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Abstract. Long-term occlusion is one of the most formidable chal-
lenges in Multi-Object Tracking (MOT). The motion models of ex-
isting SORT-based trackers are unreliable in estimating the motion
states of long-term occluded targets. This is mainly because as the
occlusion period increases, the increases speed of estimation errors
in the motion model increases faster. In practical applications, we
believe that the estimation error of the tracker during long-term oc-
clusion is mainly concentrated in the estimation error of the mo-
tion model on the velocity of the occluded target. In this work, we
have demonstrated that in the long-term occlusion period, appro-
priately correcting the estimated values of the motion model on the
target motion velocity and fully utilizing the temporal and attribute
information of the target’s historical trajectory as calculation indi-
cators of correlation are beneficial for improving the robustness of
the tracker in long-term occlusion. We refer to our proposed motion
correction-based framework as MC-SORT, which mainly consists
of a Momentum Compensation Module (MCM) and a Backtracking
Re-association (BRA) module. The former can correct the estimated
value of the target’s motion state during long-term occlusion, the lat-
ter uses the temporal and attribute information of the target’s histori-
cal trajectory during long-term occlusion as correlation indicators to
measure the degree of correlation between the target and trajectory.
Our proposed MC-SORT has the characteristics of simplicity, online,
real-time, and plug-and-play, particularly improving the robustness
of the tracker in long-term occlusion. The extensive experimental re-
sults on the MOT17 and MOT20 datasets demonstrate the robustness
and superiority of our framework.

1 Introduction

Multi-object Tracking (MOT) represents a classic challenge in the
field of computer vision, its goal is to reliably track the trajectory of
each object within a continuous video stream. MOT serves as a fun-
damental task for various complex real-world applications, including
autonomous driving[8], intelligent search and rescue[7], and intelli-
gent supervision[25], among others. With the continuous develop-
ment of object detection technology and the proposal of real-time
online tracking paradigm SORT[4], significant advancements have
been made in the MOT domain. Nevertheless, many technical chal-
lenges remain, with occlusion being one of the most critical issues.

As shown in Figure 1 (a), occlusion can roughly be divided into
two main categories for analysis: mutual occlusion between pedes-
trians and occlusion caused by obstacles. Most short-term occlusions
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Figure 1. Illustration of Challenges in SORT-based Trackers.(a)
describing the occurrence of different occlusions. The green area triggers
short-term occlusion caused by mutual occlusion between pedestrians. At
the same time, the tangerine area has triggered long-term occlusion caused

by a large obstacle. (b) illustrates the accumulation of estimation error
during the long-term occlusion. These two figures respectively illustrate two
situations where the motion model estimates the target velocity lower than

the actual target velocity and the motion model estimates the target velocity
higher than the actual target velocity. The estimation errors after long-term

occlusion far exceed the association ability of SORT-based trackers,
ultimately leading to tracking failure.

are due to the first type, while the second type, especially involving
large obstacles, often leads to long-term occlusion. Current SORT-
based trackers perform well in short-term occlusion but have a sys-
temic limitation for long-term occlusion, which we will discuss in
detail in Section 3.1. Our goal is to develop a motion model-based
MOT method that is robust to long-term occlusion. We have ana-
lyzed existing SORT-based trackers and found that most of them ex-
hibit systematic shortcomings in handling long-term occlusion. As
shown in Figure 1 (b), when the target reappears after a long-term
occlusion, the error between the estimated value and the actual value
of the target far exceeds the tracking ability of SORT-based trackers.
We analyze that this may be caused by the accumulation of estima-
tion errors in the motion model during long-term occlusion, and we
will explain the specific analysis process in detail in Section 3.1. Al-
though current SORT-based trackers have excellent performance in
dealing with unobstructed or short-term occluded targets, there is an

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240543

634



urgent need to address their limitations in long-term occlusion.
In this work, we realized a significant limitation of SORT-based

trackers in dealing with long-term occlusion. The error between the
estimated and true values of the target trajectory during long-term
occlusion increases with the growth of the occlusion period. When
the target reappears, the huge errors will ultimately lead to a com-
plete loss of the target. Although the observation-centered approach
proposed by OC-SORT aims to alleviate the process noise accumu-
lation in motion models caused by occlusion, it does not consider the
temporal information of target motion and the attitude information of
the target, with some limitations in dealing with long-term occlusion.

