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Abstract. In this paper, we show that exploiting Generative Ad-
versarial Networks (GANs) to transform nighttime images into day-
time representation increases the robustness of pedestrian detection
in low-light conditions. Our work aims at first learning the image
translation to transfer the style from daytime images to nighttime
images with unpaired GAN training. Second, we use our end-to-end
trained GAN model to translate night images as a pre-processing step
before feeding them into an object detector that is pre-trained on day-
time images only. To demonstrate the effectiveness of our translation
approach, we conducted experiments on two real-world pedestrian
datasets using both one-stage and two-stage object detectors. Our
results outperform the baseline in all experiments and show highly
competitive detection performance compared with other GAN-based
approaches while holding the most lightweight architecture. We be-
lieve that our approach is an effective pre-processing first step that
helps in bridging the performance gap between day and night at no
expense of re-training object detector networks with more night im-
ages.

1 Introduction

Pedestrian detection has been one of the significant research prob-
lems in computer vision applications. Accurately detecting pedes-
trians from scenes with variations of lighting or weather conditions
and appearance completeness (e.g., with occluded pedestrians) is the
main goal in many real-world applications, including video surveil-
lance, self-driving vehicles, and robotics. Thanks to deep-learning-
based object detectors such as Faster R-CNN [26], and FCOS [30],
the recent pedestrian detection works achieve optimistic detection
performance for occluded and small-size pedestrians [41, 24, 29, 15];
however, most existing pedestrian detection models strictly focus on
pedestrian detectability improvement on the images with good illu-
mination and weather conditions. The detectability of those models
is degraded when images are captured under low-light and extreme
weather (e.g., heavy rain or snow) conditions.

GANs are one type of generative model and are compelling for
high-quality image synthesis. Having this, the researchers have ex-
ploited GANs as part of a pedestrian detection pipeline to enhance
pedestrian detection performance [7, 21, 40, 39]. Guo et al. [7] pro-
posed a domain-adaptive pedestrian detection framework that uti-
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lizes the GAN to conduct image domain adaptation between color
and thermal images to improve detection performance on thermal
images. Liu et al. [21] introduced an attribute-preserving GAN as a
novel data augmentation scheme and applied it to increase detection
performance for small-size and occluded pedestrians. Zhi et al. [40]
also exploited the GAN as a data argumentation scheme that pro-
duces synthetic pedestrian images with variations of human poses,
and their approach improves the detection performance by increas-
ing the diversity of training data. In addition to pedestrian detection,
the researchers apply the GAN to synthesize more diverse training
images for classification performance enhancements [39] or leverage
the GAN to enlighten dark input images to improve classification
performance [12].

In this paper, inspired by the aforementioned work, we focus on
leveraging a GAN that performs image-to-image translation oper-
ations for image domain adaptation tasks to improve the detection
performance of object detectors. We introduce an unpaired GAN-
based image translation framework to synthesize daytime-like im-
ages given nighttime input images for nighttime pedestrian detection
by learning illumination mapping between day and night domains.
We then propose an Absolute Mean Brightness Error (AMBE) loss
to regularize this learning illumination mapping process by mini-
mizing the absolute difference between the mean brightness of real
nighttime and synthetic daytime-like images. The AMBE loss can
enforce a generator in our proposed framework to generate non-over-
enhanced synthetic images to benefit pedestrian detection. We show
that the proposed GAN-based framework and our loss to bolster
pedestrian detection performance via qualitative analysis and empir-
ical experimentation. Our proposed framework and loss are gener-
alizable across variations of distinct datasets and object detectors,
including one-stage and two-stage detectors.

The main contributions of this paper can be summarized in four-
fold:

• We propose an unpaired GAN-based framework that learns the
mapping between nighttime and daytime domains to overcome the
data bias when detecting pedestrians at night.

• We introduce a novel AMBE loss that serves as a refinement step
to improve synthetic nighttime images and therefore enhance de-
tection performance.

• We demonstrate the effectiveness of our framework through sev-
eral qualitative and quantitative ablation studies.

