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Abstract. Table Structure Recognition (TSR) aims to reconstruct
the logical structure of a table to understand semantic information
ordered in the table. Many approaches to modeling the TSR problem
have been proposed and have achieved promising results. However,
most heavy models or complex post-processing approaches require
much time and data consumption for inference and training progress.
This paper proposes a new TSR approach called RTSR, a robust
simplifying modeling. RTSR includes a lightweight backbone and
a module to enhance contextual information between rows/columns.
We combine two stages in a split-and-merge manner into only one
step by reconstructing a table with horizontal and vertical separators.
Specifically, we redesign the split stage to identify grid and span-
ning cells. Our RTSR can run on average at 38.1 FPS while achiev-
ing comparable performance with state-of-the-art methods on several
benchmark datasets, including SciTSR, PubTabNet, FinTabNet, and
WTW.

1 Introduction

Document processing automation gradually replaces the digital
transformation time-consuming and error-prone manual data entry
process. As one of the common elements in that process, tables or-
ganize and condense information in structural form. Table Structure
Recognition (TSR) refers to reconstructing the logical structure of a
table in images to machine-understandable formats, usually in logi-
cal coordinates or markup sequences. However, various layouts, ar-
bitrary sizes, and implicit components make it challenging to get the
correct structure for table reconstruction.

Due to increasing demand, TSR has gradually become a big prob-
lem and has recently received much attention. A diverse range of ap-
proaches exist to address the TSR problem, aimed at handling various
tables that may originate from scanned images, photographs, or PDF
documents. With deep heuristic analysis rules and computer vision
techniques, [31] can extract table structure in some small datasets.
This approach does not leverage the power of GPU; recent researches
focus on deep learning models to accelerate processing time. [8] pro-
poses a system entirely based on GPU processing to extract table
structure in HTML tags from input images directly. Nevertheless,
this approach is slow and does not achieve high Accuracy, requiring
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Figure 1. TSR with separator extraction approach in challenging
condition. Warped table in photograph (left image). Borderless, spanning

cell, empty cell, and multi-line content cell (right image).

substantial data for model training. [35] employs an alternative tech-
nique using a graph neural network that utilizes textual information
and layout to reconstruct tables, with text detection or recognition
performed beforehand. In recent years, detecting table components
and extracting table structures have become increasingly appealing
approaches to numerous researchers. This method allows the TSR
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module to operate concurrently with text detection, reducing system
latency. [30, 22, 10, 12] propose the detection of cell/column/row
regions or the identification of column/row separators, which yield
superior results in table structure extraction while maintaining pro-
cessing efficiency. Research on accuracy has yet to progress recently,
while processing time is a very challenging issue, especially in prac-
tical applications (with many users and requests). Applying table
recognition in document analysis packages in a product package re-
quires fast processing time, especially with tables with many cells.

Our research focuses on optimizing runtime while ensuring ap-
proximation accuracy. Trade-offs between processing time and accu-
racy are always interesting, and often, we find ourselves in a trade-
off situation. With only column and row separators, Figure 1 formu-
lates the table structure in multiple conditions such as photographs,
warped images, border, borderless, empty, spanning, and multi-line
content cells. In this article, we use a separation extraction approach
to solve the TSR problem and propose using soft labels and faster
feature aggregation in deep learning networks. It has helped the
model maintain Accuracy while reducing processing time to a level
approaching real-time. Our significant contributions can be summa-
rized as follows:

• Proposed a new TSR method with approximately the same accu-
racy as other methods but superior processing time (in real-time).

• Realizing extensive ablation studies and analysis on the perfor-
mances of our proposed method on many different challenge
datasets.

2 Related Work

Early studies on TSR methods such as [6, 34, 32] strongly de-
pended on handcrafted features and heuristics logic. These methods
mainly use traditional techniques in computer vision to recognize ta-
ble structures like space analysis, connected component extraction,
text block arrangement, and vertical/horizontal alignment. Usually,
rule-based methods require deep insight into the dataset to design
heuristics logic and adjust parameters manually. These approaches
have impressive performance and rational analysis in small amounts
of datasets, but their generalization still needs to be improved and
appropriate for diverse structure data. In recent years, many deep
learning-based approaches have conspicuously outperformed tradi-
tional methods in accuracy and scalability. These approaches can be
divided into three categories based on modeling the TSR problem:
Table component extraction-based methods, Markup language-based
methods, and Bottom-up methods.