To alleviate the limitations of SORT-based trackers under long-
term occlusion, we propose a hypothesis that in long-term occlu-
sion, the motion model’s estimation of the direction consistency of
the target trajectory is more reliable than its estimation of the tar-
get velocity. Based on this assumption, we propose a plug-and-play
framework based on motion correction, which mainly consists of two
parts. Firstly, for targets entering the long-term occlusion, we com-
pensate for their motion estimation during the occlusion period, re-
duce the error between their estimation and the actual values, alle-
viate the accumulation of estimation errors during the long-term oc-
clusion, and correct the target’s motion trajectory during the occlu-
sion period. We call this part the Momentum Compensation Module
(MCM), which mainly corrects and compensates for the target’s mo-
tion during the long-term occlusion. Next, we re-associate the target
that has reappeared after long-term occlusion with the existing tra-
jectories of long-term occlusion targets. We incorporate the attitude
information (location, shape, and physical attributes of targets) and
temporal information (the generation time of each estimation) of the
target’s historical trajectory into the correlation matrix. We call this
part the Backtracking Re-association (BRA), which mainly uses the
motion-corrected target’s historical trajectory to calculate the corre-
lation between different trajectories and the reappeared target.

The proposed method is called MC-SORT, which has the char-
acteristics of simplicity, online, real-time, and plug-and-play, and it
can significantly improve the robustness over long-term occlusion.
Our contributions are summarized as the following:

• We recognize a critical limitation of SORT-based trackers under
long-term occlusion. Based on experience and analysis, to address
this limitation, we propose a hypothesis that under long-term oc-
clusion, the estimation of target trajectory direction consistency
by the motion model is more reliable than the estimation of target
velocity.

• We propose a motion correction-based framework, MC-SORT, to
alleviate the limitations of SORT-based trackers under long-term
occlusion. It has the characteristics of simplicity, real-time, on-
line, and plug-and-play, and without any additional learning and
training.

• We have designed a Momentum Compensation Module (MCM)
and a Backtracking Re-association (BRA) module, which can im-
prove the association ability of the tracker under long-term occlu-
sion. They effectively improve the performance of existing SORT-
based trackers under long-term occlusion and perform well on
multiple datasets.

2 Related Work

2.1 Tracking-by-Detection

The Tracking-by-Detection paradigm typically consists of three
parts: an object detector[29, 13, 12], a motion estimation model[17],

and an association module. In this paradigm, the motion model first
estimates each retained trajectory, while the object detector detects
the current frame result, and then inputs the estimated value and
detection value into the correlation module to generate the track-
ing result of the current frame. Various methods have been applied
to enhance this paradigm, achieving seemingly gratifying progress.
SORT[4], pioneering the use of the Kalman Filter (KF)[17] as a
motion model, estimates future states of objects, marking a sig-
nificant leap forward. DeepSORT[34] proposes a cascaded match-
ing strategy based on SORT[4], it classifies trajectories of differ-
ent qualities into different priorities and matches them at differ-
ent levels, the shorter the occlusion period, the higher the priority.
Additionally, other approaches[27, 33, 34, 36] seek to harness the
appearance attributes of different objects to enhance match preci-
sion, incorporate the extracted appearance features into the associ-
ated cost matrix. ByteTrack[40] uses low confidence detection re-
sults for re-association, which can fully utilize detection informa-
tion as much as possible. It is different from other trackers that fil-
ter low-confidence detection. Bot-SORT[1] fine-tunes the Kalman
Filter (KF)[17] parameters and introduces a Global Motion Com-
pensation (GMC) technique, aiming to refine the estimation of mo-
tion. OC-SORT[6] adopts an observation-centered tracking method
instead of an estimation-centered approach to reduce the accumula-
tion of motion model errors. Building upon OC-SORT[6], Deep OC-
SORT[22] utilizes Camera Motion Compensation (CMC) and dy-
namic update strategies, further enhancing match accuracy. Adopt-
ing this Tracking-by-Detection paradigm, we propose a framework
focused on motion correction, particularly aimed at tackling long-
term occlusions.

2.2 Motion Models

Following the Kalman Filter’s (KF)[17] adoption as the foundational
motion model in multi-object tracking by SORT[4], this approach
has gained popularity and widespread implementation in numerous
studies[34, 40, 39, 15]. Several investigations focus on refining de-
tection results to improve the precision of motion model forecasts.
Study [2] addresses detection biases induced by camera vibrations
through camera motion compensation (CMC). Bot-SORT[1] em-
ploys a global motion compensation (GMC) technique to tackle de-
tection biases spanning various frames. GIAOTracker[11] introduces
the NSA Kalman Filter (NSA-KF) based on the Unscented Kalman
Filter (UKF), factoring in detection scores in target motion estima-
tions. CIWT[26] attempts to employ the Extended Kalman Filter
(EKF) as the motion model for forecasting the trajectories of non-
linearly moving targets.

