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Abstract. Face forgery detection is crucial in preserving the se-
curity and integrity of facial data amidst the rapid developments in
face manipulation techniques and deep generative models. Existing
methods for video face forgery detection typically assume that all
frames in a forged video are manipulated, while identifying partially
forged videos with only a subset of altered frames is still a chal-
lenge to be solved. To address this issue, we propose a novel frame-
work, i.e., the UVIF, that utilizes additional annotated images to pro-
vide fine-grained supervision for detecting partial forgeries in videos.
The UVIF integrates a unified encoder and a multi-task learning
paradigm to model both facial videos and images for boosted video
face forgery detection. A 2D backbone with temporal fusion mod-
ules is employed for the unified encoder. A pseudo labeling process
is also designed for facial video frames to bridge the representation of
individual video frames and static images. Extensive experiments on
benchmark datasets demonstrate the effectiveness of our framework,
outperforming state-of-the-art methods in detecting partially forged
videos while introducing no additional computational overhead. Our
code is available at https://github.com/haotianll/UVIF.

1 Introduction

Face forgery detection aims to distinguish between authentic and fab-
ricated faces [25]. This task is essential in preventing malicious uses
of face manipulation techniques and AI-generated content (AIGC)
[18, 41], thereby upholding the security and integrity of facial data.

Current research on video forgery detection is primarily catego-
rized into image-based and video-based methods. Image-based meth-
ods [1, 42, 56, 40, 4, 37] utilize static facial images as inputs and per-
form image classification to verify their authenticity. When dealing
with a video clip, these methods extract individual facial frames and
assign classification labels to each frame. In contrast, video-based
methods [19, 23, 27, 57, 49, 55] process facial video clips directly
with 3D backbones and complete a video classification task. Given
the critical role of temporal inconsistency between video frames
in forgery analysis, video-based methods [27, 57, 49, 55] tend to
achieve higher accuracy compared to image-based methods.

A significant limitation of current studies on face forgery detec-
tion is the assumption [42] that all frames in a fake video are ma-
nipulated, underpinning the preprocessing pipelines, model designs,
and training strategies commonly employed. However, such an as-
sumption does not hold across all forgery detection tasks in realistic
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Figure 1. Previous video forgery detection studies assumed all frames of
forged videos are fake, while in reality some videos might be partially forged
containing a subset of fake frames. This poses challenges for video face
forgery detection in realistic scenarios. To address this issue, this paper pro-
poses utilizing additional images to provide fine-grained supervision for de-
tecting partial forgeries in videos, by employing unified representations for
facial videos and images.

scenarios, that some fake videos may only contain a portion of ma-
nipulated frames. This discrepancy poses challenges for both image-
based and video-based detection methods previously proposed. For
image-based methods, there are no fine-grained labels for each video
frame, making them impractical to process partial forgery videos for
training. For video-based methods, tailored strategies need to be de-
signed in the model pipelines to manage the uncertainty presented by
a mix of authentic and forged frames. Due to the lack of fine-grained
supervision for each video frame, the feature extraction process in
video-based methods will also be impacted.

Some previous work [32] tried to use multiple instance learning
(MIL) [24] to tackle partially forged videos, but the performance
of this approach is limited due to lack of fine-grained supervision.
Specifically, MIL uses a set of labeled bags containing many in-
stances for training. For a binary classification, a positive bag can
contain both positive and negative instances, while a negative bag
contains only negative ones. The MIL resembles the partial video
forgery detection task, i.e., a forgery video can be viewed as a pos-
itive bag. However, current MIL methods [32, 45, 44, 54, 35] only
focus on group instances based on feature similarity, without access
to instance-level labels during training, limiting their effectiveness in
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detecting partially forged videos.
Intuitively, detecting forged frames is essential in verifying the au-

thenticity of facial videos. The knowledge of detecting forged images
can also contribute to this, as they have a similar representation learn-
ing process, i.e., extracting discriminate features related to forgery
clues. Facial image instances with fine-grained labels are readily
available in existing face forgery detection datasets. Therefore, we
propose incorporating annotated facial images to improve the detec-
tion accuracy of partially forged videos, as illustrated in Figure 1.

