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Abstract. Convolutional neural networks (CNNs) for image pro-
cessing tend to focus on localized texture patterns, commonly re-
ferred to as texture bias. While most of the previous works in the
literature focus on the task of image classification, we go beyond
this and study the texture bias of CNNs in semantic segmentation.
In this work, we propose to train CNNs on pre-processed images
with less texture to reduce the texture bias. Therein, the challenge
is to suppress image texture while preserving shape information. To
this end, we utilize edge enhancing diffusion (EED), an anisotropic
image diffusion method initially introduced for image compression,
to create texture reduced duplicates of existing datasets. Extensive
numerical studies are performed with both CNNs and vision trans-
former models trained on original data and EED-processed data
from the Cityscapes dataset and the CARLA driving simulator. We
observe strong texture-dependence of CNNs and moderate texture-
dependence of transformers. Training CNNs on EED-processed im-
ages enables the models to become completely ignorant with re-
spect to texture, demonstrating resilience with respect to texture re-
introduction to any degree. Additionally we analyze the performance
reduction in depth on a level of connected components in the seman-
tic segmentation and study the influence of EED pre-processing on
domain generalization as well as adversarial robustness.

1 Introduction

Convolutional neural networks (CNNs, [24, 23]) are a class of well
established architectures in the field of deep learning and have be-
come a cornerstone in various computer vision tasks, such as image
classification and semantic segmentation. However, despite their re-
markable success, CNNs are prone to strong biases. One prevalent
bias observed in these networks is the texture bias [49, 3, 14]. Texture
bias refers to a tendency to rely on local textural patterns rather than
shape or structural information when making predictions or classifi-
cations. This bias often leads CNNs to prioritize texture-related de-
tails while potentially overlooking higher-level shape information or
features. In contrast to CNNs, human visual perception is more re-
liant on shape information rather than texture [19].

A more recent breakthrough is the application of transformer ar-
chitectures to computer vision [10]. Transformers have initially been
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Figure 1: A Cityscapes image (top) and its EED-processed counter-
part (bottom). Texture is removed to a great extent by EED while
shapes and semantic meaning are preserved.

designed for natural language processing tasks [39] where local prox-
imity of words does not guarantee semantic connection and distance
does not necessarily mean unrelatedness. While CNNs process im-
ages using filters that capture local patterns, building up a hierar-
chical representation of features, transformers utilize self-attention
mechanisms to directly model relationships between all parts of the
image. Thanks to this architectural difference, transformers are said
to be less texture biased than CNNs and to be more reliant on shape
information [15, 30, 37, 38]. Understanding and altering shape and
texture biases in both CNNs and transformers have become key areas
of interest in current computer vision research.

In this work, we propose a form of anisotropic diffusion, namely
edge enhancing diffusion (EED, [32, 40, 41]; cf. fig. 1), introduced
initially in the field of camera-based computer vision. To avoid im-
age artifacts, we extend EED by a stabilizing orientation smoothing,
which was initially used in the context of coherence enhancing dif-
fusion [43]. Thereby, to the best of our knowledge, we provide a new
EED method for anisotropic image diffusion that effectively reduces
texture while maintaining shape information in images. Cf. fig. 2 for
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a visual example. We utilize EED to study and reduce the texture bias
of deep neural networks (DNNs), primarily in the context of seman-
tic segmentation.

EED is a partial differential equation (PDE) based diffusion
method that stems from classical signal theory and has originally
been used in the context of image compression for the reconstruction
of an image from only a few selected pixels. The used diffusion ker-
nel is a variation of the Laplace operator and allows color information
to diffuse along edges while preventing diffusion across them. In a
recent publication it has been shown that a related and lightly applied
form of anisotropic diffusion, used as a data augmentation technique,
can help mitigate the domain gap from real to synthetic data, i.e., the
domain gap between ImageNet to SketchImageNet [29].

In our experiments, we study the texture bias of semantic segmen-
tation networks, CNNs as well as transformers, on semantic segmen-
tation datasets. To this end, we create EED-processed duplicates of
Cityscapes [7] (showing German urban street scenes) and data ob-
tained from the CARLA driving simulator [9]. Besides an examina-
tion of texture bias, we demonstrate the usefulness of the diffused im-
ages in gaining texture robustness for both CNN and transformer ar-
chitectures. We show that training such DNNs on EED pre-processed
images results in networks that are robust w.r.t. the reintroduction of
said texture. In contrast to that, we observe that DNNs trained on
original (not diffused) images are very sensitive to the removal of
texture. Due to the lack of texture information in training images,
the networks trained on EED data are less texture biased than net-
works that have been trained on the original data. We complement
our semantic segmentation experiments with a few classification ex-
periments on a dataset derived from Cityscapes to demonstrate the
generality of EED for texture bias analysis and reduction.