2.3 Occlusion

Occlusion of targets presents a significant challenge in the field of
multi-object tracking. Some approaches[14, 36] strive to categorize
targets depending on their occlusion status. Study [41] employs head
detection to mitigate target disappearance within crowds, effectively
reducing the occurrence of occlusions and enhancing tracking ef-
ficacy. Quo Vadis[10] proposes a method combining homography
estimation with depth maps to generate a pseudo-3D scene, aimed
at accurately predicting the movements of occluded targets and en-
hancing motion forecast precision. Some methods[5, 35] leverage a
memory bank to bolster long-term tracking precision. This mem-
ory bank is capable of diminishing the uncertainties in embedding
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Figure 2. The pipeline of our proposed MC-SORT. SBT represents the SORT-based tracker, MCM represents our proposed Momentum Compensation

Module, and BRA is the Backtracking Re-association module. When the occluded targets reappear at frame 153, the first attempt is to track them by SBT,
and at the same time, the MCM is used to compensate for the momentum of n trajectories in the occluded state to obtain n historical trajectories that have

already been momentum-compensated. The m targets that were failed tracked by SBT and the n historical trajectories that passed through MCM will proceed
to the next step. Next, input the n historical trajectory and m suspicious detections from the previous step into the BRA module to calculate their correlation
and generate a re-association result. Finally, add the generated re-association result to the successful tracking result by SBT to obtain the final tracking result.

or appearance features due to occlusions, thereby aiding in the re-
duction of data association inaccuracies stemming from occlusions.
MotionTrack[28] proposed a learnable interaction module capable
of conducting correlation analyses on historical trajectory features
to re-identify occluded targets. Some others[31, 32, 16] utilize the
Re-ID technique to enhance data association precision in occlusion
scenarios. Our research mainly focuses on the accumulation of errors
between the motion model estimation and the true values when the
target is obscured for a long time. Specifically, we modify the exist-
ing motion estimation through the historical trajectory of the target
to reduce the accumulation of errors.

3 Methodology

In this section, we first analyze the limitations of existing SORT-
based trackers and introduce our proposed method MC-SORT from
their limitations. Next, we will provide a detailed introduction to the
two important components of MC-SORT, the Momentum Compen-
sation Module (MCM) and the Backtracking Re-association (BRA)
module, in the following text. It should be noted that our method is
based on the limitations of SORT-based trackers and is an effective
supplement to existing SORT-based trackers. It does not require ad-
ditional learning and training and can be plug-and-play.

3.1 Limitation of SORT-based methods

The SORT-based trackers mainly consist of two parts: motion model
(Kalman Filter) and association algorithm (Hungarian Algorithm).
This type of tracker first uses a motion model to estimate the trajec-
tory estimation value for the next frame based on the existing trajec-
tory set, then uses IoU or appearance features as association evalu-
ation indicators between the detection set and the trajectory estima-
tion set to generate the corresponding correlation matrix, and finally
forms the tracking result through association algorithms. This type of
tracker is particularly effective for scenes with little or no occlusion,
especially if all targets, in reality, can be accurately detected, then its

tracking results can be completely consistent with the actual target
motion situation.

However, in practical applications, due to the imaging principle
of images, completely occluded targets can be considered as com-
pletely lost data in the image. Therefore, current image-based detec-
tion algorithms are unable to accurately detect such occluded targets,
making occlusion a major challenge in the field of multi-target track-
ing. To solve the occlusion problem, SORT-based trackers are based
on the assumption that the target’s displacement in a short period
is a uniform linear motion. Therefore, when the target is occluded
in a short period, it is feasible to predict the short-term occluded
trajectory of the target through the linear motion prediction model
Kalman Filter, because the error between the estimated value of the
Kalman Filter and the true value of the target is within the ability
range of the association algorithm. OC-SORT has demonstrated the
sensitivity of the Kalman Filter to state noise and the amplification
of errors by occlusion time. Therefore, we have noticed a limitation
of the SORT-based trackers. When long-term occlusion occurs, due
to the accumulation of motion errors by the Kalman Filter, the es-
timated trajectory may have a huge deviation from the true value.
That is, the motion estimation value of the Kalman Filter is unre-
liable when long-term occlusion occurs. Based on this analysis, we
have reconsidered the observation-centered update strategy proposed
by OC-SORT and its proposed OCM module which relies on consis-
tency in the direction of movement. Combining their performance on
the MOT and DanceTrack datasets, we propose a hypothesis that for
most long-term occluded targets, because their destination is gener-
ally known and clear, their motion direction will rarely change sig-
nificantly during the occlusion period. Therefore, we believe that the
accumulation of motion errors by the Kalman Filter is mainly re-
flected in the target’s motion velocity rather than the target’s motion
direction. That is, in long-term occlusion, we can trust the Kalman
Filter’s upward estimation and reduce its dependence on motion ve-
locity estimation.