In light of this motivation, we propose a novel framework named
UVIF, i.e., Unified Video and Image representation for Forgery de-
tection in facial videos. The UVIF framework can simultaneously
process both video and image inputs with one single model. This in-
tegration is facilitated by a 2D backbone combined with temporal fu-
sion designs. It follows a multi-task learning optimization paradigm,
which encompasses both video and image face forgery detection.
Here, image forgery detection serves as an auxiliary task that in-
troduces fine-grained supervision to enhance video forgery detec-
tion. As a result, our UVIF framework can significantly improve the
model’s representation for partial video face forgery detection.

The contributions of this paper include:
1) We propose a novel method, the UVIF, that utilizes additional

annotated images to provide fine-grained supervision for detecting
partial forgeries in videos.

2) In UVIF, a unified encoder and a multi-task learning paradigm
are integrated to model both facial videos and images for boosted
video face forgery detection. A 2D backbone with a temporal fusion
module is employed for the unified encoder.

3) A pseudo labeling process is designed for facial video frames
to bridge the representation of video frames and static images.

4) Extensive experiments demonstrate that UVIF significantly out-
performs SOTA methods in detecting partially forged videos. Further
ablation tests show the efficiency of the proposed approach, that a
small set of added images e.g., 20k, are sufficient to achieve a sig-
nificant performance boost across videos with various forgery ratios,
e.g., as low as 10%.

2 Related Work

2.1 Face Forgery Detection

Face forgery detection aims to detect forged or synthesized faces in
images and videos, which is very important for the authenticity of
visual information that we see every day. Some methods [1, 42] di-
rectly used convolution neural networks (CNNs) and performed a bi-
nary classification task for image face forgery detection. Subsequent
approaches further exploit spatial forgery patterns of facial images,
including local textures [56], frequency domain [40, 29, 37], and in-
consistency information [31, 11, 46, 4]. It is worth noting that some
image-based methods have been applied to video face forgery de-
tection. They converted facial videos to individual image frames and
generated classification labels for each frame during training. How-
ever, these methods assumed that all frames in a facial video are the
same kind, i.e., all as real, or all as fake, making them unsuitable to
process partially forged videos.

As temporal inconsistency between video frames is also crucial,
many video face forgery detection methods [19, 23, 27, 57, 49, 55]
have been proposed leveraging the inconsistency information for
video face forgery detection. They took the temporal dimension into
consideration and processed facial video inputs directly. Early stud-
ies focused on mining temporal clues by using prior knowledge, such

as eye blinks [33], lip motions [21], and biological signals [7]. Some
methods [19, 20, 23, 49] directly processed facial video clips with
a 3D CNN or recurrent neural network (RNN), which achieved bet-
ter accuracy than image-based methods. With the advance of vision
transformers [12, 2], recent works [27, 57, 55] also proposed using
transformer structures to enhance the representation of inter-frame
relations during feature extraction. Despite their swift progress, the
task of partially forged video detection still needs to be further ex-
plored.

2.2 Multiple Instance Learning

Multiple instance learning (MIL) is a form of weakly supervised
learning with broad applications in medical imaging and video anal-
ysis [5]. In MIL, a bag of instances is annotated with a single bag-
level label, while the exact label for each instance is unavailable. For
a binary classification, negative bags only contain negative instances,
while positive bags can contain both positive and negative instances.
Early studies [15, 52] of MIL focused on extracting and aggregating
features of each instance in a bag via deep neural networks and pool-
ing operations. Ilse et al. [24] first proposed utilizing the attention
mechanism to increase the weights of key instances and thus enhance
the representation of bag features. Recently, some MIL approaches
[28, 44, 54, 35] have also been developed based on attention mecha-
nisms and contrastive learning. Li et al. [32] proposed a sharp MIL,
i.e., S-MIL, for face forgery detection to handle the problem of par-
tially manipulated faces in videos. It treated facial frames and videos
as instances and bags in MIL, respectively, and designed a sharp loss
emphasizing hard instances to address the partially forged videos.
Nevertheless, the performance of MIL methods is limited due to the
lack of instance-level labels during training. In this paper, we pro-
pose to address the partial forgery video detection task from a new
perspective, i.e., by incorporating additional image instances with an-
notations to compensate for the absence of fine-grained supervision
information.

