
Instruction Following with Goal-Conditioned
Reinforcement Learning in Virtual Environments

Zoya Volovikova1,2,*, Alexey Skrynnik1,3, Petr Kuderov1,2 and Aleksandr I. Panov1,2,3

1AIRI, Moscow, Russia
2MIPT, Moscow, Russia

3FRC CSC RAS, Moscow, Russia

Abstract. In this study, we address the issue of enabling an ar-
tificial intelligence agent to execute complex language instructions
within virtual environments. In our framework, we assume that these
instructions involve intricate linguistic structures and multiple in-
terdependent tasks that must be navigated successfully to achieve
the desired outcomes. To effectively manage these complexities, we
propose a hierarchical framework that combines the deep language
comprehension of large language models with the adaptive action-
execution capabilities of reinforcement learning agents: the language
module (based on LLM) translates the language instruction into a
high-level action plan, which is then executed by a pre-trained rein-
forcement learning agent.We have demonstrated the effectiveness of
our approach in two different environments: in IGLU, where agents
are instructed to build structures, and in Crafter, where agents per-
form tasks and interact with objects in the surrounding environment
according to language commands.

1 Introduction

The ability to solve complex tasks, formulated in natural language,
that require a long sequence of actions in the environment is a funda-
mental property of human intelligence. The recent significant success
of large language models (LLMs) in instruction following and expla-
nation generation demonstrates their powerful capabilities in solving
commonsense, general knowledge, and code generation problems
within the verbal domain. However, success rate of multi-step task
completion for autonomous agents driven by general purpose LLMs
is still low [19]. Moreover, LLMs are often trained solely on textual
data, which limits their ability to understand and perform actions in
real-world-like environments. Consequently, even ChatGPT [25] ex-
hibits poor spatial reasoning [2]. On the other hand, reinforcement
learning (RL) has proven effective in learning sequences of fine-
grained actions for specific tasks within an environment. Thus, inves-
tigating the combination of LLMs for natural language understand-
ing and high-level planning, along with RL for learning environmen-
tal manipulation, represents a promising research direction.

LLMs can be regarded as universal knowledge bases that al-
low human users to interact in natural language and solve complex
tasks [12, 39]. Recent studies have shown that pre-trained LLMs can
construct high-level action plans in both simulated and real environ-
ments [3, 22, 23]. However, these LLM-based approaches necessi-
tate manual prompt engineering, handcrafted translation of language

∗ Corresponding Author. Email: volovikova@airi.net

Figure 1: The task of collaborative interaction between the agent, the
environment, and the user involves the following: the user provides
instructions to the agent, and the agent executes actions within the
environment to accomplish the task based on these instructions.

commands into embodied actions, and a strategy for goal-aware ac-
tion selection from the distribution of potential options generated by
language. In this context, several studies [1, 25] have demonstrated
that the rough action plans extracted from language models can be
refined using RL.

In our research, we present the hierarchical framework IGOR (In-

struction Following with Goal-Conditioned RL), which combines
the capabilities of large language models for understanding complex
natural language constructions with RL-based policies to develop ef-
fective behavior in the embodied environment. The framework relies
on two main components: a Language Module, which translates in-
structions in natural language into a high-level action plan with gen-
erated subgoals, and a Policy Module, tasked with executing this
plan and achieving subgoals.

Furthermore, we introduce independent learning strategies for
each module. We have developed efficient learning strategies for the
LLM for limited datasets. Some of these strategies are based on data
augmentation using the ChatGPT model, while others rely on sub-
dividing subtasks by altering data formats and decomposing these
subtasks into primitives. We set a learning task for the RL agents
based on goals and curriculum. This approach promotes highly ef-
ficient task execution in dynamic environments beyond the training
sample.

The effectiveness of our approach was rigorously tested in two
embodied environments. The first is IGLU [41], where the ’Builder’

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240545

650

agent constructs structures based on natural language instructions
from the ’Architect’ agent (see an example in Fig. 1). The second
is the Modified Crafter environment, where the instruction-following
agent needs to adapt to dynamically changing environments. Our re-
sults demonstrate that the application of our method not only out-
performs the algorithms presented in the NeurIPS IGLU competi-
tion1 [14, 13, 15], but also surpasses the baselines based on Dreamer-
v3 in Crafter environment [10].

The main contributions2 of our paper are:

1. We proposed a novel task decomposition approach that facilitates
the incorporation of augmentations, curriculum learning, and po-
tentially other techniques to multi-modal setups involving LLM
and RL learning for virtual environments.

2. In addition to the known IGLU environment, we presented a mod-
ified Crafter environment by introducing a textual modality and
prepared a corresponding dataset to support this enhancement.

3. We conducted extensive experiments to compare our approach
with other methods in both the Crafter and IGLU environments,
demonstrating significant improvements.

2 Related work

Planing with LLM. Recent studies are actively exploring the gener-
ation of action plans using language models. Some works focus on
prompt engineering for effective plan generation [32], while others
address the challenge of translating the language model’s output into
executable actions [12]. In [1], models are trained with RL for se-
lecting feasible actions and executing elementary actions. Many of
these works [31, 20] aim to control robots interactively in real time.
Maintaining a dialogue with humans is an essential area of research
for robotics [26, 9].