Our contribution can be summarized as follows:

• For the first time, we introduce an EED-based pre-processing with
orientation smoothing for deep learning to analyze and reduce
texture bias in image classification and semantic segmentation.
A careful parameter selection provides EED duplicates of image
classification and semantic segmentation datasets with reduced
texture while preserving shape.

• Using EED, we report strong texture bias of CNNs in semantic
segmentation and image classification and, on the other hand, con-
firm a rather moderate texture bias for transformers in semantic
segmentation.

• In both cases, for image classification and semantic segmentation,
we demonstrate that EED pre-processing makes DNNs almost
ignorant w.r.t. local texture patterns, while the task performance
loss remains moderate. A detailed segment-level analysis reveals
that much of the task performance loss can be attributed to over-
diffusing in visually challenging situations.

We make our code, including an efficient GPU-capable torch im-
plementation of EED, publicly available on GitHub under https:
//github.com/eheinert/reducing-texture-bias-of-dnns-via-eed/.

2 Related Work

In this section, we first provide a brief overview over the evolution
of anisotropic and edge enhancing diffusion and in addition describe
how our contribution fits into the existing body of work regarding
DNN texture and shape biases.

Anisotropic diffusion. Anisotropic diffusion is a PDE-based,
classical signal theory image diffusion technique that has been first
introduced by Perona and Malik in 1994 [32] and has been used

for noise reduction, edge detection and non-AI image segmentation
in [33, 31]. Weickert suggested further developments in [40, 41] and
proposed the special cases of edge enhancing diffusion (EED) and
coherence enhancing diffusion [42]. EED has been shown to be ef-
fective in lossy image compression in [11]. Regarding application in
the context of AI, it has recently been shown in [29] that anisotropic
diffusion, as proposed by Perona and Malik, when used as a data aug-
mentation technique can help to mitigate the domain gap from real-
world images to drawn images in image classification using the data
sets ImageNet and SketchImageNet. In contrast to this first appear-
ance of anisotropic diffusion in AI, our work focuses on in-domain
texture robustness rather than closing domain gaps to the artificial
domain. We employ fully diffused datasets as training data instead of
a data augmentation approach and test the application on the task of
semantic segmentation of street scenes.

Biases of DNNs. First seminal work on biases of CNNs was con-
ducted as early as 2014 when Zeiler and Fergus used deconvolu-
tional layers to visualize the features learned by CNNs, which re-
vealed a mixture of texture and shape understanding [49]. This was
followed by a first quantitative analysis of texture bias in [3]. In
2018, A landmark paper by Geirhos et al. demonstrated that CNNs
trained on standard datasets like ImageNet are biased towards rec-
ognizing textures rather than shapes. They used stylized images to
show that CNNs often prioritize texture information over shape [14].
Style transfer has also been used to study robustness of both CNNs
and transformer architectures w.r.t out of distribution texture [36].
Transformer architectures show a tendency towards a stronger shape
bias than CNNs [50] and the errors of attention-based architectures
seem to be more consistent with those of humans [38, 15, 30]. A re-
cent study adressed the shape and texture biases of vision language
models and showed that prompting alone can increase their shape
bias[12].

Apart from the mentioned anisotropic diffusion augmentation,
there is a whole variety of approaches to reducing the texture bias in
CNNs that include style domain adversarial training [20] and a con-
trastive learning approach[13] where images with the same texture
but diminished semantics are used as negatives. Furthermore, several
other data augmentation techniques such as style transfer [22, 26],
edge deformation [18] and shape focused augmentation [25], have
demonstrated to reduce texture biases. Of those works, only the style
transfer augmentation [22] works with street scenes, although in the
context of 2D object detection and with a focus on domain shifts.
The texture reduction technique meanshift [8] was used in order to
show that the bias developed by CNNs is task dependent.