2.1 Table component extraction based methods.

These methods focus on detecting the components that make up a
table and then use post-process steps to reconstruct it. Straightfor-
wardly, [26] directly detects cell location with object detection and
then links them to get structure by graphs. The most challenging
part of cell detection is empty cells, where the network will be con-
fused when learning to empty due to explicit shape. Some methods
[28, 29, 22] consider recognition of rows and columns, then inter-
secting them to extract table cells. [18, 16] reconstruct table structure
based on vertex, edge of each cell, and logical relationship of each
cell. Recently, recognizing table structure by row/column separators
(Figure 1) become more efficient than row/column regions because
they alleviate sensitivity to the alignment of cells. These approaches
are based on the "split-and-merge" paradigm [30], which identifies

the primary grid of cells and then recovers spanning cells to gen-
erate table structure. Each stage, in this manner, attracted many re-
searchers to continue proposing ways for improvement. For the split
stage, [7, 10, 37, 12, 33] focus on row/column separators extraction
while [36, 20, 4] propose some ideas to improve merge grid cells
into spanning cells. Besides, [19, 14] is concerned about an efficient
pipeline and suggests a proposal for both stages. Row/column separa-
tor recognition is highly robust for the TSR problem, so the inference
time must be considered for real-world applications.

2.2 Markup language-based methods.

Methods in this type treat TSR as an image-to-text generation prob-
lem to convert raw table images into a text sequence describing ta-
ble structure and cell contents. The text sequence can be formatted
in HTML tags [8, 40] or LaTeX symbols [2], and both sequences
are interchangeable. An obvious limitation of these methods is that
they are time and memory-consuming, especially when dealing with
a complex table with many cells. To alleviate this issue, [17] pro-
posed a new markup language called OTSL to improve performance
(accuracy and inference time) by optimizing table structure repre-
sentation in HTML sequence. Despite significant improvements in
processing time, this work and this method, in general, still cannot
meet the speed for real-life applications.

2.3 Bottom-up methods.

These approaches treat table structure as graph representation while
text regions like words or cell contents as nodes. The graph neural
network (GNN) is applied to predict the relationship of each sam-
pled node pair in the same cell, row, or column. Methods [1, 24, 13]
still need additional information about the text segment location and
content, which can be extracted from PDF metadata or need an OCR
engine. Later methods [35, 9] design text detection module inside the
system and combine with GCN to create a comprehensive pipeline.

3 Method

3.1 Backbone

As Figure 2, RTSR comprises two key components: CNN back-
bone and Separator prediction. Firstly, the input table image X ∈
RH×W×3 is fed into a feature-pyramid backbone to produce fea-
ture P ∈ R

H
4
×W

4
×C , where C represents the number of channels

and is set to 64 in our experiments. The network backbone uses
Resnet18 [5] as the visual feature encoder with Feature Pyramid
Network (FPN) [11] produced by the pixel decoder with resolution
1/32, 1/16, 1/8, 1/4 of the original input image to extract multi-
resolution features. Then, feature P is used to predict the probability
map of row and column separators simultaneously.

3.2 Feature Aggregator

Two semantic segmentation branches are built on feature map P to
enhance features and predict row separation mask Srow and column
separation mask Scol. Taking the row mask Srow as an example, we
first down-sample P eight times in a horizontal direction by con-
ducting consecutively three times sequences of a 1× 2 max-pooling
layer, a 3× 3 convolutional layer and a LeakyReLU activation layer.
After that, feature map F row ∈ R

H
4
×W

32
×C is obtained as input of
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Figure 2. The proposed architecture of RTSR.

two following feature aggregator modules RESA [38] to gather spa-
tial information horizontally. F row can be splitted into W/32 slides,
which are denoted as F row = {fi ∈ R

