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Abstract. Despite significant progress in instance segmenta-
tion, recent solutions still fall short of boundary accuracy espe-
cially for overlapping instances of the same category. In this pa-
per, we propose a novel boundary-enhanced instance segmenta-
tion (BEIS) framework that explicitly models the feature relation-
ships across object boundaries for high-quality instance segmenta-
tion. Specifically, BEIS generates boundary-enhanced features using
both intra-mask and cross-image boundary discrimination learning.
The intra-mask boundary discrimination learning (IBDL) employs
pixel-level discrimination learning to disentangle pixel representa-
tions along boundaries. The cross-image boundary discrimination
learning (CBDL) learns a boundary-aware feature bank from train-
ing data to further boost the performance. Thus, CBDL can take ad-
vantage of boundary relations across images to enhance the quality
of segmented boundaries. To focus on hard-to-segment boundaries,
we propose an adaptive sampling strategy to automatically construct
discriminative pairs in regions with high possibilities of confusion.
Extensive experiments show BEIS outperforms on various datasets.

1 Introduction

Instance segmentation is a pivotal and intricate task in the field
of computer vision, finding applications in diverse domains like
autonomous driving, scene comprehension, and image manipula-
tion. Prominent approaches for instance segmentation, like Mask R-
CNN [9], typically follow a two-stage framework. Initially, a detec-
tor generates precise bounding boxes, followed by a parallel seg-
mentation branch that predicts binary masks for instances inside
within these boxes. Despite the commendable performance achieved
by Mask R-CNN and its derivatives [5, 15, 34] in large-scale in-
stance segmentation tasks, they still encounter challenges in produc-
ing highly accurate boundaries, an essential aspect for top-quality
instance segmentation. Our observation shows that this limitation is
mainly due to confusing boundary features. Current methods struggle
with precise segmentation when foreground and background share
similar visual or semantic traits, as shown in Figure 2.

This work introduces a novel paradigm for instance segmentation
called Boundary-Enhanced Instance Segmentation (BEIS), aimed at
enhancing boundary discrimination within fully supervised settings.
Illustrated in Figure 1, the BEIS approach leverages boundary in-
formation from binary mask features. For each pixel within a mask,
positive and negative samples are constructed from neighboring re-
gions within the same mask. Similar to Sup-CL [14], a multi-positive
InfoNCE [3] loss is applied, pulling pixel features with matching
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Figure 1. BEIS utilizes boundary discrimination to enhance the
distinctiveness of boundary regions, resulting in accurate boundary

segmentation.

boundary labels while pushing features with distinct semantics. This
process, referred to as intra-mask boundary discrimination learn-
ing (IBDL), operates exclusively within a mask. However, for intri-
cate boundary relationships, solely exploring intra-mask connections
is insufficient. To address this, we extend the concept to cross-image
boundary discrimination learning (CBDL), introducing foreground
and background boundary feature banks. Contrastive keys from these
banks facilitate inter-image boundary relation exploration. An adap-
tive query and key selection method is proposed to prioritize chal-
lenging boundary pairs with similar semantic and spatial attributes.
Both IBDL and CBDL effectively segregate boundary features from
confusing neighbors, adeptly managing mask conflicts in overlap-
ping instances without considerable computational cost.

While BEIS is simple yet impactful, its potential is curtailed by
coarse mask features lacking intricate boundary details. Thus, to fully
harness BEIS capabilities, we propose a refinement framework in-
corporating multi-stage boundary discrimination. Benefitting from
its streamlined architecture, BEIS demands minimal computation re-
sources during inference. Through extensive experiments on diverse
datasets including MS-COCO [21], CityScapes [6], and LVIS [8],
our approach consistently achieves state-of-the-art performance.

In summary, the key contributions of this paper are:

• Introduction of the BEIS, encompassing intra-mask boundary dis-
crimination learning (IBDL) and cross-image boundary discrim-
ination learning (CBDL), effectively learns boundary-aware dis-
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Figure 2. Instance Segmentation on Cityscapes val-set by PointRend [15], RefineMask [34], PatchDCT [30], and BEIS. BEIS produces significantly
accurate results at unrecognizable boundary regions.

criminative features for high-quality instance segmentation.
• Introduction of the adaptive query and key selection strategies that

emphasize confusing boundary regions.
• Incorporation of a multi-scale implementation within BEIS, en-

abling robust boundary segmentation across different scales for
improved accuracy.

• Extensive experimentation across multiple datasets, showcasing
the BEIS’s groundbreaking performance in instance segmenta-
tion. Notably, BEIS outperforms Mask R-CNN on the COCO and
Cityscapes datasets, with AP improvements of 3.3 and 5.4, along
with boundary AP enhancements of 5.8 and 9.8, respectively.