2.3 Unified Architecture Design

The unified architecture design [13, 16] has gained significant at-
tention recently. It can process input data of different modalities or
perform multi-task learning with a single model. As video and im-
age data are highly related in structure, i.e., video can be viewed as
a sequence of images, some methods [34, 3, 2, 39, 38] have been
developed to introduce temporal modeling to CNN [22] or trans-
former [12] backbones originally designed for 2D images for video
data processing. Moreover, other methods [13, 39] investigated us-
ing image data and fine-grained annotations to assist video tasks by
joint training of video and image data. With the increasing popular-
ity of transformers for visual tasks, some latest methods [16, 17, 50]
used a shared transformer backbone to encode or align data of mul-
tiple modalities, such as image, video, audio, and text, into a unified
feature space. Due to the good generalization and scaling capability
of transformers, these methods can learn excellent feature represen-
tation from diverse training data across modalities. The unified ar-
chitecture design has been demonstrated promising results in other
visual tasks, which inspires us to apply it for detecting forged facial
videos integrated with annotated images.

3 Methodology

An overview of the proposed UVIF method is illustrated in Fig-
ure 2, which integrates a unified encoder and a multi-task learning
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Figure 2. The UVIF framework comprises three primary components: 1) A unified encoder extracts features from both facial videos and images, and its
temporal fusion modules are only applied to video clips. 2) A multi-task learning paradigm is adopted for the training of the video and image classifiers. 3) An
auxiliary pseudo labeling process to bridge the representations of video frames and images. Both weak and strong augmentations are applied to each video input
to create two views for pseudo labeling. The UVIF utilizes only the unified encoder and video classifier for video forgery detection during testing.

paradigm to model facial videos and images for boosted video face
forgery detection. In the following parts, we first detail the problem
formulation and our motivation for detecting partial forgery videos
(Section 3.1). Then, we introduce how to achieve unified modeling
of both facial videos and images within a single model (Section 3.2).
Additionally, to bridge the representation of video frames and static
images, we design a novel pseudo labeling process for video frames
(Section 3.3). Finally, the detailed architecture of the proposed UVIF
framework is described (Section 3.4).

3.1 Problem Formulation

This paper concerns video face forgery detection, focusing on differ-
entiating whether a video instance contains fake faces, as a binary
classification task. Let X represent a facial video clip and Y rep-
resent the binary classification label of the entire video. In which,
X = {x1,x2, ...,xT } consists of a sequence of video frames, and
T is the number of frames. Y ∈ {0, 1} denotes whether the video is
real or fake, respectively. The goal of the video face forgery detection
task is to train a model that can accurately predict the binary label Y
for a given video input X .

For real video samples, the faces in every frame are genuine. Con-
versely, if faces in one or more frames of a video are manipulated,
the entire video is labeled as fake. Most previous research only con-
sidered the ideal prerequisite that every frame of a fake video is fake,
which does not hold in realistic scenarios. This paper aims to address
the more complex issue of partial face forgery detection, where a fake
video may contain only a portion of fake frames.

Specifically, assuming that there are binary frame labels Yframe =
{y1, y2, ..., yT } for each video frame, where yi ∈ {0, 1}, for i =
1, 2, ..., T , we can describe this premise as:

Y =

{
1, ∃yi = 1,

0, otherwise.
(1)

This formulation shares a similar setting as multiple instance learning
(MIL) [24]. We can take video frames X = {x1,x2, ...,xT } as a
bag of instances in MIL, and Y is the classification label of the bag.
During training, only the label Y is used while the individual labels
Yframe of each frame are not available.

The description above indicates that detecting fake frames is es-
sential in verifying the authenticity of facial videos. This requires the
classification model to extract discriminate features related to fake
frames. Nevertheless, the model only uses video-level labels dur-
ing training, resulting in a lack of fine-grained supervision for each
video frame. One direct approach is annotating each frame in a video
with classification labels, but it is time-consuming and impractical
for long and complex facial videos.

In this paper, we introduce fine-grained supervision to partial
video forgery detection with an additional set of facial images, which
is more efficient and feasible. For an image face forgery dataset, let
Ximage = {x′

1,x
′
2, ...,x

′
K} denote a set of K facial images, and

Yimage = {y′
1, y

′
2, ..., y

′
K} represent their corresponding binary clas-

sification labels. Compared to the video label Y , the image label
Yimage is more fine-grained and precise, and such annotated facial
images are readily available in face forgery detection datasets. As a
static image can be viewed as a frame in a facial video, the annotated
pair of Ximage and Yimage can be regarded as a substitute for the un-
available pair X and Yframe of video frames. Therefore, our research
focuses on how to utilize a set of labeled facial images to provide
fine-grained supervision for the detection of partially forged videos.