• We compare our proposed GAN-based framework with the base-
line and its GAN-based counterparts in the task of pedestrian de-
tection at nighttime.
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2 Related Work

Inspired by game theory, Goodfellow et al. introduced the first Gen-
erative Adversarial Networks (GAN) framework, where the two
game players, a generative model and a discriminative model, out-
smart one another as in a minimax two-player game [6]. The com-
petitive results of GAN training has led to a widespread adaptation
in numerous applications [25, 18, 3, 36, 5, 37, 28]. One of the vision-
based applications that leverage GAN is image-to-image translation.

Pix2pix [11] is a well-known framework that brings GAN to
image-to-image translation tasks using conditional GAN (cGAN)
[23], a design that provides prior information, like a class label, for
better generation process and training stability. Nonetheless, pix2pix
training acquires paired samples, which is a main barrier to real-
world adaptations. To remove the restriction of paired training, Cy-
cleGAN [42] was proposed as the first unpaired GAN framework
based on a cycle-consistency loss. To elaborate, CycleGAN uti-
lizes two generators and two discriminators and introduces a cycle-
consistency loss such that one generator learns the mapping from
source to target domains and the other generator learns the inverse
mapping to ensure geometrical and structural preservation.The ben-
efit of unpaired training has made CycleGAN a classical base model
for many image-to-image translation frameworks [34, 33].

Concerning unpaired night-to-day translation, ToDayGAN [2] was
developed based on the ComboGAN architecture [1], an extension of
CycleGAN framework to allow n domain translation, for retrieval-
based localization problem. Specifically, ToDayGAN alters night-
time images to daytime representation to boost the degraded per-
formance in visual localization when query images come from dif-
ferent illumination conditions compared to reference images. An-
other recent work EnlightenGAN [12] was proposed to enhance low-
light images. EnlightenGAN uses a generator and two discrimina-
tors, global and local, to perform low-light to normal-light image
translation while preserving texture and structural similarities. More-
over, EnlightenGAN applies a simple yet effective attention map, the
inverse of the luminance channel, to assist the generator in producing
better-quality images.

Similar to the aforementioned work, our approach aims to close
the gap between night and day domains utilizing GAN without the
need for paired supervision. Motivated by EnlightenGAN [12], we
adopt the one-path architecture and adjust it over the course of our
experiments to suit our exact problem, minimizing the data bias in
pedestrian detection. Concretely, our proposed framework is more
lightweight and only consists of one generator and one discriminator,
allowing fast training.

3 Proposed Approach

3.1 Overall Framework

We perform image-to-image translation using a lightweight GAN
architecture and to allow for unpaired training; in other words, we
have no requirements for aligned night/day training image pairs. As
demonstrated in Fig. 1, the proposed GAN-based approach is com-
posed of one generator, one discriminator, and three losses, namely
adversarial loss, perceptual loss, and AMBE loss.

The generator takes a nighttime image and alters it so that it emu-
lates the distribution of real daytime images. The discriminator takes
a translated night image and a real day image to distinguish real-
ness. The training procedure is performed in an alternating adver-
sarial manner. On the one hand, the generator is trained to fool the
discriminator by synthesizing realistic translated images, close to the
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Figure 1. Overall proposed framework, consisting of a U-Net generator, a
discriminator, and three loss functions: adversarial loss (Ladv ), perceptual

loss (Lper ), and AMBE loss (LAMBE ).The generator translates a night image
to a fake day-like image and the discriminator differentiates between real

and fake images.

target domain distribution. On the other hand, the discriminator is
trained to differentiate between real and synthetically generated im-
ages.

In the following subsections, we describe the proposed framework,
including the generator and the discriminator in terms of network
architecture and loss functions.

3.2 Network Architecture

U-Net [27], a successful architecture on the task of semantic segmen-
tation, is widely adapted in GANs as it enables extracting rich fea-
tures from different depth layers and incorporates skip connections
for better global coherence of translated images. Therefore, adapt-
ing U-Net helps the generator to produce high-quality synthesized
images with semantic preservation.