To verify our hypothesis, we selected MOT17 and MOT20 as
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the analysis datasets. For details, please refer to Section I in
Appendix[18]. Thanks to the visible parameter of their true values,
we can easily simulate different situations of occlusion. Through data
analysis and calculation, we can preliminarily prove our hypothesis
from the statistical results. Based on this, we identified a limitation of
SORT-based trackers, where the estimation of target velocity by the
motion model is not reliable during long-term occlusion, severely
suppressing the performance of SORT-based trackers in long-term
occlusion scenarios. Based on our hypothesis, we propose a plug-
and-play framework MC-SORT as a supplement to existing SORT-
based trackers, which mainly consists of two modules: the MCM
module and the BRA module. We will provide a detailed explana-
tion of this framework in the following chapters.

3.2 Overview of MC-SORT

MC-SORT mainly executes two steps for long-term occlusion tar-
gets:

• Step 1: Motion State Compensation. Compensate for the motion
state of each target trajectory that has entered a long-term occlu-
sion.

• Step 2: Re-association Reappearing Targets. Backtracking the
historical trajectory of targets that have reappeared after long-term
occlusion and re-association them to the trajectory.

Each trajectory that has undergone long-term occlusions and reap-
pearance will go through several stages: being tracked period, short-
term occlusion period, long-term occlusion period, and reappearance
period after long-term occlusion. For the two stages of being tracked
and short-term occlusion, we believe that the current SORT-based
trackers can adapt well, so our method mainly focuses on improv-
ing the long-term occlusion period and the reappearance period after
long-term occlusion.
Motion State Compensation. In Section 3.1, we proposed a hypoth-
esis that the error accumulation of the Kalman Filter under long-term
occlusion is mainly concentrated on the motion velocity. Based on
this assumption, we consider a scenario in which the estimated ve-
locity of the Kalman Filter is much lower than the true target mo-
tion velocity when the target is in a long-term occlusion. This sce-
nario can lead to a large error between the estimated value of the
Kalman filter and the true value of the target, exceeding the limit of
the association algorithm, resulting in tracking failure. SORT gen-
erates correlation matrices based on IoU evaluation metrics as the
cost matrix for the association algorithm. Therefore, when there is no
overlap between the motion estimation value and the true value, as-
sociation failure will inevitably occur during the association process,
leading to tracking failure. Although OC-SORT proposes the OCM
module from an observational perspective that incorporates the di-
rection consistency of tracks in the cost matrix for the association,
for long-term occluded targets, the generated cost matrix completely
loses temporal and target attribute information, so there are still some
limitations. As shown in Figure 3, the impact of temporal informa-
tion and attribute information is demonstrated. When the target enters
a long-term occlusion, according to the method proposed by OC-
SORT, only considering the influence of the object’s motion direc-
tion, it can be concluded that the correlation between the reappeared
target and target2 is higher, because the motion direction estima-
tion of target2 is more closely related to the reappeared target than
the estimation of target1, which is completely opposite to the actual
situation. In fact, the real situation is that target1 has a higher corre-
lation with the reappeared target because the attribute and temporal

Figure 3. Impact of Temporal and Attribute information. Different
shapes represent the attribute of different targets ("�" represent target1,

"�" represent target2), and the circle area with shadow indicates the range
that an estimate can be associated with the truth value. Different colors of
the same target represent different states of the target (green represents the

tracked state, light blue represents obscured targets actual value, yellow
represents reappearing targets, and red represents obscured targets

estimation). tn represents different moments, where target1 is obscured at
frame t1 while target2 is not obscured at this time. target2 is obscured at
frame t2, at which point both target1 and target2 are in obscured state. At

frame t3, target1 reappeared, while target2 was still in occlusion.

characteristics of target1 are closer to the reappeared target. Even
from the perspective of movement direction, the difference between
the correlation of target1 and the correlation of target2 is limited.
For this reason, we propose a momentum compensation module as
a supplement to the motion model under long-term occlusion, com-
pensating for the motion state during long-term occlusion. Compared
with the method proposed by OC-SORT, we incorporate the tempo-
ral and attribute information of the target into the calculation of the
correlation matrix in the association algorithm, fully considering the
impact of temporal and attribute information.
Re-association Reappearing Targets. Due to the significant devia-
tion in the estimation of motion velocity by the motion model men-
tioned earlier, there is a situation where the estimated velocity of the
motion model exceeds the true motion velocity of the target when
it reappears after long-term occlusion. To address this issue, we ex-
tended the original trajectory information from the temporal dimen-
sion, preserving both the temporal and attribute information of the
target during long-term occlusion. All the retained information is
called the historical trajectory set, abbreviated as the historical trajec-
tory. When a target that has been obscured for a long time reappears,
the historical trajectory of the target is used as input for the asso-
ciation algorithm to calculate the correlation between the estimated
trajectory and the reappeared target, and ultimately re-associate the
reappeared target.