We are the first to use EED as a data pre-processing technique
in order to reduce texture bias in DNNs and distinguish our work
by the focus on texture robustness, the downstream task of semantic
segmentation and the application on street scene data as considered
only in [22].

3 Edge Enhancing Diffusion with Smoothed
Orientation

At the core of the data pre-processing used in our work is the PDE-
based EED method proposed by Weickert et al. [42]. The idea is
to make color values spatially diffuse parallel to edges while pre-
venting diffusion perpendicular to edges. For the sake of simplic-
ity, we review the construction of EED for gray scale images. For
a given gray scale image, we assume that a given image in matrix-
form is the discretization of a continuous function f on a rectangle
Ω := [0, n] × [0,m]. The diffusion takes place by solving the fol-
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Figure 2: Visual Comparison of an original Cityscapes image (left), EED without orientation smoothing (mid) and with orientation smoothing
(right). Orientation smoothing preserves shapes while preventing circular singularities.

lowing PDE with respect to time, using f as its initial value and zero
valued Neumann boundary conditions:

δtu := ∇T g(∇uσ∇uT
σ )∇u, (1)

u(x, 0) = f(x) .

Here uσ := Kσ ∗ u is the image smoothed with a Gaussian ker-
nel with standard deviation σ. Note that for g(∇uσ∇uT

σ ) = I this
would be the Laplace operator and the diffusion indeed isotropic. The
matrix function g is the Charbonnier diffusivity function [4]

g(s) :=
1√

1 + s
κ2

(2)

for some contrast parameter κ > 0 and ∇ consists of the partial
derivatives w.r.t. the physical variables, not the time parameter. The
diffusion tensor g(∇uσ∇uT

σ ) is a 2×2 matrix with eigenvectors par-
allel and orthogonal to the gradient ∇uσ . The corresponding eigen-
values are g(|∇uσ|2) and 1 as its argument has the eigendecomposi-
tion[ ∇uσ

||∇uσ|| ,
∇u⊥

σ

||∇uσ||
] [ ||∇uσ||2 0

0 0

] [ ∇uσ

||∇uσ|| ,
∇u⊥

σ

||∇uσ||
]T

.

(3)

Therefore, more information is diffused orthogonally to the gradient,
i.e., along edges, and only relatively little diffusion happens across
edges, depending on how small κ is chosen. Numerically, the dif-
fusion is performed via consecutive gradient descent steps on a dis-
cretized version of the energy

E(u) =
1

2

∫
Ω

∇uT g(∇uσ∇uT
σ )∇u dx dy. (4)

For the discretization we use a non-standard finite differences ap-
proach as discussed by Weickert et al. [45, p. 380-391]. An extension
for multiple channel images can be found in [44, p. 321]. In order to
avoid circular singularities in the diffused images we apply an ad-
ditional element-wise Gaussian smoothing to the 2 × 2 orientations
∇uσ∇uT

σ in the form of Kσ ∗ (∇uσ∇uT
σ ) as proposed for coher-

ence enhancing diffusion [43]. That is, we perform a gradient descent
iteration to minimize the energy

Ẽ(u) =
1

2

∫
Ω

∇uT g
(
Kσ ∗ (∇uσ∇uT

σ )
)
∇u dx dy. (5)

We provide a visual comparison of EED (4) and EED with orienta-
tion smoothing (5) in fig. 2, demonstrating how the latter contributes
to the reduction of image artifacts in terms of circular singularities.

Throughout our experiments, we use EED as a pre-processing
method to create texture reduced dulicates of images and datasets.
We only process the camera images of a given dataset while the cor-
responding labels remain the original ones. Details are provided in
section 4.1.

4 Experiments

In this section we provide numerical experiments showing the effect
of texture bias reduction by training DNNs on EED-processed data.
Firstly, we introduce the datasets we use for our experiments and
elaborate on the application of EED to generate various duplicates
with reduced texture. Thereafter, we showcase the generality of our
approach by presenting results for the task of image classification.
Subsequently, we focus on our main subject, reducing texture bias
in semantic segmentation DNNs. The corresponding experiments in-
clude comparative evaluations of networks trained on both original
and EED-processed data using the Deeplabv3+ [5] CNN and Seg-
former b1 [47] transformer architectures, an ablation study on EED
time steps t, and a segment-wise analysis to assess the performance
of a Deeplabv3+ trained on EED data and evaluated on both origi-
nal and EED datasets in greater detail. Finally, we study the adver-
sarial robustness of semantic segmentation DNNs trained on EED-
processed data and compare it with DNNs trained on original data.
Note that all networks have been trained from scratch, i.e., we com-
pletely omitted ImageNet pre-training to provide unbiased results.