Similar to [12], we use a U-Net generator that has 8 convolu-
tional blocks. Each block consists of two 3 × 3 convolutional lay-
ers followed by a LeakyReLU [32] and a batch normalization [10].
Downsampling is achieved by MaxPooling while upsampling is im-
plemented through bilinear interpolation to avoid checkerboard arti-
facts. Unlike [12], we consider only one discriminator and it consists
of seven 4 × 4 convolutional layers followed by a LeakyReLU [32].
Please refer to the supplementary material in [12] for in-depth net-
work architecture details and note that we do not include the local
discriminator in our implementation.

3.3 Loss Function

Our proposed framework involves three loss functions as follows:
Adversarial Loss. The standard minimax adversarial loss, intro-

duced by Goodfellow et al. in [6], is designed in an absolute manner
to discriminate real from fake. As an optimization, Jolicoeur [14] re-
placed the standard discriminator with the Relativistic average Dis-
criminator, denoted as DRa . The core idea is that the discriminator
determines if an input is more real compared to all fake data in the
mini-batch on average and similarly an input is fake compared to
all real data in the mini-batch on average. Indeed, it is evident that
considering relative determination has a positive impact on gener-
ated image quality and training stability [31, 17, 38]. The standard
relativistic discriminator function is formulated as:

DRa(xr, xf ) = σ(C(xr)− Exf [C(xf )]) (1)
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DRa(xf , xr) = σ(C(xf )− Exr [C(xr)]) (2)

where xr and xf represent samples from real and fake distributions,
respectively. C denotes the discriminator network, Exf [.] and Exr [.]
represent the average for all fake, and real data in a mini-batch, re-
spectively. Finally, σ is the sigmoid function.

Similar to [12], we utilize a modified version of the standard rel-
ativistic discriminator function, where the sigmoid function is re-
placed with Least Square GAN (LGAN) [22] to overcome the van-
ishing gradient problem. Considering both optimizations, the final
loss functions for the discriminator D and the generator G are ex-
pressed as:

LD = Exr [(DRa(xr, xf )− 1)2]

+ Exf [(DRa(xf , xr)− 0)2] (3)

LG = Exf [(DRa(xf , xr)− 1)2]

+ Exr [(DRa(xr, xf )− 0)2] (4)

Having labels 0 and 1 for fake and real, respectively, both Eq. 3 and
4 are loss functions to be minimized. For example, the discriminator
is trained to minimize the square difference between real data and
label 1, and fake data and label 0. And for the generator, the target is
to minimize the square difference between fake data and label 1, and
real data and label 0.

Perceptual Loss. Johnson et al. [13] suggested perceptual loss for
image transformation tasks to constrain structural similarity based on
high-level features extracted from a pre-trained VGG network. Our
framework employs this loss using a VGG-16 model pre-trained on
ImageNet to measure the distance between original and translated
night images in feature space. We use the activations of relu5_1
layer from VGG-16. Perceptual loss is defined as:

Lper = ‖φ(I)− φ(G(I))‖22 (5)

where φ denotes the feature map, I denotes the original night image,
and G(I) denotes the translated night image, by generator G.

AMBE Loss. To account for over brightness and noise amplifi-
cation that unpaired training might cause, we leverage the image
quality metric AMBE, which was introduced in [9] for mean bright-
ness preservation. Indeed, incorporating AMBE loss can be a double-
edged sword as it might prevent night-to-day translation. Thus, we
use an empirically fine-tuned importance factor α in optimizing the
total loss as we will show later in our ablation studies (Section 5.1).
AMBE loss is formulated as:

LAMBE = |μI − μG(I) | (6)

where μI and μG(I) are mean brightness for original and translated
night images, by generator G, respectively.

The generator total loss function is defined as a weighted sum over
these three loss terms:

Ltotal = Lper + αLAMBE + LG (7)

4 Experimental Setup

In this section, we describe implementation details of our experi-
ments, including datasets, GAN training configurations, object de-
tectors, and evaluation protocol.