3.3 Momentum Compensation Module

In practice, when the target is in a long-term occlusion period, the er-
ror between the estimated motion value of the target and its true value
will increase with the increase of occlusion time, which is called er-
ror accumulation.

Assuming the limit range of the association algorithm part in the
SORT-based trackers is δ. When the error E(i, t0) between the mo-
tion estimation value Ŝi(t0) and the true value Si(t0) of the targeti
at frame t0 ∈ (tstart, tend) is exceeding δ, it indicates that the
targeti failed to track at frame t0. Therefore, it can be easily con-
cluded that at frame t ∈ (t0, tend), the error E(i, t) between the
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Figure 4. Illustration of how MCM works during long-term occlusion.

(a) describes the working process of KF when occlusion occurs. The target
enters the occluded state starting from frame t1 and reappears at frame t2.

The red dot represents the KF estimation during the occlusion and the circle
area with shadow indicates the range that an estimate can be associated with

the truth value. The accumulation of errors from frame t1 to frame t2
resulted in the estimation error between the reappeared target and the
original trajectory exceeding the association range, leading to tracking

failure. (b) describes the scenario of using the MCM module. The red dot
represents the original KF estimation and the yellow star represents the KF

estimation through MCM. After entering the occluded state, the MCM
compensates the momentum of the historical trajectory to suppress the

accumulation of estimation errors, so that the estimation error between the
target estimation value at frame t2 and the true value is within the association

range, and the target can be re-associated with the original trajectory.

estimated value Ŝi(t) and the true value Si(t) will always exceed
the limit range of the association algorithm, due to the principle of
error accumulation. Therefore, when the target reappears, it will in-
evitably fail to associate with the original trajectory, resulting in the
permanent disappearance of targeti. The calculation of E(·) is as
follows:

E(i, t) = Si(t)− Ŝi(t) , t ∈ (tstart, tend) (1)

where Si(t) represents the motion state of the targeti at frame t,
Ŝi(t) represents the motion estimation state of the targeti at frame
t, tstart represents the start frame of the long-term occlusion period,
tend represents the end frame of the long-term occlusion period.

In order to solve the problem of the estimated and true values
exceeding the limit range of the association algorithm during the
long-term occlusion period, we propose a Momentum Compensa-
tion Module (MCM) to alleviate this problem. As mentioned earlier,
we believe that the error between the estimated value and the true
value is mainly reflected in the difference in the target velocity. The
main function of the MCM is to compensate for the error between
the estimated value and the true value, weaken its error accumula-
tion effect, and reduce the error value to within the limit range δ of
the association algorithm. We consider that the obscured time is pos-
itively correlated with the error value, and the specific calculation of
the momentum compensation value Mc(i, t) for targeti at the frame
t is as follows:

Mc(i, t) = ΔŜi(t)× T (t− tstart) , t ∈ (tstart, tend) (2)

where the T (·) means the temporal correlation function, it is pos-
itively correlated with the obscured time of targets, it dynamically
adjusts the motion correction by the occlusion time to suppress the
increase of estimation error caused by the increase of occlusion time.
The ΔŜi(t) means the relative estimated value of the motion model.
The specific calculations for ΔŜi(t) and T (·) are as follows:

ΔŜi(t) = Ŝi(t)− Ŝi(t− 1) (3)

Figure 5. Illustration of the BRA module. t0 is the starting frame for
targeti to enter long-term occlusion, and tn is the ending frame. The BRA

module acts on frame tn where the target reappears after long-term
occlusion. When the occluded target reappears, the historical trajectory of
targeti is backtracking to frames tn − 4, and the temporal and attribute

information of the backtracking is used to calculate the correlation between
targeti and the reappeared target. Finally, the trajectory of targeti is

re-associated with the reappeared target through the BRA module.

T (t− tstart) = σ ×
√

Exp(
t− tstart

tend − tstart
) (4)

where σ represents temporal correlation weight. It should be noted
that we only use the MCM module for momentum compensation
on target trajectories that are in the long-term occlusion period,
and retain all momentum-compensated motion states and tempo-
ral information of the target during the long-term occlusion pe-
riod as its historical trajectory, denoted as Htraj = {Ŝ(tstart) +
Mc(tstart), · · · , Ŝ(tend) +Mc(tend)}.

3.4 Backtracking Re-association

When the target reappears after long-term occlusion, due to the ac-
cumulation of errors, it may occur that the motion model’s estimated
value of the target’s current frame exceeds its actual position, leading
to the failure of target association. Although we have compensated
for the momentum of the target’s motion estimation during occlu-
sion, we still need to consider the occurrence of this situation, espe-
cially the possibility of excessive compensation. For this reason, we
propose a Backtracking Re-association (BRA) module to solve the
above issue.

