from a 4-level to a 2-level classification, the class
distribution becomes more balanced, which leads to improved classi-
fication results. The most notable improvements were seen in Bore-
dom and Frustration, with accuracy increasing by around 15% after
dataset personalization. Utilizing the GLAMOR-Net model in con-
junction with OpenFace features trained on a personalized dataset
resulted in the highest accuracy for multi-class classification. These
results demonstrate the efficacy of personalization in enhancing ac-
curacy by training models fine-tuned on a particular batch of people.

Table 8. Engagement level Classification Results for personalized and
generalized EngageNet and ECLIPSE respectively.

Model EngageNet ECLIPSE

Gen. Pers. Gen. Pers.

GLAMOR-Net
(4 class) 54.94 64.23 40.92 52.07

GLAMOR-Net + OpenFace
(4 class) 56.64 68.72 33 43.81

GLAMOR-Net
(2 class) 78.83 86.25 53.27 71.90

GLAMOR-Net + OpenFace
(2 class) 84.15 92.12 54.66 67.18

6.1.2 Employing OpenFace and GLAMOR-Net

We aimed to assess the interpretability of OpenFace features by per-
forming classification tasks using these features exclusively. A sim-
ple Artificial Neural Network (ANN) was trained on extracted open-
face features for binary and multi-class classification. The outcomes
of these classification tasks on the DAiSEE dataset are summarized
in Table 9. Our findings indicate that the extracted OpenFace fea-
tures, including eye gaze, head pose, and facial action units, signifi-
cantly interpret an individual’s affective state.

Table 9. DAiSEE Ablation on OpenFace Features(4 class)

Affective

State
ANN

ANN

with

Focal Loss
ANN

ANN

with

Focal Loss

F1 /Acc F1 / Acc F1 /Acc F1 / Acc
4 class 4 class 2 class 2 class

Confusion 0.68 / 0.69 0.57 / 0.66 0.85 / 0.88 0.87 / 0.90
Boredom 0.42 / 0.45 0.40 / 0.44 0.70 / 0.74 0.73 / 0.77
Engagement 0.46 / 0.48 0.47 / 0.48 0.93 / 0.95 0.96 / 0.96
Frustration 0.64 / 0.62 0.69 / 0.77 0.92 / 0.93 0.93 / 0.95

6.1.3 Employing Focal Loss

We employed weighted loss functions such as cross-entropy and fo-
cal loss to address the class imbalance challenge within the dataset.
These techniques aimed to mitigate biases towards the majority
classes and improve the overall performance of the trained models.
Comparisons in Table 5, 4 and Table 9 using Focal loss show that
using it effectively reduced the impact of class imbalance on model
training.

7 Conclusion

In this study, we present ECLIPSE, the first dataset to provide large-
scale engagement data exceeding 20 minutes in duration. ECLIPSE’s
balanced representation of boredom and engagement levels improves
its effectiveness in real-time disengagement detection, providing a
more computationally efficient solution than video-based datasets.
We also introduce CG-SwT, enhancing results obtained with ViT by
integrating video lecture content. The particularly notable improve-
ment with CG-SwT highlights the impact of content-driven tailor-
ing on student learning outcomes. We also proposed NeuralGaze-
a model combining local, global, and extracted facial features us-
ing Neural Cellular Automata (NCA). Through extensive baseline
analyses for single-frame engagement recognition, GLAMOR-Net
emerged as a top performer, particularly when incorporating Open-
Face features and Focal Loss. Our study outperforms the base-
line single-frame classification results on DAiSEE and EngageNet
datasets and established competitive baselines for ECLIPSE, which
will serve as valuable benchmarks for future research in this field.
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