Language Grounding Problem. The language grounding prob-
lem in intelligent agents involves linking objects across modalities,
such as matching textual instructions with objects in virtual environ-
ments. Methods to address this include using CLIP for visual-textual
links [28], cross-attention mechanisms, and compressing data into
hidden subspaces, exemplified by Dynalang [18]. Some strategies in-
tegrate language processing with reinforcement learning, using text
embeddings as observations [11, 18]. Others connect textual descrip-
tions to environmental entities using transformer models like Emma
and EmBERT [37, 33]. Additionally, some approaches use multi-
ple modules trained independently, with pre-trained language models
aiding in planning and adapting actions, addressing the lack of real-
world experience [12, 5, 17]. Innovatively, models like JARVIS-1
combine pre-trained memory blocks with tools like CLIP, enhancing
multimodal memory and scheduling [38, 8].

Embodied environments. In the field of embodied reinforcement
learning, several platforms have been developed to train agents based
on text instructions. Among these, AI2Thor [16] and Habitat [34] ,
offer tasks that are simple and adhere to strict rules, which simplifies
the process of linking actions to text using straightforward syntactic
structures (Messenger [37], HomeGrid [18], TWOSOME [35]).

Furthermore, advancements have been made to enhance the
Crafter [10] environment, resulting in the creation of the Text-
Crafter [6] version. Similarly, the MineDojo [8] platform, which is
based on Minecraft, has been introduced. These platforms are de-
signed for more intricate linguistic and planning tasks. Additionally,
the IGLU [15] environment stands out for its complexity. In IGLU,

1 https://www.iglu-contest.net/
2 Our code is available at https://github.com/AIRI-Institute/IGOR

agents must follow detailed instructions to construct structures within
a virtual world. These environments are characterized by a vast state
space and involve complex tasks that are formulated by humans.

3 IGOR: Follow Instruction with Goal-based RL

Figure 2: The IGOR framework has three modules: a Language mod-
ule that solves language understanding problems and provides a
high-level plan of subtasks, a Task Manager that encodes the sub-
tasks for the Policy module, and a Policy module that executes ac-
tions in the environment based on visual observations and subtasks.

The IGOR framework is designed to solve the challenges of nat-
ural language understanding and instruction execution within virtual
environments, enabling the processing of instructions that contain
complex linguistic structures and specific terminologies. The virtual
environments in which the intelligent agent operates are character-
ized by extensive observation areas and require the execution of mul-
tiple interconnected tasks. The framework is composed of three key
modules.

The Language Module, implemented using Large Language
Models (LLM), analyzes incoming instructions and converts them
into a high-level plan consisting of a set of specific subtasks that
need to be executed.

The Policy Module, implemented using reinforcement learning
methods based on the Proximal Policy Optimization (PPO) algo-
rithm, is responsible for the strategic interaction in the environment,
including the execution of the interconnected tasks.

The Task Manager acts as a wrapper over the virtual environment,
transforming the list of subtasks provided by the Language Module
into a format understandable to the Policy Module. This module also
ensures that the tasks specified in the instructions are completed and
concludes the episode after their execution.

Thus, the inference pipeline operates by initially receiving in-
structions which are processed by the Language Module, where they

Z. Volovikova et al. / Instruction Following with Goal-Conditioned Reinforcement Learning in Virtual Environments 651

Figure 3: The diagram displays the IGOR system, where the "Language Module" transforms text instructions into subtasks. The "Task Manager"
coordinates the subtasks and monitors their execution. The "Policy Module" operates in a virtual environment based on the subtasks. Dotted
lines indicate the training process of the modules, while solid lines show how the modules interact during inference.

are translated into a series of subtasks — a high-level execution plan.
Subsequently, the Policy Module executes the necessary actions in
the virtual environmrnt to achieve the objectives outlined in the in-
structions. An example of using our pipeline can be found in the
Figure (2)

Training for each learnable module is conducted separately,
which provides flexibility in the integration of training methods and
techniques. The training of the Language Module involves various
augmentations and modifications to the dataset to prevent overfitting.
The Policy Module is trained using a goal-based approach, which al-
lows for training on a broader set of potential objectives than those
available in the initial data. The inclusion of a curriculum in the train-
ing process also significantly enhances the quality of the final agent.

3.1 Language Module Training Techniques

The core of our language module utilizes a large pre-trained language
model, which has been further finetuned on a dataset specific to the
environment. This dataset contains information on how instructions
translate into specific subtasks, enabling the model to understand and
decompose complex commands effectively. The training leverages a
specific format that maps instructions to their corresponding subtasks
(e.g., Instruction -> Subtask 1, Subtask 2, Subtask 3).

Due to the difficulty of obtaining comprehensive datasets for train-
ing models to translate language instructions into commands, we
face additional challenges. Typically, datasets for training large lan-
guage models (LLMs) on such tasks are manually curated, which
is a labor-intensive process. This often limits both the size and the
quality of the datasets available. In response, we employ techniques
to prevent overfitting, especially when working with these limited
datasets. Our experiments demonstrate that these methods effectively
enhance training quality by ensuring the model can generalize well
from smaller, varied linguistic datasets, leading to a more robust un-
derstanding of instructions.

Augmentation with LLM. In this technique, we begin by under-
standing the structure and specific terminology of the dataset. Our
approach involves iteratively modifying the list of subtasks necessary
to execute a given instruction for each dataset element. Subsequently,

ChatGPT or another LLM is tasked with rewriting the instruction to
incorporate these modified subtasks.