Specifically, based on the assumption we proposed earlier, if the
estimated value in the direction of the target motion vector is reli-
able, even if the estimated value when the target reappears exceeds its
actual value, its reappearance position will inevitably be associated
with an estimated value in the historical trajectory during its long-
term occlusion period. At the same time, we consider the impact of
temporal information, as the increase in occlusion time amplifies the
error in the estimated values of the target motion model. Therefore,
estimates with larger temporal values in historical trajectories have
lower confidence levels.

We use the historical trajectory of long-term occlusion targets as
the basic input unit of BRA. Taking n long-term occluded target tra-
jectories H = {Htraj

1 , · · · , Htraj
n } and m newly emerged target

detection results D ∈ R
m×4 as examples. For individual trajectory

Htraj
i ∈ H and detection result Dj ∈ D, the correlation score cal-

culation is as follows:

Cbr(H
traj
i , Dj) = max

t

(
Φi(t)× CIoU (H

traj
i (t), Dj)

)
(5)

where the Htraj
i (t) represents the motion estimation value of the

historical trajectory set of targeti after passing through MCM at the
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Table 1. Comparison with the state-of-the-art methods under the “private detector” protocol on the MOT17 test set. ↑ means higher is better, ↓ means lower is
better. The best results for each metric are bolded.

Tracker Venue IDF1↑ HOTA↑ MOTA↑ AssA↑ FP↓ FN↓ IDs↓ Frag↓
CSTrack[19] TIP’22 72.6 59.3 74.9 57.9 23847 114303 3567 7668

RelationTrack[37] TMM’22 74.7 61 73.8 61.5 27999 118623 1374 2166
TrackFormer[23] CVPR’22 68 - 74.1 - 34602 108777 2829 -

MeMOT[5] CVPR’22 69 56.9 72.5 55.2 37221 115248 2724 -
MTrack[36] CVPR’22 73.5 - 72.1 - 53361 101844 2028 -
MOTR[38] ECCV’22 68.6 57.8 73.4 55.7 - - 2439 -

ByteTrack[40] ECCV’22 77.3 63.1 80.3 62.0 25491 83721 2196 2277
QuoVadis[10] NeurIPS’22 77.7 63.1 80.3 62.1 25491 83721 2103 2277

P3AFormer[42] ECCV’22 78.1 - 81.2 - 17281 86861 1893 -
OC-SORT[6] CVPR’23 77.5 63.2 78 63.2 15100 108000 1950 2040

MotionTrack[28] CVPR’23 80.1 65.1 81.1 65.1 23802 81660 1140 1605

UTM[35] CVPR’23 78.7 64 81.8 62.5 25077 76298 1431 1889
MC-SORT (ours) - 80.9 65.2 80.6 65.7 22605 85494 1125 1794

Table 2. Comparison with the state-of-the-art methods under the “private detector” protocol on the MOT20 test set. ↑ means higher is better, ↓ means lower is
better. The best results for each metric are bolded.

Tracker Venue IDF1↑ HOTA↑ MOTA↑ AssA↑ FP↓ FN↓ IDs↓ Frag↓
CSTrack[19] TIP’22 68.6 54 66.6 50.0 25404 144358 3196 7632

RelationTrack[37] TMM’22 70.5 56.5 67.2 56.4 61134 104597 4243 8236
MeMOT[5] CVPR’22 66.1 54.1 63.7 55.0 47882 137982 1938 -
MTrack[36] CVPR’22 69.2 - 63.5 - 96123 86964 6031 -

ByteTrack[40] ECCV’22 75.2 61.3 77.8 59.6 26249 87594 1223 1460
QuoVadis[10] NeurIPS’22 75.7 61.5 77.8 59.9 26249 87594 1187 1460

P3AFormer[42] ECCV’22 76.4 - 78.1 - 25413 86510 1332 -
OC-SORT[6] CVPR’23 75.9 62.1 75.5 62.0 18000 108000 913 1198

MotionTrack[28] CVPR’23 76.5 62.8 78 61.8 28629 84152 1165 1321
UTM[35] CVPR’23 76.9 62.5 78.2 61.4 29964 81516 1228 1342

MC-SORT (ours) - 77.7 63.6 77.9 63.3 23573 89394 1233 1463

frame t, CIoU (H
traj
i (t), Dj) calculates the IoU (Intersection over

Union) between Htraj
i (t) and Dj . The max

t
(·) indicates the maxi-

mum is calculated along the direction of the temporal dimension t
of the Htraj

i (t). The Φ(·) means temporal confidence function, it is
a function used to describe the credibility of estimated values. For
targeti, the calculation of Φi(t) is as follows:

log(Φi(t)) =
t− tstart

tend − tstart
× log(λ) , t ∈ (tstart, tend) (6)

where tstart represents the starting time when targeti enters long-
term occlusion, tend represents the time when detection Dj appears,
which is the time when the targeti reappears, and λ represents the
temporal confidence weight.