4.1 Dataset Preparation

For clarity, we split our dataset preparation into two parts as follows:

For GAN training. We used two datasets separately: Berke-
ley DeepDrive (BDD100K) [35] and EuroCity Persons (ECP) [4].
BDD100K consists of 70k training and 10k validation images cap-
tured at different times of the day (with a resolution of 1280 × 720).
ECP consists of 28k training and 5k validation images captured at
different times of the day (with a resolution of 1920 × 1024). We
sample 6032 night and 7372 day images from the BDD100K training
set. Additionally, we sample 4221 night and 5220 day images from
the ECP training set. It is noteworthy that we train for each dataset
separately and sampling size varies due to the limited night images
in ECP.

For object detection inference. On BDD100K, we utilize all night
images containing at least a pedestrian from the validation set, re-
sulting in 910 images with 3013 persons. Similarly for ECP, we use
all night images containing at least a pedestrian from the validation
set, resulting in 770 images with 4073 persons. Rather than running
inference on testing real night images, we first translate them using
the corresponding trained GAN model to emulate target daytime data
distribution. Next, we feed translated night images into a pre-trained
object detector that has seen only clear and day images.

4.2 Implementation Notes

To train our GAN-based framework, we adopt the Adam optimizer
[16] with β1 = 0.9 and β2 = 0.999; the batch size is set to 16. We use
a learning rate of 1e-4 for the first 100 epochs, followed by another
100 epochs with the learning rate linearly decayed to 0. We use crop
size of 320 x 320 and no resizing. All training is performed using 4
Nvidia A40 GPUs. We trained other GAN-based methods using the
same data and configurations for a fair comparison.

To evaluate pedestrian detection performance, we use PyTorch1

pre-trained Faster R-CNN [26] and FCOS [30] object detectors,
with default weights on MS-COCO dataset [19] and leveraging both
ResNet-50 [8] and FPN [20]. We obtained evaluation metrics using
COCO API2, a publicly available evaluation protocol. It is worth not-
ing that we threshold both confidence score and Intersection over
Union (IoU) to be above 50%.

5 Experimentation and Discussion

We have conducted several experiments to fine-tune and validate the
proposed night-to-day translation to elevate pedestrian detection ro-
bustness in dark settings. In this section, we first examine our de-
sign choices and the contribution of loss functions in our proposed
framework through multiple ablation studies both quantitatively and
qualitatively. Second, we fairly compare our approach with its GAN-
based counterparts and the baseline (unprocessed real night images).

5.1 Ablation Studies

As stated earlier, we control imposing our AMBE loss by an im-
portance factor. Here, we show how we empirically set α for train-
ing our framework on BDD100K and ECP datasets, respectively. As
Table 1 shows, we examine three α values [0.05, 0.01, 0.15] and
evaluate their performance for pedestrian detection on each dataset
separately. Our empirical experiments indicate that the highest per-
formance on BDD100k is when α = 0.10 while setting α = 0.15 gives
the best performance for ECP. Thus, we empirically set α to be 0.10

1 https://pytorch.org/vision/stable/models.html
2 https://github.com/cocodataset/cocoapi
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for BDD100K and 0.15 for ECP. Note that all results in the following
sections are based on that α value selection.

Table 1. AMBE loss importance factor, α value, fine-tuning on BDD100K
and ECP datasets by Faster R-CNN. Used performance metrics are average

precision (AP) and average recall (AR).

Dataset α value AP (%) AR (%)

BDD100K
0.05 41.10 23.97
0.10 41.27 24.10

0.15 41.12 23.73

ECP
0.05 56.81 36.37
0.10 56.25 36.20
0.15 56.93 36.37

In regards to loss functions, we have conducted an ablation study
to measure the contribution of the two loss functions, perceptual loss
and AMBE loss. Specifically, we test our framework performance in
an incremental fashion: (i) without perceptual loss nor AMBE loss,
(ii) with perceptual loss only, and (iii) with perceptual loss + AMBE
loss.