4.1 Datasets

Throughout our experiments we use data from the Cityscapes dataset
[7] containing street scene images of German urban environments,
labeled with semantic segmentation masks. In addition we use 4000
images obtained from the CARLA driving simulator [9], for which
semantic segmentation masks are available as well. More precisely,
we use the 2975 finely labeled training images of Cityscapes for
training and the 500 finely labeled validation images for testing /
evaluation. The 4000 images with labels from the CARLA simula-
tor were recorded from the towns 01, 02, 03, 04, 05 and 07. Towns
02, 03, 04, 07 have been used for training and town 01 and 05 for
evaluation. This results in 3000 training and 1000 test images. In or-
der to make the results from Cityscapes and CARLA comparable,
we did not use the full number of classes available in Cityscapes and
CARLA. Instead, we used 14 common classes of the two datasets.
The remaining classes can be found in table 4.

Semantic segmentation data. In addition to the original im-
ages, we use EED to generate texture-reduced duplicates of the two
datasets. We fix the EED parameters based on extensive numerical
experiments where we optimize the visual effect of EED w.r.t. re-
moving texture while maintaining shape. We chose the contrast pa-
rameter κ = 1/10, Gaussian kernel size 9 and standard deviation
σ = 3 to create EED-processed counterparts of both Cityscapes and
CARLA. From now on we denote this parameter set by Pstrong . In
a later attempt to minimize the changes to high level shape features,
i.e., aiming at aligning object contours and label segment borders, we
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Table 1: Performance in mIoU of Deeplabv3+ networks trained and evaluated on original and EED-processed Cityscapes and
CARLA datasets. For Cityscapes + RandomEED we randomly present the network images from original and EED data during train-
ing, where each image is chosen with an 80% chance from Cityscapes and 5% from each, EED(City, A,B) with (A,B) ∈
{(Pmild , 2896), (Pmild , 8192), (Pstrong , 1024), (Pstrong , 5792)}.

trained on
evaluated on Cityscapes EED(City, Pmild , 5792) EED(City, Pstrong , 5792) CARLA EED(CARLA, Pstrong , 5792)

Cityscapes 72.59 19.54 9.55 48.89 11.08
EED(City, Pmild , 5792) 57.92 56.59 50.98 32.53 25.58
EED(City, Pstrong , 5792) 51.55 50.48 47.56 24.49 19.68
CARLA 19.45 10.56 7.17 78.01 31.58
EED(CARLA, Pstrong , 5792) 10.61 9.75 9.19 70.10 70.84

Cityscapes + RandomEED 70.15 54.45 47.22 44.45 29.66

additionally generate counterparts of Cityscapes using the contrast
parameter κ = 1/15, Gaussian kernel size 5 and standard devia-
tion

√
5. We denote this parameter set by Pmild . The EED-processed

datasets are from now on referred to as EED(dataset, P, t) with t
being the number of time steps and P ∈ {Pmild , Pstrong}. Exemplary
images are given in fig. 1 and fig. 3.

Image classification data. For our proof of concept study in
image classification, we also derive classification datasets from
Cityscapes and EED(City, Pmild , 5792) by cropping out bounding
boxes around segments and using the eleven classes that are suitable
for image classification (bicycle, bus, fence, traffic light, truck, wall,
building, car, person, traffic sign, vegetation).