The prompt request is structured as follows:
1) Description of the Environment: Provide the LLM with a de-

tailed understanding of the setting by explaining the overarching
themes and key specific concepts. Use succinct descriptions for fa-
miliar ideas and detailed explanations for unique aspects.

2) Few-shot Example: Introduce the original instruction alongside
its required subtasks. Optionally, you can also provide an example of
how the instruction might change if the subtasks are altered.

3) Task Modification Request: Specify new subtasks for the target
instruction and request the LLM to revise the instruction accordingly.

It is important to emphasize that the LLM is not creating the in-
struction from scratch. We aim to start with the existing instruction
and suggest modifications, ensuring that the style of the original in-
struction is preserved as much as possible.

Subtasks decomposition. The second technique entails decom-
posing original subtasks into "primitives", which involves modify-
ing the structure and format of subtasks in the dataset. Essentially,
it suggests consolidating frequently co-occurring subtasks into a sin-
gle common subtask, thereby reducing the data volume required for
processing by the language model. These aggregated subtasks are
termed "primitives".

We explore two methods for creating primitives. One method uti-
lizes unique tokens, such as emojis, to encode each primitive. Emojis
are chosen for their diverse range, making them a convenient means
of representing a broad array of subtasks. The second method in-
volves crafting primitives in a manner that aligns logically with the
content of the instructions. This approach aims to enhance the coher-
ence between the instructional context and the subtask structure and
is the approach employed in our experiments.

3.2 Task Manager

The Task Manager serves as an intermediary to connect the Language
Module and the Policy Module during execution and to allocate sub-
tasks from the dataset to the Policy Module throughout its training
phase. It retrieves a list of subtasks and systematically supplies these

Z. Volovikova et al. / Instruction Following with Goal-Conditioned Reinforcement Learning in Virtual Environments652

to the RL agent as components of its observational input. Based on
observations collected during the agent’s interaction with the envi-
ronment, the Task Manager determines whether a subtask has been
successfully completed and decides whether to proceed to the next
task or to conclude the episode. Upon successful completion of a
subtask, the Task Manager assigns a positive reward (r = +1) to
reinforce the agent’s behavior.

3.3 Training the Policy Module

Instead of training a RL agent to tackle all subtasks required by a
complex instruction simultaneously, we propose a goal-based learn-
ing approach. In this approach, each episode presents the agent with
an observation and only one of the subtasks from the instruction. By
doing this, we simplify the agent’s task, reducing complexity of the
task and facilitating more focused learning on specific aspects of the
overall problem.

We examine a visual-based reinforcement learning environ-
ments characterized as a Partially Observable Markov Decision
Process (POMDP). In this framework, the observation function
is augmented by subtask encodings provided by the Task Man-
ager. The primary objective of the agent is to develop a policy
π that selects actions to maximize the expected cumulative re-
ward. To achieve this, we employ policy gradient methods, specif-
ically the Proximal Policy Optimization (PPO) algorithm. PPO
has been demonstrated to offer substantial robustness across var-
ious tasks, attributed to its effective balancing of exploration and
exploitation by optimizing a clipped surrogate objective func-
tion E

[
min(ρt(θ)Ât, clip(ρt(θ), 1− ε, 1 + ε)Ât)

]
, where ρt(θ) =

πθ(at|st)
πold(at|st) and Ât denotes the advantage estimate at time t [30].

During training we utilize curriculum task sampler that dynam-
ically adjusts the probability of selecting subtasks based on their
performance, inspired by curriculum learning approaches [21, 24].
Specifically, the selection probability for each task i in T is modified
according to:

qi =

{
1
d

if ri ≥ τ

1 + (δi · d) if ri < τ

where ri is the task’s average reward, δi measures the variability in
reward, d is a scaling coefficient, and τ is a success threshold. Prob-
abilities are normalized using a softmax function to form a distri-
bution from which tasks are sampled. A detailed description of the
algorithm, its pseudocode and ablation study can be found in the Ap-
pendix of the full paper version [36].

4 Experimental Setup

To investigate and test the capabilities of intelligent agents, we have
chosen environments with high combinatorial complexity. These en-
vironments allow us to assess how agents cope with tasks requiring
the execution of many interrelated subtasks to achieve a target state.

The first environment is IGLU, where the agent’s task is to build
three-dimensional constructions based on textual descriptions. It is
important to note that the complexity of the environment largely lies
in the fact that, depending on the instructions, there can be a vast
number of potential target states. To be successful in such an envi-
ronment, an agent must possess advanced text interpretation skills, as
well as the ability to think spatially and model ordering to adequately
recreate the required structures.

The second environment is Crafter, where the agent needs to fol-
low textual instructions to perform a variety of tasks, such as gather-
ing resources and crafting items. This environment tests the agent’s
ability to understand natural language and effectively plan sequences
of actions in response to changing conditions.

Below is the general pipeline for applying our approach to these
virtual environments:

1. Fine-tune the LLM: Fine-tune the large language model (LLM)
with an environment-specific dataset to translate instructions
into subtasks for the reinforcement learning (RL) agent. Add
environment-specific techniques if needed: augmentation, data
modification, and dataset expansion.

2. Train the RL agent: Train the RL agent in a goal-based mode
on environment-relevant subtasks. If needed, add environment-
specific techniques: curriculum learning, hierarchical RL, reward
shaping, and curiosity-driven exploration.