Quantitatively speaking, Table 2 demonstrates that perceptual loss
is a substantial component for detection performance across all met-
rics by both Faster R-CNN and FCOS. The improvement margin is
at least 50% when incorporating perceptual loss. We attribute this to
the one-path GAN design where no cycle consistency is implied. On
top of that, it is challenging to guide the translation training in an
unpaired setting, thus perceptual loss plays a key role in assisting the
generator to produce structurally similar translated images compared
to the original ones. To provide more guidance and refinement for the
generator, AMBE loss supports unpaired training and balances the
generation process with respect to brightness. Numerically, AMBE
loss alleviates AP and AR for both Faster R-CNN and FCOS.

Table 2. Quantitative ablation study of proposed framework loss functions:
without perceptual loss (w/o Lper ), with perceptual loss (w/ Lper ) and with
perceptual and AMBE losses (w/ LAMBE ), on BDD100K dataset by Faster
R-CNN and FCOS. Used performance metrics are average precision (AP)

and average recall (AR).

Detector Metric (%) w/o Lper w/ Lper w/ LAMBE

Faster R-CNN AP 18.47 41.21 41.27

AR 12.52 23.95 24.10

FCOS AP 15.30 36.01 36.08

AR 10.22 21.32 21.37

Qualitatively speaking, the first column in Fig. 2 affirms the im-
portance of perceptual loss in maintaining texture and structure sim-
ilarity. All images generated without perceptual loss suffer from dis-
tortion and unrealism. Looking at the second and third columns in
Fig. 2, red dotted boxes illustrate the visual impact of AMBE loss.
Although the good-quality image translation using perceptual loss
only, we observe that the generator tends to alter night images with
a haze-like effect and sometimes over-brightness if there are many
streetlights, as shown in the first example in Fig. 2 (first row from
bottom). AMBE loss helps in those regions and improves the trans-
lation quality.

5.2 Comparison with Other Approaches

In this section, we showcase the effectiveness of our proposed ap-
proach by evaluating it against the baseline and other GAN-based ap-
proaches in the context of nighttime pedestrian detection. The evalu-

ation includes two real-world datasets, BDD100K and ECP, and two
state-of-the-art object detectors, Faster R-CNN and FCOS.

Table 3. The table presents a detection performance comparison of the
baseline, our approach and other GAN-based approaches on BDD100K

dataset by Faster R-CNN and FCOS. Used performance metrics are average
precision (AP) and average recall (AR). The bold blue denotes best

performance and bold black denotes second best per detector.

Detector Metric (%) Baseline CycleGAN ToDayGAN EnlightenGAN Proposed

Faster R-CNN AP 40.43 30.08 35.81 40.75 41.27

AR 23.45 18.51 20.43 23.64 24.10

FCOS AP 34.59 23.22 29.58 35.44 36.08

AR 20.74 14.56 17.68 21.10 21.37

As Table 3 and 5 depict, our results outperform the baseline among
all metrics on both BDD100K and ECP. In particular, AP is higher
by 0.84 and 1.49% for Faster R-CNN and FCOS, respectively on
BDD100K. Likewise on ECP, our approach elevates AP by 2.05
and 0.72% for Faster R-CNN and FCOS, respectively. Compared
to other GAN-based approaches, we achieve the best performance
on BDD100K in terms of AP and AR. Moreover, our performance
on ECP is the second best by FCOS. However, we outperform En-
lightenGAN AP by an improvement margin of 0.62% for Faster R-
CNN on ECP with our more lightweight version. Additionally, Table
4 affirms the simplicity of our architecture compared to other GAN-
based methods. In other words, the proposed approach achieves bet-
ter detection performance with fewer parameters. Having a smaller
model size is beneficial in deployment, avoiding over-fitting, extra
computation, and memory requirements.

Table 4. The table presents model size comparison in terms of number of
parameters between our approach and other GAN-based approaches.