H
4
×1×C , i = 1, 2, ..., W

32
}. In

this module, the feature map is shifted simply by index calculation
as follows:

f left
i = f(i+ L

2K−k ) mod L∀i = 1, 2, ..., L (1)

fright
i = f(i− L

2K−k ) mod L∀i = 1, 2, ..., L (2)

where L is down-sample dimension, here L = W
32

, f left
i is new po-

sition of slice i − th after left-shifting, K is iteration total and k is
current iteration. Eq. (1) and Eq. (2) show left and right-shifted fea-
ture map formulas. The first aggregator module applies the convolu-
tion layer with kernel 9×1 followed by the ReLU activation layer to
the left-shifted feature map, and its output is updated with the input
feature map. This procedure is done iteratively after K times. The
second aggregator module propagates information in a reversed di-
rection with a right-shifted feature map. After finishing the passing
information process, the result feature map is up-sampled by a fac-
tor of (4, 32) and predicted by a linear transformation to generate an
output probability map Srow ∈ RH×W×1. The loss function for pre-
dicted map Srow with ground-truth S̄row is formulated as follows:

Lrow =

H,W∑

i,j

(α×Lbce(S
row
i,j , S̄row

i,j )+(1−α)×Ldice(S
row
i,j , S̄row

i,j ))

(3)
where Lbce, Ldice is the binary-cross entropy and dice loss, α is a

hyper-parameter for balancing loss, we set α = 0.4.

3.3 Label generation

For each training image, we generate the ground truth label for the
row/column separators of the table. Each separator utilized is distinct
from those employed in split-and-merge methodologies, guarantee-
ing that it avoids crossing the spanning cell.

Unlike a binary segmentation map, which labels each pixel as 0
or 1, we encode the probability of the center of the separator with a
Gaussian heat map. Motivated by the advanced hybrid pyramid mask
alignment in cell detection presented in [25], we find that using the

soft-label segmentation obtains more accurate aligned separation re-
gions. The utilization of soft labels assists the model in concentrat-
ing on pixels along the middle line of the separator. Consider a row
separator with width D and length L as an example; the row mask
is generated by calculating the 1D Gaussian distribution array with
mean μ = D

2
and covariance σ2 = 3 × D. Then, assign this array

to the L position in the row separator region, shown in Equation (4).
The final output is a row separator mask with soft label value in range
[0, 1], as shown in Figure 3

Wi(x) =
1√
6πD

e−
(x−D

2
)2

6D , ∀i = 1, ..., L (4)

Figure 3. An example of target masks using Soft label (Gaussian heat
map).

4 Experiments

4.1 Dataset and Metric

This paper used four well-known datasets for the experiment and
evaluation analysis.

SciTSR [30] is a large-scale table structure recognition dataset
derived from scientific papers. It contains 15000 tables split into
12000/3000 for training and testing. Additionally, the authors estab-
lished a sub-dataset named SciTSR-COMP, consisting of 2, 885 and
716 extremely complex tables in the training and test sets, respec-
tively, to enhance the challenges. As presented in [30], the metric for
this dataset is the cell adjacent relationship score.
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Pubtabnet [40] is a large table structure recognition dataset that
extracts research papers from the medical domain. This dataset con-
tains 500, 777/9, 115/9, 138 documents for training/validating and
testing. Because the labeling of the testing set has yet to be re-
leased, the validation set is used for the evaluation profile. This ar-
ticle also proposes a measure called TED to evaluate performance.
However, the OCR metric is not fair when considering table restruc-
turing. Therefore, several modified versions, such as TEDS-Struct,
have been proposed and are widely used in TSR competitions. We
also use this modified metric to evaluate our approach on this dataset.

Fintabnet [39] is a large dataset containing more than 70, 000
pages with full labeling, including bounding box and cell structure
from the annual reports of the S&P companies. The number of axis-
aligned tables with cell bounding boxes obtained in these images is
91596/10635/10656 as train/val/test. As proposed in FinTabNet pa-
per [39], the TEDS-Struct is used as the evaluation metric.

WTW [15] is a different dataset, as it collects images mainly from
natural scene images and focuses on bordered tabular objects. This
dataset contains 10, 970 images for training and 3, 611 for testing.
This dataset is well-labeled with table ID, coordinates, and row and
column information. Following [27], we crop table regions from
original images for training and testing, using the cell adjacency re-
lationship (IoU = 0.6) [3] as the evaluation metric.

Figure 4. Image size distribution in 4 datasets: SciTSR, Pubtabnet,
Fintabnet, and WTW.