3.2 Unified Video and Image Modeling

To effectively utilize a set of facial images in boosting partial face
forgeries in videos, a unified model is required that can process both
video and image inputs and perform classification tasks for both
modalities during training.

Inspired by the popular unified architecture designs [34, 2, 39],
we propose to use a 2D backbone with temporal fusion modules to
achieve unified video and image modeling. We choose this architec-
ture for two reasons: First, although typical 3D-based backbones are
the prior choice for video classification tasks, they encounter incom-
patible or redundant problems when processing image data due to
complicated temporal fusion operations or pipelines. Second, using
two unshared backbones for video and image data will result in dis-
tinct feature spaces, and implicit interactions between video and im-
age features will be significantly constrained during training. There-
fore, we decide to use a 2D backbone to implement the unified en-
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Figure 3. Illustration of the pseudo labeling process. For each video frame
xi, the image classifier uses weak augmented view xw

i to generate the pseudo
label ŷi, and the video frame classifier uses strong augmented xs

i to predict
the probability p̂i.

coder for facial video and image inputs. When dealing with video
inputs, temporal fusion modules are applied to compensate for the
lack of temporal interaction in 2D backbones. The detailed architec-
ture is introduced in Section 3.4.

During training, the framework is optimized following the multi-
task learning paradigm. A training batch is constructed by randomly
sampling a set of facial videos and images. Two unshared classifiers
are employed to make predictions of video and image inputs. The
classification losses Lvideo and Limage for video and image are com-
puted as follows:

Lvideo = LCE(Y, p), (2)

Limage = LCE(y
′, p′), (3)

where p and p′ are the predicted probabilities of a facial video or
image, Y and y′ are corresponding ground truth labels, and LCE

is the standard cross entropy loss in classification tasks. Lvideo and
Limage are further averaged according to the number of videos and
images in the training batch.

In this way, the model is supervised by both video and image in-
puts. Apart from video face forgery detection, it also learns to extract
discriminative features to identify the authenticity of facial images.
As a result, the model’s representation is improved by incorporating
the fine-grained labels from the image set for training.

3.3 Bridging Video and Image Representation

According to the problem formulation, the unified modeling process
actually takes the annotated image set Ximage = {x′

1,x
′
2, ...,x

′
K}

and Yimage = {y′
1, y

′
2, ..., y

′
K} as substitutes of original video frames

X = {x1,x2, ...,xT }, while the frame-level labels Yframe =
{y1, y2, ..., yT } are still not available for training. In other words, the
model does not receive any direct supervision for each video frame
in X during training. Therefore, we further introduce an auxiliary
pseudo labeling process for facial videos. It generates pseudo labels
Ŷframe = {ŷ1, ŷ2, ..., ŷT } for each video frame based on the im-
age classifier, aiming to bridge the representation of individual video
frames and images.

As shown in Figure 3, the pseudo labeling process involves two
augmented views xw

i and xs
i of each video frame xi, for i =

1, 2, ..., T . In which, xw
i is only applied with weak augmentations,

including resizing, cropping, and horizontal flipping, while xs
i is a

view with additional strong augmentation, such as image compres-
sion and color perturbations. The two views xw

i and xs
i are fed into

the unified encoder with shared parameters to obtain two output fea-
ture vectors zwi and zsi , respectively. The image classifier is applied to
zwi from the view with weak augmentation to get the soft pseudo la-
bel ŷi. Then, another video frame classifier is introduced, and it takes
zsi as input to predict the probabilities p̂i for each video frame. Note
that the video frame classifier has the same structure as the image
classifier but with unshared parameters.

Based on the outputs ŷi and p̂i of two views, we define the pseudo
labeling loss for each video frame as:

Lpseudo = LCE(stopgrad(ŷi), p̂i), (4)

where LCE denotes the cross entropy, and Lpseudo is averaged over
all the video frames. A stop-gradient operation stopgrad(·) is ap-
plied to ŷi to avoid the collapse of training.