3. Measure performance: Measure performance on a test dataset
for each environment. The LLM predicts subtasks from instruc-
tions, which the trained RL agent then executes.

4.1 IGLU Environment

Environment. IGLU is an environment3 where an embodied agent
can build spatial structures (figures) of blocks of different colors. The
agent’s goal is to complete a task expressed as an instruction written
in natural language.

The observation space consists of point-of-view (POV) image
(64, 64, 3), inventory item counts (6), and the pitch and yaw angles
(5). The agent can navigate over the building zone, place, and break
blocks, and switch between block types. Additionally, the environ-
ment provides a textual observation in the form of a dialogue from
the dataset, which defines a building task. The examples of such tar-
get tasks is presented in Fig. 4.

Figure 4: IGLU is a 3D environment where agents are tasked with
constructing structures in a designated area, guided by descriptions
provided in natural language and the agent’s first person perspective.

Target utterances define the rest of the blocks needed to be added.
The environment provides two modes of action for choice: walking
and flying. In our experiments, we create agents for use in both flying
and walking modes. The action space combines discrete and contin-
uous subspaces: a discrete space of 13 actions (noop, four camera
rotation actions, break block, place block, choose block type 1-6) and
a set of 6 continuous actions for movement in all three directions.

Metrics. We employed the F1 metric, as proposed in the IGLU
competition, to evaluate the quality of the approaches.

Baselines. We have selected the three best solutions from the IGLU
2022 competition for comparison. The second and third-place solu-
tions, which utilized T5 [29] and Pegasus [40] models respectively,

3 https://github.com/iglu-contest/gridworld

Z. Volovikova et al. / Instruction Following with Goal-Conditioned Reinforcement Learning in Virtual Environments 653

are based on the organizers’ proposed solution but differ in the NLP
models employed. We also include the solution of the first-place
team, called BrainAgent4, whose approach differs significantly from
the others. They used end-to-end learning, with the RL agent taking
the embedding of a frozen NLP model as input, along with environ-
ment information and manually added features.

Dataset. The training and testing datasets contain 109 and 41 En-
glish instructions, respectively, with corresponding grids that need to
be constructed. Each instruction consists of individual building steps
with a corresponding voxel for each step.

For training the language model, we transform voxel shapes into
text — a list of block coordinates that need to be placed. Grids are
converted into a sequence of block coordinates and colors in the form
of a string of tuples. For this dataset, a single block (its coordinates
and a color) represents a single subtask in our terminology.

The order of the blocks in the sequence corresponds to the appear-
ance of the blocks in the grid and have the following ordering rule:
first by x, then by z, and then by y, where x and z are horizontal axes
and y is vertical axis. In many instructions, the horizontal position of
the first block is not specified, such that it can appear anywhere along
x and z randomly. This is detrimental to the model during training
as it will lead to high loss values for tokens that cannot be derived
from the input data. Therefore, we change the sequence so that the
first block of the first step of the instruction is placed at the center of
the space, and the other blocks are shifted accordingly.

Figures Classification
Based on the capabilities an AI agent needs to construct figures

in a dataset, we have developed our own rule-based classification
of figures. This helps to more precisely determine which types of
figures pose challenges and which descriptions of figure types might
cause difficulties in construction by a language model. For visual
examples, see Appendix [36]. The classes, defined by their spatial
characteristics, are presented below:

• flat figures are characterized primarily by their length and
width, with minimal emphasis on height.

• tall figures prioritize height over both length and width.
• air figures are distinguished by their lack of contact with the

ground, signifying that they are airborne.
• floor figures are defined by their complete contact with the

ground, resting entirely on the surface.

Training details. The Language Module for the IGLU environ-
ment was trained to predict, based on dialogue instructions, a list of
coordinates of blocks that need to be placed or removed, where each
coordinate corresponds to a subtask.We created a second dataset with
a modified format of subtasks, grouping blocks that occur together
in instructions into parallelepipeds using the technique described in
3.1. An example of the subtasks format for the IGLU dataset can be
found in 1. Additionally, we augmented the dataset using ChatGPT,
where we tasked the model to rotate the object by 180 degrees. The
modification we applied for ChatGPT augmentation involved rotat-
ing the object by 180 degrees. We requested the LLM to adjust the
building instructions to match this modification, ensuring the textual
description aligned with the altered figure orientation.

As the base for the Language Module, the Flan-T5 base model was
used. The LLM models are trained in a seq2seq manner, converting
the instruction into a sequence of blocks as described above. Training
hyperparameters and hardware parameters are listed in the appendix
[36].

4 https://github.com/kakaobrain/brain-agent

Table 1: Example of coords and prims subtask formats in the IGLU
environment, corresponding to the instruction: "<Architect> place 5
red blocks in a row, one row north of center."

Format Description Example

coords (x, y, z, colorID):
• x, y, z: coordinates

• colorID: block color id

(0, 5, 5, 3), (0, 6, 5, 3), (0, 7, 5,
3), (0, 8, 5, 3), (0, 9, 5, 3)

prims (start), (size), rotation, color:
• (start): initial block (x, y, z)

• (size): dimensions (x, y, z)

• rotation: alignment

• color: block color name

(0, 5, 5), (1, 1, 5), eastsky, red

For training Policy Module in the IGLU environment, our objec-
tive is to train the agent to either place or remove a single block on a
virtual field. At the beginning of an episode, a list of subtasks is ran-
domly generated or taken from a training dataset. A specific block
from this list is then selected as the target. Depending on this selec-
tion, we generate the initial state of the environment by positioning
the blocks leading up to the target block.