4.2 Implementation details

All experiments are conducted using PyTorch 1.13.0. The training
phase is on an NVIDIA V100 32GB GPU, while inference was exe-
cuted on an RTX 3060. The weights of the ResNet-18 are initialized
from the pre-trained model of ImageNet. We employ the AdamW
algorithm for optimization, with the following hyper-parameters:
β1 = 0.9, β2 = 0.999, ε = 1e−8, λ = 5e−4. During the training
phase, we resize the longer side of the table image to pre-defined val-
ues to facilitate multi-scale training while preserving the aspect ratio.
We conducted statistical analysis, as depicted in Figure 4, on the size
distribution of images across all four datasets to determine the op-
timal longer side dimension. Fintabnet and WTW datasets exhibit
larger average image sizes, leading us to select higher dimensions,
namely {1056, 1152, 1184}, while {800, 896, 928} were chosen for
Pubtabnet and SciTSR datasets.

In the testing phase, we resize the longer side of each image to 896
for SciTSR and Pubtabnet and 1184 for Fintabnet and WTW. The
separator maps are binarized dynamically with the Otsu algorithm
[21].

4.3 Experiment Results

We compare our RTSR with other state-of-the-art TSR methods on
four popular datasets: SciTSR, Pubtabnet, Fintabnet, and WTW. Our
approach has comparable performance for the first benchmark in Ta-
ble 1 about the SciTSR dataset, and the gap with the highest method
is 1.0% (in SciTSR-COMP). With a simple design in our approach,
RTSR can perform at a real-time speed with an FPS average of 45.8,
a significant gap from other methods. Here are some studies on pro-
cessing speed, and more information about FPS needs to be provided
in the report.

From an accuracy perspective with large-scale datasets, our
method performs less than 1.4% and 1.8% Fintabnet and Pubtab-
net (Table 2). The reason for these datasets could be that the size is
large. At the same time, RTSR is lightweight, model capacity is inad-
equate with enormous data points, and we have not done any specific
post-processing on the datasets, as shown in Figure 5, 6. However,
the processing time on each image of these two data still ensures
real-time performance. On the more challenging WTW dataset, our
RTSR achieves acceptable performance with previous state-of-the-
art, behind 2.2% compared with LORE++[16] (Table 3).

From a computational performance perspective, Table 4 presents
the processing speed of RTSR across four datasets with an average
of 38.1 FPS. The primary discrepancy of FPS among the datasets
lies in their image resolutions and the quantity of separators within
each dataset. Due to the utilization of larger image sizes in WTW and
Fintabnet, their processing speeds are comparatively lower. Specifi-
cally, WTW exhibits the slowest speed, attributed to its handling of
photographic images and the longer execution time required for post-
processing steps.

4.4 Result analysis

Some example results depicted in Figure 5 showcase the efficacy
of the proposed method across various complex layouts. Our model
demonstrates proficiency in extracting table structures from bordered
and borderless tables. In bordered tables, explicit borders serve as
cues for separators, while in borderless, whitespace and alignment
between cells play a pivotal role in recognition. Addressing chal-
lenges inherent to the TSR problem, our approach successfully han-
dles issues such as spanning cell (Figure 5-(a-e)), warped image (Fig-
ure 5-f), form-like document with non-axis structures and empty cell
(Figure 5-g).

Nonetheless, our method exhibits limitations in specific scenarios,
such as the absence of spanning cells in the density table (Figure 6-a).
Our baseline, which employs FPN-resnet18, is notably lightweight,
resulting in numerous false positive separators, as depicted in Fig-
ure 6. Noisy separators can be mitigated through additional post-
processing steps or by implementing a more robust design in the
backbone. Furthermore, our approach still experiences diminished
Accuracy when dealing with photographic images, particularly in
cases where the background complexity increases (Figure 6-g).

4.5 Ablation Study

To clarify some performance and evaluation, we conducted multiple
experiments to evaluate the effectiveness of our proposal modules.
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Table 1. Performance evaluation of the nine methods on the SciTSR and SciTSR-COMP datasets (FPS means frame per second). The processing time
information is taken from the publication and may differ from the experimental setup.

Method/Dataset
SciTSR SciTSR-COMP

FPS
Prec. Rec. F1. Prec. Rec. F1.