4 Experiments

4.1 Experimental Setup

Datasets. To verify the robustness of our proposed MC-SORT for
long-term occlusion, we selected MOT17[24] and MOT20[9] as ex-
perimental datasets, due to their dense targets and numerous obsta-
cles. We evaluate our MC-SORT on MOT17[24] and MOT20[9] un-
der the "private detection" protocol.
Metrics. We use HOTA[21] as the main indicator because it main-
tains a better balance between detection and association accuracy,
which can evaluate the performance of the tracker from an overall
perspective. We also emphasize AssA[21] and IDF1[30] to evaluate
the performance of associations, as they better reflect the accuracy
of the association. Other metrics we report, such as MOTA[3], are
highly related to detection performance.
Implementation Details. We implemented our MC-SORT in Py-
Torch and performed all experiments on one NVIDIA A100. In or-
der to fairly evaluate our framework, we have inserted our designed

module into existing methods while ensuring the integrity of the orig-
inal algorithm. To ensure fairness, the universal YOLOX[13] detec-
tor is employed, utilizing weights trained by ByteTrack[40] on both
MOT17 and MOT20 datasets. To verify the generality and effec-
tiveness of our method, our framework does not require any addi-
tional training. For the tracking process, we use the same strategy
as ByteTrack[40], using a dual-layer data association strategy. The
default high and low thresholds are 0.6 and 0.1, respectively. Af-
ter unsuccessful backtracking by the History Backtracking algorithm
module, the threshold for newly generated trajectories needs to be set
to 0.7. The temporal correlation weight in MCM is set to 0.025, and
the temporal confidence weight in BRA is set to 0.6.

4.2 Benchmark Results

MOT17. As shown in Table 1, our MC-SORT framework outper-
forms state-of-the-art methods in most key metrics. Especially, the
indicators IDF1, HOTA, AssA, and IDs all rank first, which proves
that our proposed framework has reached the most advanced level in
association accuracy, and we have also reached the current advanced
level in other indicators, demonstrating the robustness of our algo-
rithm. Our framework focuses on solving the problem of long-term
occlusion, which enables the tracker to have stronger capabilities
when facing long-term occlusion. Therefore, it can generate more
accurate association results, which can also be reflected in the indi-
cators reflecting association ability (IDF1, AssA).
MOT20. As shown in Table 2, our MC-SORT framework still

achieved state-of-the-art results on the MOT20 dataset under the "pri-
vate detector" protocol. It should be pointed out that UTM ranks first
in MOTA metrics because of its complex structures and mechanisms,
and it is only slightly ahead of our results in MOTA. Our framework
does not require additional learning and training, and is a plug and
play simple framework. In this case, we are only 0.3 lower than UTM
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Table 3. Ablation studies of the Momentum Compensation

Module(MCM) and the Backtracking Re-association(BRA) on the
MOT17 validation set. The best results for each metric are bolded.

Setting HOTA↑ IDF1↑ MOTA↑ AssA↑
Baseline 69.19 82.03 78.64 71.50
Baseline+BRA 69.38 82.35 78.84 71.75
Baseline+MCM 69.54 82.60 78.85 72.22
Baseline+BRA+MCM 69.67 82.83 78.85 72.48

Table 4. Results of applying MC-SORT to 4 different state-of-the-art
trackers on the MOT17 validation set. “†” means that the tracker uses the Re

ID module. The best results for each metric are bolded.

Method w/MC-SORT HOTA(↑) IDF1(↑) MOTA(↑)

ByteTrack[40] 67.88 79.77 77.66
� 68.48 81.03 78.03

BoT-SORT[1] 69.14 81.62 78.44
� 69.50 82.30 78.91

BoT-SORT†[1] 68.73 81.50 78.48
� 69.67 82.83 78.85

SparsTrack[20] 69.00 81.97 77.87
� 69.23 82.13 78.00

OC-SORT[6] 66.37 77.93 74.54

� 66.74 78.69 74.42

in the MOTA indicator, but HOTA exceeds it by 1.1, IDF1 exceeds
it by 0.8, and AssA exceeds it by 1.9, which reflects our association
ability far superior to UTM. Our method ranks first in HOTA, IDF1,
and AssA metrics, fully demonstrating the advantages of our method
in terms of association ability.