The pseudo labeling process is similar to the semi-supervised
learning frameworks [48, 6]. It generates reliable pseudo labels from
a weak augmented view and provides supervision to a strong view
input during training. As the image classifier is applied for the gen-
eration of pseudo labels, the pseudo labeling loss Lpseudo can guide
the unified encoder to minimize the gap between features of video
frames and static images. Besides, as the video frame classifier is
dropped during testing, this pseudo labeling process only affects the
representation learning of the unified encoder.

3.4 The Architecture

The UVIF framework comprises three primary components, i.e., a
unified encoder, video and image classifiers, and an auxiliary pseudo
labeling process. It adopts a multi-task learning paradigm for opti-
mization, as depicted in Figure 2.

3.4.1 Unified Encoder

The unified encoder processes two sets of inputs in a batch, i.e.,
images and video clips. We define an input video clip xvideo ∈
R

T×3×H0×W0 and an input image ximage ∈ R
3×H0×W0 . In which,

T denotes the sampled frames of a video clip during training, H0 and
W0 are the input height and width of video frames or images, and
both xvideo and ximage are applied with strong data augmentation.
The unified encoder then generates a video feature map fvideo ∈
R

T×C×H×W and an image feature map fimage ∈ R
C×H×W , re-

spectively. Here, C is the channels of the feature map, while H and
W are the height and width of the feature map.

The unified encoder is implemented by using typical 2D CNN
[22, 53] or transformer [12] backbones. For the design of tempo-
ral fusion modules, we utilize the Temporal Shift Module (TSM)
[34] for CNN backbones [22, 53], and we use 3D positional encod-
ing [2, 51] and temporal attention operations [2, 51] for transformer
backbones including ViT [12].

3.4.2 Video and Image Classifiers

Two unshared classifiers are applied to accomplish video and image
face forgery detection tasks. Specifically, the video classifier first per-
forms global average pooling (GAP) over fvideo ∈ R

T×C×H×W to
obtain feature vectors zvideo ∈ R

T×C for each video frame, and the
image classifier generates zimage ∈ R

C in a similar way. Then, two
vanilla multilayer perceptrons (MLPs) are used to get the predicted
probabilities for each video or image. Note that the predicted proba-
bility of a video is averaged over the predictions of all video frames
following [34].
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Table 1. Comparison with the state-of-the-art methods on the ForgeryNet [23] validation set. The results marked with † are cited from the original ForgeryNet
paper [23], where the code and models are not publicly available. All the remaining results are reimplemented using the same protocol for a fair comparison.
The #params denotes the number of parameters, and the FLOPs are measured under the spatial size 224 × 224. Bold indicates the best results.

Method Backbone #params (M) FLOPs (G) Acc AUC
TSM [34] † ResNet-50 24 132 88.04 93.05
SlowFast [14] † 3D ResNet-50 34 51 88.78 93.88
TSM [34] ResNet-50 24 132 80.89 88.66
TSM [34] ResNet-101 43 251 81.48 88.08
SlowOnly [14] 3D ResNet-50 32 168 79.61 86.71
SlowFast [14] 3D ResNet-50 34 51 83.20 90.99
SlowFast [14] 3D ResNet-101 62 97 83.42 91.25
STIL [19] SCNet-50 23 151 81.18 87.61
FTCN [57] 3D ResNet-50 57 68 74.40 80.08
TimeSformer [3] ViT-B 86 281 78.11 86.60
Swin [36] VideoSwin-T 28 88 80.57 88.17
Swin [36] VideoSwin-S 50 166 82.38 89.96
VideoMAEv2 [51] ViT-S 22 57 78.23 85.83
UniFormer [30] UniFormer-S 21 110 82.59 89.16
MIL [24] ResNet-50 24 132 81.41 88.28
S-MIL [32] ResNet-50 24 132 81.38 88.33
DSMIL [28] ResNet-50 24 132 81.55 88.44
UVIF (Ours) ResNet-50 24 132 85.32 93.45
UVIF (Ours) ResNet-101 43 251 86.57 94.42

3.4.3 Pseudo Labeling Process

Apart from the input video xvideo with strong augmentation and
its corresponding feature vector zvideo, the pseudo labeling process
involves another weak augmented video xweak

video ∈ R
T×3×H0×W0 ,

and it is also fed into the unified encoder to get video feature map
fweak
video ∈ R

T×C×H×W . After global average pooling, the image
classifier uses zweak

video ∈ R
T×C to generate the pseudo labels for each

video frame, while another video frame classifier is introduced that
uses zvideo to get the predicted probabilities for each video frame.