The reward mechanism used during training is the same as pro-
posed by the competition’s authors.

To enhance the quality of training for the RL agent, we incor-
porate a curriculum that controls the complexity of the list of sub-
tasks. This structured approach helps in progressively challenging
the agent, thus improving its learning efficiency and capability to
handle complex tasks.

Solving visual goal-based tasks can be accomplished by a wide
range of modern RL approaches, both model-free [4, 7, 27] and
model-based [10, 11]. In this work, we used an open-source imple-
mentation of asynchronous PPO5 [27], which demonstrated better
performance in terms of GPU hours to final score based on our pre-
liminary experiments.

4.2 Crafter Environment

Figure 5: Crafter is a 2D environment reminiscent of Minecraft,
where players must gather food and water, acquire resources, fend
off creatures, and construct tools.

Environment. In the original Crafter environment6, agents are
primarily tasked with exploration, gathering resources, and battling
monsters. We have adapted this framework so that each episode now
provides a free-form textual instruction, directing the agent to per-
form the number of specific tasks. In our modified version, each
task given to the agent corresponds exactly to one achievement in

5 https://github.com/alex-petrenko/sample-factory
6 https://github.com/danijar/crafter

Z. Volovikova et al. / Instruction Following with Goal-Conditioned Reinforcement Learning in Virtual Environments654

the original game. Thus, within a single episode, following these in-
structions means completing individual achievements directly tied to
the game’s original goals. The examples of the agent in Crafter envi-
ronment is presented in Fig. 5.

Dataset. To create a dataset of textual tasks for the agent in the
Crafter environment, we followed a specific pipeline: First, based on
the known list of tasks and achievements in the crafter environment,
we randomly generated a list of subtasks. Second, to obtain descrip-
tive instructions for these tasks, we used Mistral-7B-Instruct7. The
example of such prompt and response is presented in Fig.6. Third, to
obtain more varied descriptions of instructions, using the same Mis-
tral model to stylize the received instructions (for example of such
reformulation see Fig. 7).

Example of prompt request:

Rewrite the list of subtasks into one
instructive sentence for an agent in a virtual
environment, replacing words from the list with
synonyms. Subtasks: ["Defeat Zombie", "Collect
Iron with count 1", "Make Iron Sword"]

Example of response:

Vanquish the undead foe, gather a single unit
of metallic mineral, and forge an iron weapon.

Figure 6: The example depict prompt and response interactions used
to generate the dataset for the modified Crafter environment.

Example of prompt request:

Rewrite the instruction in the style of Tolkien
with the same SHORT sentence size adding
causality. Instruction: Vanquish the undead
foe, gather a single unit of metallic mineral,
and forge an iron weapon.

Example of response:

Slay the wights, gather a nugget of mithril,
and forge a blade of iron.

Figure 7: This figure shows an examples prompt and response for the
reformulation of an instruction generated by the Mistral-7B-Instruct.

Metrics. To assess the quality of an agent’s performance in an en-
vironment where it follows language instructions, we used a metric
called "Success Rate." This metric measures whether all the subtasks
required by the given instructions to the agent were completed. Ac-
cordingly, for one instruction, the metric can be 1 if the agent com-
pleted all the tasks, or 0 if any task was not completed.

Baselines. We compared our IGOR Agent with Dynalang [18]. To
run Dynalang on a text-adapted Crafter, we employ the T5 model
to encode the text, mirroring the approach taken by the paper’s au-
thors. In each episode, we sequentially transmit all instructions and
images to Dynalang, one token at a time. This process allows us to
evaluate Dynalang’s ability to identify the necessary subtasks from
the instructions, aligning with our methodology. We adopt the same
reward system used in our experiments.

Training details. A Language module for the crafting environment
was trained on the provided data without any modifications. Follow-
ing the instructions within this environment, the module is tasked
with determining which achievements the agent should collect in the

7 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

virtual setting. Additionally, the Flan-T5-base model was utilized as
a reference.

For Policy Module we use self-supervised goal sampling to train
the agent on these subtasks efficiently. In this approach, each train-
ing episode for the agent targets a distinct goal selected randomly,
aligning with the goals possibly derived from the LLM. The reward
function for the RL agent is designed to provide positive feedback
for the successful completion of subtasks, motivating the agent to
achieve its goals. This function uses both the original Crafter envi-
ronment reward and an extra reward for the completion of a subtask
by the agent. The original reward is scaled by a factor of 0.1, and
the extra reward for subtasks accomplishing is set to 1. Through this
process, the agent learns to solve individual subtasks, contributing to
the overall action plan devised by the LLM.

5 Experimental Results

In this section, we compare our approach with other state-of-the-art
methods. The section is organized as follows: First, we present the
results in the modified Crafter environment. Second, we show the
results for the IGLU environment, alongside ablation experiments
for different data processing techniques.

5.1 Crafter Environment

The results of IGOR and Dynalang in the Crafter environment are
shown in the bar chart presented in Fig. 8. The x-axis displays vari-
ous categories, where the Total category represents the overall suc-
cess rate across all test instructions. The other categories illustrate
the agents’ performance on specific subtasks within the instructions,
highlighting how effectively each agent solves individual subtasks
when attempting to complete the entire instruction. For instance, a
low value for a particular subtask on the plot indicates that the agent
often fails to complete the instructions when that subtask is involved.