4.2 Image Classification Experiments

In our image classification experiments, we train ResNet34 CNNs
[17, 21] on the classification datasets derived from Cityscapes as
well as a diffused counterpart EED(City, Pmild , 5792). In table 2,
we perform a comparison by training CNNs on Cityscapes as well
as on (City, Pmild , 5792) and evaluating the performance of each
of the CNNs on both datasets. The classification performance of the
CNNs is reported in terms of classification accuracy and balanced
accuracy. On the diagonal of the table, we report the test perfor-
mance of each CNN when trained with a given dataset (Cityscapes
and (City, Pmild , 5792)) and evaluated on a corresponding test set
of the same kind. Each number is a mean result over three net-
works trained with differently initialized weights. A moderate per-
formance decrease can be observed when comparing the top left with
the bottom right entry of table 2, i.e., when comparing CNNs trained
and evaluated on Cityscapes with CNNs trained and evaluated on
(City, Pmild , 5792). This result confirms the texture-dependence of
CNNs as reported in the literature, but also shows that quite decent
performance can be achieved when training on texture reduced data.
The table’s off-diagonal presents results on the texture-dependence
of CNNs. Clearly, networks trained on original Cityscapes have
learned to focus heavily on the texture and use it extensively for
decision-making. This is shown by the pronounced drop of around
30 percent points (pp.) when evaluating the network trained with
Cityscapes on texture-reduced data from (City, Pmild , 5792). On
the contrary, CNNs trained on (City, Pmild , 5792) have learned to
mostly ignore texture. The re-introduction of texture leads to only a
very mild confusion of the CNNs, reflected by a small performance
drop of roughly 4 pp.
Table 2: A study of texture-dependence, based on original and dif-
fused image classification datasets, presented in terms of classifica-
tion accuracy.

Training
Evaluation Accuracy (Balanced Accuracy)

Cityscapes EED(City, Pmild , 5792)
Cityscapes 91.25 (84.96) 56.52 (50.95)
EED(City, Pmild , 5792) 83.50 (71.62) 81.60 (71.38)

4.3 Semantic Segmentation Experiments

The focus of our numerical experiments is on semantic segmen-
tation. For the remainder of this section, we conduct an in-depth
study on texture-dependence and texture robustness of ordinarily
trained DNNs as well as DNNs trained with EED-processed data.
This evaluation contains results for Cityscapes and CARLA as
well as for CNNs and Transformers. For our semantic segmenta-
tion experiments, we use the MMSegmentation [6] framework to
train Deeplabv3+ [5] CNNs with no pre-training on Cityscapes,
EED(City, Pstrong , 5792), EED(City, Pmild , 5792), CARLA and
EED(CARLA, Pmild , 5792). For each experiment we train three
CNNs and report the average result. We refrain from reporting stan-
dard errors as they were negligibly small.

Comparison of texture-dependence of CNNs. We present results
of experiments analogous to section 4.2. However, this time we do
not report accuracy but rather mIoU. In addition, we present results
for Cityscapes and CARLA as well as two different EED configura-
tions, EED(City, Pstrong , 5792) and EED(City, Pmild , 5792), for
Cityscapes.

The results are summarized in table 1. Qualitatively, we ob-
serve similar results compared to the classification experiments,
but the effects are much more pronounced. CNNs that have been
trained on original data achieve the strongest results in their do-
main (Cityscapes/CARLA). However, when evaluating those CNNs
on EED data, the performance drop is extreme. E.g. the CNNs trained
on Cityscapes obtain 72.59% mIoU and this number drops to 9.55%
when evaluating those CNNs on EED(City, Pstrong , 5792). On the
other hand, CNNs trained on the EED data do not exhibit any perfor-
mance drop when evaluated on original data. These CNNs success-
fully learned to ignore texture. A visual study is provided in fig. 3.

It might be an obvious question whether networks trained on EED
data also show stronger domain generalization. The conjecture might
be that texture in Cityscapes and CARLA is quite different and might
mislead CNNs. However it turns out that it is the other way round.
For a given CNN, texture information from Cityscapes seems to be
valuable in order to function on CARLA and vice versa. Taking a
closer look at data from CARLA, it stands out that the object shapes
in CARLA are quite angular compared to Cityscapes. Hence, there
is not only a domain shift in texture but also a domain shift in shape,
which hinders domain generalization by texture ignorance.

The comparison of the two different EED configurations on
Cityscapes in table 1 reveals that the “milder” EED configuration
EED(City, Pmild , 5792) yields better results on Cityscapes and
achieves texture ignorance just like the stronger version. The configu-
ration EED(City, Pmild , 5792) yields similar diffusion compared to
the stronger configuration within objects, but it shows stronger shape
preservation. This improved performance carries over to Cityscapes
which indicates that stronger shape preservation is helpful for the
learning process as the segmentation masks fit the object shapes. We
inspect the importance of the shape fit and visibility of object borders
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(a) Cityscapes (original) image (b) EED(City, Pstrong , 5792) image

(c) Trained and inferred on Cityscapes (d) Trained on Cityscapes, inferred on
EED(City, Pstrong , 5792)