3.4.4 Optimization

The overall framework is optimized end-to-end within a multi-task
learning paradigm, employing the following loss function:

L = Lvideo + Limage + Lpseudo , (5)

where Lvideo and Limage are the classification losses for the video
and image classifiers, respectively, and Lpseudo is the pseudo label-
ing loss for each video frame. Note that the proposed method in-
curs no additional computational overhead during testing as only the
video classifier is applied.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets and Evaluation Metrics

We conduct experiments on publicly available face forgery detection
datasets ForgeryNet [23] and DFDC (preview) [10].

ForgeryNet is a large-scale face forgery detection dataset with over
220k facial video flips and 2.9m static images based on over 5k
subjects. It contains 15 facial manipulation approaches and over 36
mix-perturbations, and the majority of forged videos in ForgeryNet
are partially manipulated, which makes it very challenging for face
forgery detection. For forgery video classification, we follow [23]
and take about 140k videos as the training set and 18k as the vali-
dation set. As for the image set, ForgeryNet actually includes over
2.3m training images and 150k validation images, but we only train

our method with a randomly selected subset of 100k images (less
than 5%) from the entire training set if not specified.

DFDC is the preview dataset of the Deepfake Detection Challenge
[10], which includes 1131 real facial video clips and 4113 forged
ones from two unknown synthesis methods. DFDC also features
many partially forged video clips that contain both actual and ma-
nipulated frames. We follow the original dataset partition in [10] and
use 4464 videos for training and 780 for testing.

For evaluation metrics, we follow [23, 10] and adopt standard
video-level Accuracy (Acc) and Area under the ROC curve (AUC)
to evaluate the performance of video face forgery detection.

4.1.2 Implementation Details

We use MMEngine [8] to implement our method. As a typical case
of our method, we adopt ResNet [22] equipped with TSM [34] for
the unified encoder and utilize pre-trained weights on ImageNet-1k
for initialization.

For data processing, we adopt some settings introduced in [23]. We
use RetinaFace [9] to extract facial regions from each video frame or
image. We enlarge the detected bounding boxes with a factor of 1.3
to obtain the cropped faces for training and evaluation. We randomly
sample 32 frames with temporal stride 4 from each video clip during
training and use a center clip of 32 frames for evaluation. We resize
the resolution of each video frame or image to 224 × 224.

For data augmentation, we follow [23] and use weak and strong
augmentations during training. Specifically, weak augmentation only
uses geometric transforms, including random resizing of range
[1, 8/7], random cropping, and random horizontal flipping. In con-
trast, strong augmentation also applies a few more perturbations,
such as image compression, random color distortions, Gaussian blur,
CLAHE, and channel shuffle. We use strong augmentation as the de-
fault training setting of video frames or images for all the baselines
and compared methods. Besides, our method also leverages both
weak and strong augmentations to construct two different views of
pseudo labeling process.

The batch size of video clips is set to 16 for video classification
baselines during training. For each iteration, our method also ran-
domly selects 128 images from the training image set. Note that our
method randomly selects videos and images without requiring them
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Table 2. Results on the DFDC [23] testing set. Results marked with † are
cited from original papers. Bold indicates the best results.

Method Acc AUC
TSM-Res50 [34] 81.08 90.67
TSM-Res101 [34] 82.11 91.07
SlowFast-Res50 [14] 83.53 92.10
SlowFast-Res101 [14] 83.14 92.43
Xception-avg [42] † 84.58 -
STIL [19] 86.23 93.16
VideoMAEv2-ViT-S [51] 83.01 90.52
VideoSwin-T [36] 79.54 89.04
Uniformer-S [30] 85.07 94.02
S-MIL [32] † 83.78 -
S-MIL-T [32] † 85.11 -
UVIF-Res50 (Ours) 83.40 93.54
UVIF-Res101 (Ours) 87.00 94.95

Table 3. Effectiveness of the primary components of UVIF with ResNet-
50, i.e., Limage in unified modeling, temporal fusion modules for videos,
and Lpseudo in pseudo labeling. Bold indicates the best results.