Figure 8: A comparison of the performance of IGOR and Dynalang
approaches, on the Crafter environment with textual tasks. The suc-
cess rate metric for each subtask is averaged across instructions re-
quiring that specific subtask. Total bar represents the overall success
rate for all instructions of test dataset.

Overall, the total score of IGOR is 0.6, indicating that the agent
successfully completes all required subtasks in 60% of cases, signif-
icantly outperforming Dynalang, which only achieves 36.4%. Our
approach demonstrates superior performance in 19 out of 22 sub-
tasks. Furthermore, it achieves results that are at least twice as good
in 8 out of 22 types of instructions. Additionally, our approach, with
the integration of curriculum learning, shows strong capabilities in
managing tasks that are especially challenging, such as Collect Dia-
mond, Collect Iron, Make Iron Sword, and Make Iron Pickaxe.

Z. Volovikova et al. / Instruction Following with Goal-Conditioned Reinforcement Learning in Virtual Environments 655

5.2 IGLU Environemnt

The comparative results in the IGLU environment are presented in
Table 2. We ran the IGOR approach in both Flying and Walking
modes. Additionally, we conducted experiments with different data
variants for training the LLM agent, utilizing both primitives and
coordinates as subtasks. Across all configurations, our method con-
sistently outperforms the competitors, achieving significantly bet-
ter results in all figure categories. Notably, IGOR’s lowest score is
0.45, which surpasses the overall performance of the winning team,
BrainAgent, which scored 0.36. For simpler figures such as Floor
using primitives, our agent scores 0.75 compared to BrainAgent’s
0.53. A clear advantage is also observed for more complex tasks such
as Air, where IGOR scores 0.46 versus 0.25. Even when using coor-
dinates as subtasks, our agent’s advantage, although reduced, persists
across all figure types.

Table 2: A comparative analysis of the F1 score (higher is better) for
the IGOR approach versus the IGLU-2022 competition winners on
the test dataset.

Approach Prim Flying Floor Flat Tall Air Total

IGOR � � 0.72 0.51 0.46 0.40 0.52

IGOR × � 0.68 0.44 0.36 0.34 0.45
IGOR � × 0.75 0.46 0.32 0.33 0.46
IGOR × × 0.68 0.42 0.29 0.31 0.45

BrainAgent n\a × 0.53 0.36 0.23 0.25 0.36
MHB n\a × 0.08 0.05 0.03 0.04 0.05
Pegasus n\a × 0.08 0.06 0.02 0.04 0.06

Comparing Data Processing Technics. We evaluated various data
processing strategies for training NLP models, as detailed in Table 3.
These strategies included expanding the original dataset (strategy
"Coords"), employing the ChatGPT augmentation technique outlined
previously (strategy "ChatGPT"), and modifying the dataset’s format
(strategy "Prim"). We also enhanced the dataset with color augmen-
tation by altering the color of the block and its corresponding de-
scriptor in the instructions (strategy "Color").

Table 3: A comparative analysis of various data processing strategies
for LLM training. The table displays the F1 scores, which measure
discrepancy between LLM-predicted figures and target figures. The
highest scores in each category are highlighted in bold.

Prim Color ChatGPT Floor Flat Tall Air Total

� � � 0.75 0.51 0.44 0.36 0.50

� � × 0.73 0.52 0.44 0.35 0.50

� × × 0.69 0.42 0.34 0.25 0.42

× � � 0.53 0.40 0.33 0.29 0.39
× � × 0.39 0.36 0.33 0.29 0.35
× × × 0.45 0.35 0.30 0.28 0.34

It can be observed that adaptation to primitives, even in the ab-
sence of augmentations, improves the F1 metric by 0.08 (from 0.34
to 0.42). When combined with augmentations, the F1 score sees a
0.16 boost (0.50) versus 0.01 increase via augmentations alone on
coordinates (0.35).

While the ChatGPT augmentations don’t yield a significant in-
crease on primitives, an analysis of the F1 scores across differ-
ent shape categories reveals their effectiveness. On coordinates, the
ChatGPT augmentation outperforms color augmentations, showing a
0.4 relative improvement (0.35 vs 0.39).

This suggests that the augmentation strategies have different im-
pact depending on subtask format. Additionally, it is apparent that the
primary challenge for the language model arises from instructions
requiring the prediction of blocks suspended in the air—these tasks
exhibit the highest error rates. This may be due to the limited number
and specific nature of such instructions in the training dataset.

6 Limitations

Exploring previous studies in this area reveals that creating a general
approach for multimodal environments presents a significant chal-
lenge [42]. While many approaches show potential, they often un-
derperform when applied outside their original domains. Aiming for
a universally applicable method is an admirable goal, yet it currently
has limited practical use.

Our work introduces a new framework that separates the training
of RL and LLM components. The proposed decomposition aims to
achieve architectural flexibility, facilitating the easy integration of
various techniques such as curriculum learning and reward shaping
for RL, as well as data augmentation and human feedback for LLM
training. However, our approach requires the identification of known
subtasks, which may not be present in some domains, thus necessi-
tating additional data collection to identify them.