CycleGAN ToDayGAN EnlightenGAN Proposed

Parameters 28.298 M 56.726 M 26.750 M 19.791 M

Table 5. The table presents a detection performance comparison of the
baseline, our approach and other GAN-based approaches on ECP dataset by
Faster R-CNN and FCOS. Used performance metrics are average precision
(AP) and average recall (AR). The bold blue denotes best performance and

bold black denotes second best per detector.

Detector Metric (%) Baseline CycleGAN ToDayGAN EnlightenGAN Proposed

Faster R-CNN AP 54.88 54.15 51.79 56.31 56.93

AR 35.24 34.98 32.95 36.65 36.37

FCOS AP 45.40 43.19 43.61 46.13 46.12

AR 31.02 29.60 29.30 31.61 31.36

In terms of visual inspection, Fig. 3 shows two examples to com-
pare the detection performance of our framework with other ap-
proaches on BDD100K. CycleGAN suffers from noise and content
distortion and ToDayGAN generally fails to enhance low-light con-
ditions. EnlightenGAN tends to overly enhance brightness which ei-
ther causes a wrong detection, false positive, or a miss detection, false
negative. Conversely, our approach moderately emulates the daytime
domain such that both Faster R-CNN and FCOS can detect night
pedestrians robustly. Similarly, Fig. 4 shows two examples to com-
pare detection performance on ECP. We successfully translate night
images so that both detectors can distinguish pedestrians from the
dark background. CycleGAN and ToDayGAN introduce false pos-
itives resulting in poor detection performance which indicates that
one-path GAN methods, EnlightenGAN and our proposed approach,
are more effective than cycle-based GAN methods, CycleGAN and
ToDayGAN.

Overall, the two-stage object detector, Faster R-CNN, detects dark
pedestrians more robustly compared to the one-stage detector, FCOS.
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Figure 2. Qualitative ablation study of loss functions in our framework. Each row represents an example, from BDD100K dataset, and each column
represents: without perceptual loss (w/o Lper ), with perceptual loss (w/ Lper ), with perceptural and AMBE losses (w/ LAMBE ), respectively. The dotted red boxes

denote refined regions by AMBE loss.
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Figure 3. Visual comparison of detection performance, including the ground truth, the baseline, our approach, and other GAN-based approaches on
BDD100K dataset by Faster R-CNN and FCOS. For each detector: top row represents detections on full images where the red boxes are ground truth, green

boxes are detected boxes, and dotted red boxes denote the region of interest, whereas bottom row represents the zoom-in region of interest to illustrate detection
performance.
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Figure 4. Visual comparison of detection performance, including the ground truth, the baseline, our approach, and other GAN-based approaches on ECP
dataset by Faster R-CNN and FCOS. For each detector: top row represents detections on full images where the red boxes are ground truth, green boxes are

detected boxes, and dotted red boxes denote the region of interest, whereas bottom row represents the zoom-in region of interest to illustrate detection
performance.
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Additionally, one-path GAN architectures benefiting from perceptual
loss to constrain structural similarity in feature space give remarkably
higher detection performance in comparision with cycle-based GAN
architectures that ensure structural similarity by learning the bidi-
rectional mapping between source and target domains. Moreover, all
experimental results assure the effectiveness of our approach in ad-
dressing the dark pedestrian detection issue with a simple yet effec-
tive GAN architecture.

6 Conclusion

This paper presents a GAN-based approach to discover the underly-
ing relationship between night and day domains and resolve the do-
main shift problem in pedestrian detection. In other words, we ben-
efit from GAN’s ability to learn the transformation between night
and day images to mitigate the degraded performance of nighttime
pedestrian detection. The evaluation results show that our approach
outperforms the baseline on two real-world nighttime datasets and
generalizes well to one-stage and two-stage object detectors. Plus,
our comparison results with other GAN-based methods reveal that
our approach is competitive while being the most lightweight. We
believe that night-to-day image translation through GAN is a practi-
cal domain adaptation solution for pedestrian detection task.
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