(e) Trained on EED(City, Pstrong , 5792),
inferred on Cityscapes

(f) Trained and inferred on
EED(City, Pstrong , 5792)y p

(g) Cityscapes ground truth mask

( y, g , )

(h) Trained on Pstrong , 5792), difference of
inferences on Cityscapes and Pstrong , 5792);
black pixel means different prediction, white

pixel means same prediction
Figure 3: Visual comparison of DeepLabv3+ predictions for different combinations of training data and inferred data.

more closely in the upcoming segment-wise analysis.
For Cityscapes + RandomEED we randomly present the network

images from original and EED data during training, where each im-
age is chosen with an 80% chance from Cityscapes and 5% from a va-
riety of EED configurations, i.e., EED(City, (A,B)) with (A,B) ∈
{(Pmild , 2896), (Pmild , 8192), (Pstrong , 1024), (Pstrong , 5792)}.
This choice of parameters yields an mIoU value on Cityscapes close
to the CNN trained on Cityscapes data while also achieving mIoU
values on the EED datasets close to the mIoU of the CNNs trained
on them, thus being able to operate also when texture is missing.

Ablation of diffusion steps. In fig. 4 we provide an ablation study
on the effect of diffusion strength of the training data on the CNN
performance on differently diffused test sets. We vary the diffusion
strength by considering CNNs trained on EED(City, Pmild , t) for
different values of t. Each of these CNNs is evaluated on four dif-
ferent datasets, i.e., on a test set from the original Cityscapes as
well as from EED(City, Pmild , k) for k = 5792, k = 8192 and
k = t (equal test diffusion k and training diffusion t). The abla-
tion study reveals that when training on EED(City, Pmild , t), tex-
ture ignorance is achieved for data EED(City, Pmild , k) with k ≤ t.
For stronger diffusion k > t, the performance still degrades. The
latter effect becomes stronger as the difference between k and t in-
creases. The CNNs achieve abstraction w.r.t. richer but not poorer
texture. Notably, e.g., a CNN trained on EED(City, Pmild , 1024) is
quite robust w.r.t. stronger diffusion from EED(City, Pmild , 5792)
while still maintaining most of the mIoU performance on original
Cityscapes data.

Comparison of texture-dependence for transformers. We
now repeat parts of the CNN experiments in table 3 for the

Figure 4: An Ablation study on the effect of the diffusion strength of
the training data on the performance on differently diffused test sets.
For each value t on the x-axis, a CNN is trained with configuration
EED(City, Pmild , t). Each CNN is evaluated on four datasets.

Segformer b1 transformer architecture [47], training three net-
works from scratch on Cityscapes, EED(City, Pmild , 5792) and
EED(City, Pstrong , 5792), respectively. Although there is a notice-
able decrease in overall performance–which we attribute to the lim-
ited dataset size of 2975 images being insufficient for transform-
ers to achieve their full potential–we observe very similar effects
as in our experiments with the DeepLabV3+ architecture. However,
in comparison to the CNN case, the transformer model trained on
Cityscapes exhibits a far smaller performance loss when evaluated
on EED data. Note that this is another confirmation of the texture ro-
bustness of transformers that is reported in the literature [50]. These
results also suggest that one can use EED for broader texture bias
evaluation.
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Table 3: A study of texture-dependence for Segformer b1 [47] transformer architecture, 3 runs each, on EED(City, Pmild , 5792) and
EED(City, Pstrong , 5792).

Trained on
Evaluated on Cityscapes EED(City, Pmild , 5792) EED(City, Pstrong , 5792)

Cityscapes 63.52 39.27 26.51
EED(City, Pmild , 5792) 52.76 52.90 50.19
EED(City, Pstrong , 5792) 47.81 48.96 47.36

Figure 5: The segmentation performance of fEED(EED) in com-
parison to fCity(City) as a function of the visibility of segment
boundaries. The smaller ‖∇xBi(EED)‖2, the less visible the seg-
ment boundary.

Figure 6: The segmentation performance of fEED(EED) in com-
parison to fEED(City) as a function of the visibility of segment
boundaries. The smaller ‖∇xBi(EED)‖2, the less visible the seg-
ment boundary.

Segment-wise analysis. In this analysis and the subsequent one,
we study two effects in more detail:

E1) The performance loss when training and evaluating on Cityscapes
vs. when training and evaluation on EED data.