7 Conclusion

In this paper, we introduce the Instruction Following with Goal-
Conditioned Reinforcement Learning in Virtual Environments
(IGOR) method, a novel approach that translates natural language in-
structions into a sequence of executable subtasks. The IGOR method
integrates two independently trainable modules along with an inter-
mediary Task Manager module. The Language Module is responsible
for converting textual instructions into a defined sequence of sub-
tasks. Meanwhile, the RL agent is structured in a goal-conditioned
manner, making it adept at handling a wide array of tasks across var-
ious environmental contexts.

The modular decomposition of the IGOR approach allows for the
incorporation of additional training techniques such as data augmen-
tation, goal-based strategies, and curriculum learning in RL. A de-
tailed analysis of the results shows that this approach not only allows
for more flexible training customization but also yields a significant
improvement in performance.

We demonstrate these advantages through experiments in two en-
vironments. In the IGLU environment, where the agent is required
to construct a figure in a virtual setting based on dialogue with a
human, our method surpasses the winners of the IGLU 2022 com-
petition. Additionally, we have adapted the Crafter environment to
require the agent to achieve specific achievements based on instruc-
tions, showing that our approach outperforms the Dynalang method
based on Dreamer V3.

References

[1] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, K. Gopalakrishnan, K. Hausman, A. Herzog, et al. Do as i
can, not as i say: Grounding language in robotic affordances. arXiv
preprint arXiv:2204.01691, 2022.

[2] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung, Q. V. Do, Y. Xu, and P. Fung. A multitask, mul-
tilingual, multimodal evaluation of chatgpt on reasoning, hallucination,
and interactivity, 2023.

[3] C.-P. Bara, C.-W. Sky, and J. Chai. Mindcraft: Theory of mind model-
ing for situated dialogue in collaborative tasks. In Proceedings of the

Z. Volovikova et al. / Instruction Following with Goal-Conditioned Reinforcement Learning in Virtual Environments656

2021 Conference on Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics, 2021.

[4] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[5] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian, et al. Do as i can, not as i say:
Grounding language in robotic affordances. In Conference on robot
learning, pages 287–318. PMLR, 2023.

[6] Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta,
and J. Andreas. Guiding pretraining in reinforcement learning with
large language models. In International Conference on Machine Learn-
ing, pages 8657–8677. PMLR, 2023.

[7] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning, et al. Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner architectures.
In International conference on machine learning, pages 1407–1416.
PMLR, 2018.

[8] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang,
D.-A. Huang, Y. Zhu, and A. Anandkumar. Minedojo: Building open-
ended embodied agents with internet-scale knowledge. Advances in
Neural Information Processing Systems, 35:18343–18362, 2022.

[9] X. Gao, Q. Gao, R. Gong, K. Lin, G. Thattai, and G. S. Sukhatme.
Dialfred: Dialogue-enabled agents for embodied instruction following.
IEEE Robotics and Automation Letters, 7(4):10049–10056, 2022.

[10] D. Hafner. Benchmarking the spectrum of agent capabilities. In
International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=1W0z96MFEoH.

[11] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse do-
mains through world models. arXiv preprint arXiv:2301.04104, 2023.

[12] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents. In International conference on machine learning, pages 9118–
9147. PMLR, 2022.

[13] J. Kiseleva, Z. Li, M. Aliannejadi, S. Mohanty, M. ter Hoeve, M. Burt-
sev, A. Skrynnik, A. Zholus, A. Panov, K. Srinet, et al. Interactive
grounded language understanding in a collaborative environment: Iglu
2021. In NeurIPS 2021 Competitions and Demonstrations Track, pages
146–161. PMLR, 2022.

[14] J. Kiseleva, A. Skrynnik, A. Zholus, S. Mohanty, N. Arabzadeh, M.-
A. Côté, M. Aliannejadi, M. Teruel, Z. Li, M. Burtsev, et al. Iglu 2022:
Interactive grounded language understanding in a collaborative environ-
ment at neurips 2022. arXiv preprint arXiv:2205.13771, 2022.

[15] J. Kiseleva, A. Skrynnik, A. Zholus, S. Mohanty, N. Arabzadeh, M.-A.
Côté, M. Aliannejadi, M. Teruel, Z. Li, M. Burtsev, et al. Interactive
grounded language understanding in a collaborative environment: Ret-
rospective on iglu 2022 competition. In NeurIPS 2022 Competition
Track, pages 204–216. PMLR, 2023.

[16] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
M. Deitke, K. Ehsani, D. Gordon, Y. Zhu, et al. Ai2-thor: An interactive
3d environment for visual ai. arXiv preprint arXiv:1712.05474, 2017.

[17] S. Li, X. Puig, C. Paxton, Y. Du, C. Wang, L. Fan, T. Chen, D.-A.
Huang, E. Akyürek, A. Anandkumar, et al. Pre-trained language mod-
els for interactive decision-making. Advances in Neural Information
Processing Systems, 35:31199–31212, 2022.

[18] J. Lin, Y. Du, O. Watkins, D. Hafner, P. Abbeel, D. Klein, and
A. D. Dragan. Learning to model the world with language. ArXiv,
abs/2308.01399, 2023. URL https://api.semanticscholar.org/CorpusID:
260438420.

[19] X. Liu, H. Yu, H. Zhang, Y. Xu, X. Lei, H. Lai, Y. Gu, H. Ding,
K. Men, K. Yang, S. Zhang, X. Deng, A. Zeng, Z. Du, C. Zhang,
S. Shen, T. Zhang, Y. Su, H. Sun, M. Huang, Y. Dong, and J. Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=zAdUB0aCTQ.