4.3 Ablation Study

Effect of Each Component. Table 3 lists the contributions of the
different modules we proposed on the MOT17 validation set. Due
to the plug-and-play characteristic of the modules we propose, we
can directly add and remove corresponding modules to achieve ab-
lation effects. The results demonstrate the effectiveness of our pro-
posed module in MC-SORT. The results indicate that both the MCM
module and the BRA module alone can improve the performance of
the baseline, especially in terms of the improvement in association
ability, which is significantly intuitive. When the MCM and BRA
modules work together, the baseline improvement reaches its max-
imum, indicating that our proposed modules have a positive inter-
action between themselves. The overall performance of the ablation
study indicates that our proposed method is effective in improving
the association ability of the tracker.
Applications on other trackers. We have selected several state-of-
the-art SORT-based trackers to demonstrate the generality and ro-
bustness of our proposed MC-SORT framework. Due to the plug-
and-play characteristic of our proposed method, we can directly ap-
ply our approach to these trackers. The experimental results indicate
that our method has varying degrees of improvement on different
SORT-based trackers, which proves the generality and robustness of
our proposed method.
Extra Evaluation of Crowd and Occlusion. Our approach is mainly
proposed to address the challenge of long-term occlusion. To verify
the effectiveness of our proposed method under long-term occlusion,
inspired by the crowdMOT dataset proposed in MotionTrack[28], we
transformed the MOT17 validation set into a subset with more fre-
quent long-term occlusion occurrences. Thanks to the visibility score
in the MOT dataset, we consider the true value of the visibility score
below ρ as the occluded value. When a target has a continuous Δt

Table 5. Evaluation of HOTA, IDF1, and AssA for crowd and occlusion
cases on the MOT17 validation set. Increases in metrics are marked in green.

ρ Metrics Setting ≥ 20 ≥ 40 ≥ 60 ≥ 80

≤ 0.25

HOTA(↑)
Baseline 41.68 33.95 31.30 25.29

Ours 42.58 34.86 32.06 26.44
Improvement +0.89 +0.92 +0.76 +1.14

IDF1(↑)
Baseline 46.31 34.68 30.04 21.42

Ours 47.43 35.57 30.77 22.42
Improvement +1.12 +0.89 +0.72 +1.00

AssA(↑)
Baseline 54.12 51.42 51.78 47.94

Ours 56.13 53.93 54.20 52.19
Improvement +2.01 +2.52 +2.43 +4.25

≤ 0.15

HOTA(↑)
Baseline 32.92 25.45 20.95 14.79

Ours 34.08 26.57 21.51 15.46
Improvement +1.16 +1.1 +0.56 +0.67

IDF1(↑)
Baseline 34.53 22.96 17.04 9.97

Ours 36.00 23.97 17.53 10.29
Improvement +1.47 +1.01 +0.50 +0.32

AssA(↑)
Baseline 46.82 46.23 42.17 35.59

Ours 49.87 50.16 44.25 38.78
Improvement +3.05 +3.93 +2.07 +3.19

frame visibility score below ρ throughout the entire video stream,
we consider it as a track with long-term occlusion. We extract all
the targets that suit the conditions in the MOT17 validation set as a
new validation set to demonstrate the effectiveness of our proposed
method under long-term occlusion. We evaluated the performance of
the validation sets formed by the two visibility thresholds ρ and sev-
eral Δt. We chose HOTA, IDF1, and AssA as our evaluation metrics,
which better reflect the tracking ability of the tracker. As shown in
Table 5, the experimental results demonstrate the superiority and ro-
bustness of our proposed method for long-term occlusion, indirectly
verifying the correctness of the theory proposed in Section 3.1.

5 Conclusions

We analyzed existing SORT-based trackers and recognized a limita-
tion of them. Due to long-term occlusion, the error between the es-
timated value and the actual value of a motion model often exceeds
the limit range of the association algorithm, leading to tracking fail-
ure. To address this issue, we propose a hypothesis based on exper-
iments and experience that the error of the tracker’s motion model
during long-term occlusion is mainly reflected in its estimation of
the motion velocity. Based on this assumption, we propose a mo-
tion correction-based framework MC-SORT. It can improve the ro-
bustness of existing SORT-based trackers under long-term occlusion
while maintaining its simplicity, online, and real-time characteristics.
Our experiments on different datasets have achieved state-of-the-art
results, especially for multi-object tracking under long-term occlu-
sion, where our method has significant gain effects. It is worth not-
ing that our method does not require additional training and learning,
and can be plug-and-play, which is an effective supplement to exist-
ing SORT-based trackers under long-term occlusion.

6 Future Work

Our MC-SORT mainly revises human-led motion estimation, which
mainly faces multi-object tracking of traffic scenes. For non-traffic
scenarios, such as tracking wild creatures such as bees, our method
still has limitations (mainly due to the unpredictability of target mo-
tion estimation in these scenarios), and we will study the application
of our method in non-traffic scenarios in the future.
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