Limage Temporal Lpseudo Acc AUC
- - - 68.24 75.92
� - - 76.17 85.10
- � - 80.89 88.66
� � - 84.41 92.85
� � � 85.32 93.45

to contain corresponding subjects.
The proposed framework is trained end-to-end with an SGD opti-

mizer on two NVIDIA Tesla V100 GPUs. The models are trained for
100k iteration on ForgeryNet [23] and 20k on DFDC [10] to reach
converging. The base learning rate is set to 0.01. A linear warm-up
schedule of 10−3 is used for the first 2k iterations, and then a one-
cycle [47] decay schedule is applied. The weight decay is 10−4 and
the SGD momentum is 0.9. We also utilize the same hyper-parameter
setting for other compared methods unless specified.

4.2 Comparison to State of the Art

We evaluate the performance of our proposed methods on the
ForgeryNet [23] dataset, and compare them with a range of previ-
ous state-of-the-art methods, including CNN-based and transformer-
based methods for video face forgery detection, as well as typical
multiple instance learning methods, as detailed in Table 1. Most com-
parison methods are initialized with pre-trained weights on Kinetics-
400 [26] instead of ImageNet-1k [43] for better performance, ex-
cept [34, 19]. The number of frames for [3, 51] is reduced to 16 due
to the GPU memory limit. The TSM [34] methods can be viewed
as the baselines for the UVIF, as they have the equivalent architec-
ture during evaluation. The comparison results show that our pro-
posed UVIF methods outperform previous methods by a large mar-
gin. The best model, UVIF-ResNet-101, achieves 86.57% accuracy
and 94.42% AUC, surpassing SlowFast [14] by +3.15% and +3.17%,
respectively. Compared to SlowFast, our UVIF has fewer parame-
ters but more FLOPs due to the differences in architecture. Slowfast
leverages 3D convolution and temporal pooling operations for fea-
ture extraction, while our UVIF is based on 2D backbones equipped
with temporal fusion modules. Besides, MIL methods [24, 32, 28]
are also implemented based on the architecture TSM-ResNet-50, and
we take each video clip input as a bag in MIL. The results in Table
1 indicate that although MIL methods can improve the AUC to some
extent by grouping similar video frames, their performance benefits
are still limited. In contrast, our UVIF methods can significantly im-
prove detection performance by utilizing fine-grained image annota-
tions.

Figure 4. Ablation on the number of images for training. Results of two
UVIF settings, i.e., with or without pseudo labeling process, are illustrated.
All results are based on ResNet-50.

We also compare our proposed UVIF with existing methods on the
DFDC [10] dataset, as presented in Table 2. Here, we use the selected
image set of ForgeryNet to train our method. All methods extract
video frames within the whole video clip for evaluation following
the protocol of [10, 32, 19]. The results suggest that our UVIF can
significantly enhance the detection accuracy compared to the TSM
[34] baseline, e.g., +2.32% accuracy for ResNet-50. Our method also
demonstrates competitive performance compared to the state-of-the-
art methods on the DFDC dataset.

4.3 Ablation Study

4.3.1 Effectiveness of the Core Components

We first perform ablation experiments to analyze the components
of the UVIF framework. Specifically, our UVIF framework contains
three primary components: supervision Limage of images in unified
modeling, temporal fusion modules for video inputs, and the loss
Lpseudo in pseudo labeling process. The ablation results are shown
in Table 3. The first row denotes training a vanilla ResNet-50 model
on the videos from ForgeryNet [23] training set. Applying tempo-
ral fusion modules in row 3 can bring significant performance gains
(+12.65% accuracy and +12.74% AUC), indicating the importance
of temporal information in face forgery detection. Additionally, uti-
lizing images together with videos for training (row 4) has led to
a promising accuracy of 84.41%, highlighting the benefits of fine-
grained annotations of images for video forgery detection. Interest-
ingly, row 2 also shows that training images can still improve the
performance of a model even without temporal fusion. This further
reflects the effectiveness of annotated images, as the features of im-
ages and individual video frames are very similar. Finally, adding the
pseudo labeling process during training in row 5 produces the best re-
sults for UVIF, indicating its efficacy in bridging the representations
of images and video frames during training.