E2) The almost equal performance when training on EED data and
evaluating on both Cityscapes and EED data.

Utilizing the Metaseg analysis tool [35], we conduct an analysis
looking at the prediction accuracy on each segment and thereafter
we consider class-wise (global) IoU values over the whole dataset
(of which the class average gives the regular mIoU). In the segment-
wise and the class-wise analysis we use the shorthand EED for
EED(City, Pstrong , 5792).

Every image contains a number of ground truth segments Si,
i = 1, . . . ,m. Let Bi denote the boundary pixels of the ith segment.
One could image that part of the performance loss is due to vanish-
ing object boundaries caused by over-diffusion. To study this effect,
we compute gradients in boundary pixels of Bi w.r.t. the image do-
main x, and average their euclidean norms. Let Bi(EED) denote a
ground truth segment’s boundary pixels of an EED-processed image
and Bi(City) has the obvious analogous meaning w.r.t. Cityscapes.
Then the desired quantity is given by ‖∇xBi(EED)‖2. To mea-
sure the segment-wise performance of a given CNN fEED trained
on EED-processed data (analogously we can consider fCity), we
use a segment-wise IoU, termed sIoU, that computes the segment-
wise IoU of a ground truth segment Si and a network’s predic-
tion fA, A ∈ {City,EED}. The performance loss/gain of fEED

compared to fCity is then quantified by sIoU(fCity(City), Si) −
sIoU(fEED(EED), Si), where fA(B) denotes f trained on A and
inferred on B, with A,B ∈ {City,EED}. To further under-
stand effect E1, we study the connection of the latter quantity to
‖∇xBi(EED)‖2, i.e., how much does the loss of segment bound-

ary image information correlate with change in performance, in
fig. 5. Visually, the accuracy in terms of sIoU of fEED(EED) and
fCity(City) is more similar when the boundary Bi is more pro-
nounced, i.e., when ‖∇xBi(EED)‖2 is higher.

Analogously, we can study part of the effect E2 by considering
the correlation of sIoU(fEED(City), Si) − sIoU(fEED(EED), Si)
with ‖∇xBi(EED)‖2 to see how similar the predictions of fEED

on both data sources City and EED are, cf. fig. 6. Here, the rather
centered fluctuations around zero on the y-axis are in agreement with
the similar performance of fEED(City) and fEED(EED). However,
it can be seen that a lack of boundary visibility, i.e., low values of
‖∇xBi(EED)‖2 result in higher variability of the predictions of
fEED.

Class-wise analysis. We study the effects E1 and E2 defined in
the segment-wise analysis by considering class-wise IoU values to
investigate whether certain classes lose performance due to EED-
processed training data, cf. table 4. Comparing fEED(EED) and
fCity(City), the classes road and sky with large segments exhibit the
smallest performance loss. On the other hand, classes with smaller
segments like traffic light and traffic sign experience a large perfor-
mance drop due to EED-processing. Also the IoU on class person re-
duces stronger than for the class car. Thus, these results are in accor-
dance to our segment-wise analysis. When comparing fEED(EED)
and fEED(City), one can observe that in particular the classes side-
walk and pole show the strongest difference in performance and can
be perceived better when presenting original data to fEED. When
looking into diffused images, we indeed observed that poles and side-
walk borders are often difficult to perceive.

We conclude that the clear visibility of object borders is of im-
portance for CNNs, in particular when texture is missing, and that
EED, as to be expected, makes smaller objects difficult to perceive
for CNNs.

E. Heinert et al. / Reducing Texture Bias of Deep Neural Networks via Edge Enhancing Diffusion614



Table 4: Class-wise comparison of IoU performances of different combinations of fA(B), A,B ∈ {City,EED}.