TabStruct-Net [26] 92.7 91.3 92.0 90.9 88.2 89.5 -
GraphTSR [30] 95.9 94.8 95.3 52.9 41.7 46.6 -
LGPMA [25] 98.2 99.3 98.8 97.3 98.7 98.0 -

FLAG-Net [13] 99.7 99.3 99.5 98.4 98.6 98.5 -
SEMv2 [37] 99.3 99.2 99.3 98.7 98.6 98.7 7.3

TSRFormer w/ DQ-DETR [33] 99.5 99.3 99.4 99.1 98.6 98.9 4.2
GridFormer [18] 99.4 99.0 99.2 - - - -

LORE++ [16] - - - 99.4 99.2 99.3 2.3
Our RTSR 99.5 99.4 99.4 98.7 98.0 98.3 45.8

a)

b)
c)

d)

e)

f) g)

Figure 5. Example results of the RTSR on datasets, (a) SciTSR, (b-c) Pubtabnet, (d-e) Fintabnet, (f-g) WTW.

Table 2. Evaluation profile for the six methods on the Pubtabnet and
Fintabnet dataset (TEDS-struct metric).

Method Pubtabnet Fintabnet

LGPMA [25] 96.7 -
SEMv2 [37] 97.5 92.8

RobusTabNet [19] 96.5 93.8
TSRFormer w/ DQ-DETR [33] 97.5 98.4

GridFormer [18] 97.0 98.6
Our RTSR 95.7 97.2

The ablation study is assessed using the SciTSR dataset.

Table 3. Evaluation profile for the six methods on the WTW dataset.

Method Prec. Rec. F1.

Cycle-CenterNet [15] 93.3 91.5 92.4
SEMv2 [37] 93.8 93.4 93.6

TSRFormer w/ DQ-DETR [33] 94.5 94.0 94.3
Grid-Former [18] 94.1 94.2 94.1

LORE++ [16] 94.5 95.9 95.1
Our RTSR 92.2 93.6 92.9

Message Passing with Feature Shift Aggregation. The result on
Table 5 indicate the efficiency of RESA module [38]. SCNN [23]
needs to iterate over each point on every image dimension, con-
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a)

b)
c)

d)

e)

f) g)

h)

i)

Figure 6. Example of failure cases (blue dash box) of the RTSR on datasets, (a-b) SciTSR, (c-d) Pubtabnet, (e-f) Fintabnet, (g-i) WTW.

Table 4. Speed performance of the RTSR on four datasets.

Dataset SciTSR Pubtabnet Fintabnet WTW Average

FPS 45.8 43.2 38.0 25.5 38.1

Table 5. Ablation studies of Soft label and Message passing method in
RTSR.

Soft Mes/Pass
SciTSR

FPS #Param
Prec. Rec. F1.

No SCNN 99.29 99.00 99.10 29.4 18.4MYes SCNN 99.38 99.16 99.24
No RESA 99.45 99.14 99.26 45.8 19.0MYes RESA 99.53 99.37 99.43

suming processing time and computation. RESA helps to reduce
the computation complexity from O(n) down to O(1) with a pre-
defined number of iterations. Specifically, FPS on RESA is better
than SCNN by about ×1.5 despite using more parameters. Besides,
with the RESA module, prediction accuracy has slightly improved.

Table 6. Performance of the RTSR with different iterations in RESA.

Num iters Prec. Rec. F1.

3 99.50 99.32 99.38
5 99.53 99.37 99.43
7 99.48 99.35 99.40

Soft label. As reported in Table 5, improving the soft label in the
pipeline is not trivial. In combination with SCNN or RESA, soft label
also increases the F1 score over 0.17% without more computation.

Number of iterations in RESA. In this section, we explore the
effect of different iterations in RESA. Theoretically, as the iteration
increases, each slice of the feature map can aggregate more informa-
tion, which contributes to obtaining better performance. As shown

in Table 6, the performance will improve as the iteration increases.
However, more iterations lead to more computational time costs,
while performance improvement is insignificant. We designate itera-
tion 5 as our ultimate selection to make a balance between them.

5 Conclusion

This paper presents a new approach to the real-time table structure
recognition problem called RTSR. We adopt a soft label and fea-
ture aggregation to increase the ability to extract and retain feature
characteristics in deep learning networks. Our segmentation-based
approach can reach a real-time prediction while keeping an approxi-
mation of advanced Accuracy. Experimental results demonstrate that
our method has outperformed current TSR methods on time and
competes in Accuracy. The following research will focus on model
design to achieve better performance on large-scale datasets while
ensuring real-time speed.
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