4.3.2 Number of Training Images

We then test the performance of UVIF using different numbers of
training images, as illustrated in Figure 4. We randomly sample
20k, 50k, 100k, 200k, 500k, and 2.3m (all) training images from
ForgeryNet [23], and perform experiments under two UVIF set-
tings, i.e., with or without pseudo labeling process. The results show
that the accuracy of UVIF methods significantly improves when the
training images increase from 0 to 100k and reaches saturation at
100k. Thus, 100k is sufficient for the current video sample set, and
adding more images, i.e., even up to 2.3m won’t make further help.
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Figure 5. Accuracy achieved on videos with different forged ratios from
the ForgeryNet [23] validation set. The baseline denotes ResNet-50 equipped
with TSM [34].

Table 4. Comparing different backbones for the unified encoder. The base-
line is a backbone with temporal fusion designs.

Backbone baseline UVIF (Ours)
Acc AUC Acc AUC

ViT-S [12] 78.23 85.83 78.38 86.85
ConvNeXt-T [53] 81.56 88.43 84.94 93.35
ResNet-18 [22] 81.17 88.24 83.98 92.18
ResNet-50 [22] 80.89 88.66 85.32 93.45
ResNet-101 [22] 81.48 88.08 86.57 94.42

100k images with annotations are easily available from open-access
datasets, which brings a significant level of video forgery detection
boost. Even with a small portion of added images, e.g., 20k, the
UVIF is able to achieve apparent performance improvements com-
pared to the baseline (83.06% v.s. 80.89% accuracy). This indicates
that the UVIF model gradually learns from the supervision informa-
tion through training on annotated images, rather than relying on a
large number of images to improve its representation. Meanwhile, the
comparison of the green curve and the orange curve shows that 1) the
pseudo labeling process is always effective using various numbers of
training images, and 2) the performance improvement is larger when
the added images are 100k and more. This shows that the model re-
quires a certain number of images to train a reliable image classifier
for pseudo label generation.

4.3.3 Performance on Videos with Different Forged Ratios

Figure 5 illustrates the accuracy achieved on videos with different
forged ratios from the ForgeryNet [23] validation set. We utilize the
annotations for temporal forgery localization [23] task to compute
the ratio of forged frames of each partial forged video, and then di-
vide them into six groups based on their forged ratios: [0, 0.1], [0.1,
0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5], and [0.5, 1]. The sample distri-
bution of each group is 0.07, 0.19, 0.22, 0.22, 0.15, and 0.15, respec-
tively. The results suggest that the UVIF can consistently enhance
the baseline methods in all forged ratio groups. Notably, at the lowest
forged ratio group [0, 0.1], although baseline accuracy is the lowest,
the advantage of our method is significant (+4.29% accuracy). This
shows how our approach leverages annotated images to learn dis-
tinctive representations that differentiate between real and fake video
frames, therefore improving the accuracy of detecting partial forg-
eries in videos.

4.3.4 Different Backbones

We also conduct ablation experiments on the backbones for the uni-
fied encoder, as presented in Table 4. The backbones that we choose

include ViT [12], ConvNeXt [53], and ResNet [22]. The results sug-
gest that our proposed UVIF can consistently improve the forgery
detection accuracy of different backbones, especially for CNN-based
ones. As the capacity of the ResNet backbones increases, the accu-
racy of the baselines remains almost the same, while our methods can
result in more accuracy improvements. This indicates that our UVIF
effectively enhances the model’s representation for face forgery de-
tection. Besides, our method has a minor improvement for the ViT
backbone. One possible reason is that the ViT down-samples the im-
ages greatly at the start of feature extraction, resulting in the model
not learning discriminative feature information of facial forgery from
the annotated images.

5 Conclusion

In this paper, we present UVIF, an end-to-end multi-task learning
framework for video face forgery detection. Our method establishes
a unified representation of facial videos and images by processing
them together within a single model. By utilizing the fine-grained
annotations from the image set, the UVIF framework can bring sig-
nificant performance gains for detecting partial forgeries in videos. In
the future, we will study to build extended multi-task learning frame-
works for facial video and image data to expand their applicability to
other forgery detection tasks beyond classification.
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