[20] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch, T. Arm-
strong, and P. Florence. Interactive language: Talking to robots in real
time. IEEE Robotics and Automation Letters, 2023.

[21] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman. Teacher–student cur-
riculum learning. IEEE transactions on neural networks and learning
systems, 31(9):3732–3740, 2019.

[22] S. Y. Min, D. S. Chaplot, P. K. Ravikumar, Y. Bisk, and R. Salakhutdi-
nov. FILM: Following instructions in language with modular methods.
In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=qI4542Y2s1D.

[23] M. Murray and M. Cakmak. Following natural language instructions
for household tasks with landmark guided search and reinforced pose
adjustment. IEEE Robotics and Automation Letters, 7(3):6870–6877,

2022.
[24] M. Nesterova, A. Skrynnik, and A. Panov. Reinforcement learning with

success induced task prioritization. In Mexican International Confer-
ence on Artificial Intelligence, pages 97–107. Springer, 2022.

[25] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, et al. Training language mod-
els to follow instructions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744, 2022.

[26] A. Padmakumar, J. Thomason, A. Shrivastava, P. Lange, A. Narayan-
Chen, S. Gella, R. Piramuthu, G. Tur, and D. Hakkani-Tur. Teach:
Task-driven embodied agents that chat. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 2017–2025, 2022.

[27] A. Petrenko, Z. Huang, T. Kumar, G. Sukhatme, and V. Koltun. Sample
factory: Egocentric 3d control from pixels at 100000 fps with asyn-
chronous reinforcement learning. In International Conference on Ma-
chine Learning, pages 7652–7662. PMLR, 2020.

[28] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever.
Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning, 2021. URL https:
//api.semanticscholar.org/CorpusID:231591445.

[29] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, P. J. Liu, et al. Exploring the limits of transfer learning
with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140):
1–67, 2020.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[31] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mot-
taghi, L. Zettlemoyer, and D. Fox. Alfred: A benchmark for inter-
preting grounded instructions for everyday tasks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pages 10740–10749, 2020.

[32] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg. Progprompt: Generating situ-
ated robot task plans using large language models. arXiv preprint
arXiv:2209.11302, 2022.

[33] A. Suglia, Q. Gao, J. Thomason, G. Thattai, and G. S. Sukhatme.
Embodied bert: A transformer model for embodied, language-guided
visual task completion. ArXiv, abs/2108.04927, 2021. URL https:
//api.semanticscholar.org/CorpusID:236975859.

[34] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner,
N. Maestre, M. Mukadam, D. Chaplot, O. Maksymets, A. Gokaslan,
V. Vondrus, S. Dharur, F. Meier, W. Galuba, A. Chang, Z. Kira,
V. Koltun, J. Malik, M. Savva, and D. Batra. Habitat 2.0: Training home
assistants to rearrange their habitat. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[35] W. Tan, W. Zhang, S. Liu, L. Zheng, X. Wang, and B. An. True
knowledge comes from practice: Aligning llms with embodied environ-
ments via reinforcement learning. ArXiv, abs/2401.14151, 2024. URL
https://api.semanticscholar.org/CorpusID:267212097.

[36] Z. Volovikova, A. Skrynnik, P. Kuderov, and A. I. Panov. Instruction
following with goal-conditioned reinforcement learning in virtual envi-
ronments. 2024. URL https://arxiv.org/abs/2407.09287.

[37] H. J. A. Wang and K. Narasimhan. Grounding language to entities
and dynamics for generalization in reinforcement learning. ArXiv,
abs/2101.07393, 2021. URL https://api.semanticscholar.org/CorpusID:
231639188.

[38] Z. Wang, S. Cai, A. Liu, Y. Jin, J. Hou, B. Zhang, H. Lin, Z. He,
Z. Zheng, Y. Yang, X. Ma, and Y. Liang. Jarvis-1: Open-world multi-
task agents with memory-augmented multimodal language models.
arXiv preprint arXiv: 2311.05997, 2023.

[39] A. Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Purohit,
M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke, et al. Socratic mod-
els: Composing zero-shot multimodal reasoning with language. arXiv
preprint arXiv:2204.00598, 2022.

[40] J. Zhang, Y. Zhao, M. Saleh, and P. Liu. Pegasus: Pre-training with
extracted gap-sentences for abstractive summarization. In International
Conference on Machine Learning, pages 11328–11339. PMLR, 2020.

[41] A. Zholus, A. Skrynnik, S. Mohanty, Z. Volovikova, J. Kiseleva,
A. Szlam, M.-A. Coté, and A. I. Panov. IGLU Gridworld: Simple and
Fast Environment for Embodied Dialog Agents. In CVPR 2022 Work-
shop on Embodied AI, 2022. URL http://arxiv.org/abs/2206.00142https:
//embodied-ai.org/papers/2022/12.pdf.

[42] V. Zhong, A. W. Hanjie, S. I. Wang, K. Narasimhan, and L. Zettlemoyer.
Silg: The multi-environment symbolic interactive language grounding
benchmark. arXiv preprint arXiv:2110.10661, 2021.

Z. Volovikova et al. / Instruction Following with Goal-Conditioned Reinforcement Learning in Virtual Environments 657