IoU (class)
Evaluation

fCity(City) fEED(EED) fEED(City)
fCity(City)
−fEED(EED)

fEED(City)
−fEED(EED)

road 97.42 90.10 92.72 7.32 2.62
sidewalk 81.88 50.32 60.65 31.56 10.33
building 90.72 76.20 80.38 14.52 4.18
wall 51.54 8.85 10.74 42.69 1.89
pole 62.83 34.53 40.39 28.30 5.86
traffic light 62.61 23.95 22.98 38.66 -0.97
traffic sign 74.25 38.31 41.96 35.94 3.65
vegetation 91.46 80.70 81.67 10.76 0.97
terrain 50.25 31.30 26.97 18.95 -4.33
sky 94.06 89.18 87.93 4.88 -1.25
person 82.16 55.07 56.15 27.09 1.08
car 93.56 78.75 81.79 14.81 3.04
truck 38.78 8.16 11.34 30.62 3.18
bus 64.91 38.27 40.26 26.64 1.99
Mean (mIoU) 74.03 50.26 52.57 23.77 2.30

Robustness against adversarial attacks. An obvious question
might be, whether EED-based pre-processing also increases adver-
sarial robustness, i.e., robustness against adversarial attacks. Adver-
sarial attacks add small perturbations to the input image leading the
neural network to erroneous predictions during testing [2, 28]. These
perturbations are not perceptible to humans, making the robustness
against these examples highly relevant. To this end, detection meth-
ods have been developed which distinguish between clean and per-
turbed inputs [27, 46] as well as defense methods which increase
robustness, making it more difficult to generate adversarial exam-
ples [1, 48]. In the following, we apply adversarial attacks to DNNs
trained on original data and to DNNs trained on EED-processed data
and compare the robustness of these networks. The performance of
adversarial attackers is evaluated by the attack pixel success rate [34]
which is equivalent to 1−ACC (accuracy). Since the mIoU values ob-
tained for Cityscapes differ for standard and diffusion-based training,
we introduce a relative accuracy metric to ensure a fair comparison
of the methods. This metric is defined by

ACCrel = 1− ACCCS − ACCAA

ACCCS
(6)

where ACCCS describes the accuracy of the network evaluated on
Cityscapes and ACCAA after performing the adversarial attack. As
attack we consider the often used single-step fast gradient sign
method (FGSM, [16]) in the untargeted as well as target version
where the least likely class predicted by the model is chosen as tar-
get class following the convention. We denote the attack by FGSM#

ε

where the magnitude of perturbation is given by ε = {2, 4, 8, 16}
and the superscript (# ∈ {_, ll}) discriminates between untargeted
and targeted (ll refers to "least likely").

The numerical results for CNNs with different combinations of
Cityscapes and (City, Pmild , 5792) datasets for training and attack-
ing, evaluated with respect to the ACCrel evaluation metric, are given
in fig. 7. As per usual, the general tendency is that the ACCrel val-
ues are higher for attacks with less magnitude of perturbation. In five
cases, i.e., the untargeted case with ε = 16 and all targeted cases, the
model trained on EED-processed data outperforms the one trained
on Cityscapes when providing original Cityscapes images with ad-
versarial attacks to the models. Thus, generally improved adversarial
robustness cannot be claimed. However, EED pre-processing can be
used to defend against adversarial attacks. It can be expected that
EED filters adversarial attacks. We consider the case where an at-
tacker has access to the images after EED-processing, before they go
into the CNN. When attacking EED-processed images, we still ob-
tain clearly improved results compared to CNNs trained and attacked
w.r.t. original data (fig. 7, light blue), demonstrating the potential of
EED for adversarial defense.

Figure 7: ACCrel results for the FGSM attacks for CNNs
trained and attacked on original data (orange), trained on
EED(City, Pmild , 5792) and attacked on original data (blue), as well
as trained and attacked on EED(City, Pmild , 5792) (light blue).

5 Conclusion

In this work we utilize EED as a pre-processing to study the tex-
ture bias of semantic segmentation models, including CNNs and vi-
sion transformers, as well as of classification models. By means of
EED-processed duplicates of Cityscapes and a dataset extracted from
the CARLA driving simulation, we were able to show the signifi-
cant texture-dependence of these models. All our models have been
trained from scratch. By training DNNs on EED-processed images,
we achieve ignorance of those DNNs w.r.t. local textural patterns. A
detailed analysis on segment level reveals that the performance loss
on EED-processed images can be partially attributed to over-diffused
cases where shape information is lost. Online EED pre-processing
can help to reduce the effect of adversarial attacks. Although one
might expect better domain generalization when domains mostly dif-
fer w.r.t. texture, our analysis on Cityscapes and CARLA data reveals
that this setup also contains a significant non-texture-related domain
gap. We expect that EED can serve more generally as part of an eval-
uation protocoll for texture bias reduction methods, where different
networks are compared on EED-processed and original datasets to
evaluate the degree of texture bias of the networks.
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