2 Related Work

2.1 Instance Segmentation

Two-stage methods. Two-stage instance segmentation methods
achieve state-of-the-art performance by detecting bounding boxes
and then performing segmentation in each region of interest (RoI).
FCIS [19] introduces the position-sensitive score maps within an in-
stance proposal for mask segmentation. Mask R-CNN [9] incorpo-
rates Faster R-CNN [24] with an additional FCN branch to perform
segmentation within the detected box. To strengthen feature repre-
sentation, PANet [22] further integrates multi-level features of FPN.
With the guidance of spatial contexts, HTC [2] proposes an effec-
tive cascade framework with multi-level box and mask heads. Dyna-
Mask [17] proposes mask selection module with adaptive resolution.
One-stage methods. One-stage instance segmentation methods di-
rectly regress segmentation masks without the need for bounding
box detection. PolarMask [32] builds a polar coordinate and per-
forms instance segmentation by regressing dense distance between
contour points and the polar centre. YOLACT [1] proposes to model
instance masks with a weighted combination of different prototypes.
SOLO [27] directly generates instance masks with the guidance of
“instance categories”. E2EC [35] proposes a dynamic matching strat-
egy for accurate contour generation. SharpContour [36] applies a
learnable contour initialization architecture to improve the quality
of the boundary. Compared with two-stage solutions, these methods
have simpler mechanisms but less accurate results.
Boundary-aware segmentation. The methods mentioned above pri-
marily focus on improving network architectures for better recog-
nition and segmentation accuracy. In contrast, recent works in in-
stance segmentation aim to improve boundary accuracy, assuming
that the backbone networks for feature extraction are already good
enough. PolyTransform [20] generates segmentation results in poly-
gons and then refines them for accurate boundaries. SegFix [33] in-
troduces the concept of "interior pixels" to fix inaccurate boundary
segmentation results. PointRend [15] uses point-based predictions it-
eratively in blurred areas for high-quality segmentation. BMask R-
CNN [5] explicitly incorporates a boundary segmentation loss to im-
prove boundary segmentation. RefineMask [34] optimizes instance

boundaries by focusing on boundary regions in later stages of re-
finement. Transfiner [13] introduces a transformer-based refinement
module to enhance the segmentation of boundary regions.

While boundary-aware segmentation methods have made notable
advancements, they primarily focus on inter-mask similarity within
instances. In contrast, BEIS stands out by exploring both intra-mask
and cross-image dissimilarity. This strategy guides the network to
generate distinct features across instance boundaries. Additionally,
BEIS seamlessly integrates into existing two-stage solutions with
minimal extra computational overhead.

2.2 Contrastive Learning

Contrastive learninghas recently made significant advancements in
classification and object detection. SimCLR [3] introduces unsuper-
vised contrastive learning to obtain high-quality representations. In
SimCLR, positive pairs are formed from features of different views
of the same image, and negative pairs are generated from features of
different images. MoCo [10] introduces a feature bank with a mo-
mentum encoder to reduce the memory cost and increase the number
of negative keys. BYOL [7] presents an asymmetric framework con-
sisting of target and online networks to remove the negative keys.

In the application of segmentation, SIOD [16] proposes a pixel-
level group contrastive learning to mine latent instances from fea-
ture representation space. [25] utilizes contrastive learning to per-
form object discovery for object detection. Moreover, targeting a
specific segmentation problem, DenseCL [28] performs dense con-
trastive learning at the level of pixels. CBL [26] performs category-
based decision boundary separation in local neighborhoods. Besides,
Some previous methods methods [14, 18, 23] propose to perform su-
pervised contrastive learning to utilize class labels to prevent image
features with the same category from wrongly detaching. Recently,
ContrastMask [29] uses pixel-level contrastive learning to mine in-
stances from unseen classes.

In contrast, our BEIS framework focuses on holistic contrastive
perspective to enhance boundary discrimination for instance segmen-
tation. We introduce adaptive pair construction strategies to tackle
complex boundary scenarios while minimizing computational over-
head. This makes BEIS unique compared to other methods.

3 Boundary-Enhanced Instance Segmentation

3.1 Overview

The framework proposed for Boundary-Enhanced Instance Segmen-
tation (BEIS) is illustrated in Figure 3. It builds upon the estab-
lished two-stage Mask R-CNN architecture, introducing an addi-
tional boundary-enhanced feature incorporating two efficient bound-
ary discrimination losses. Given an RoI feature map and its cor-
responding semantic feature maps from the FPN, a feature fusion
module is employed. This module, comprising 3 convolution layers,
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Figure 3. Overview of the Boundary-Enhanced Instance Segmentation (BEIS) framework. Only components in the green region are used during testing.
IBDL and CBDL refer to intra-mask and cross-image boundary discrimination learning respectively. AQS and AKS indicate adaptive query and key feature

selection. ISL represents the standard instance segmentation loss. The boundary-aware feature bank stores aggregated features from XBEF and supplies key
features for CBDL. Backbone and Box Head details are omitted for conciseness.

Object Region Boundary Region
WM CI WM CI

baseline 0.346 0.129 0.720 0.375
+ CBDL 0.339 0.127 0.607 0.268
+ IBDL 0.325 0.120 0.541 0.297

Table 1. Comparison of mean pixel-level cosine similarity (CS)
within-mask (WM) and cross-image (CI) of segmentation features on COCO
val set. Both CBDL and IBDL substantially alleviate feature confusion

across boundaries.

generates an enhanced feature map labeled as Xmid. Subsequently,
the boundary-enhanced feature XBEF is extracted from Xmid us-
ing a projection head employing two 3× 3 convolutions. Supervised
by the Intra-mask Boundary Discrimination Loss (IBDL) and the
Cross-image Boundary Discrimination Loss (CBDL), XBEF mod-
els boundary distinguishability. Finally, XBEF is concatenated with
Xmid, yielding segmentation features Xins for generating final seg-
mentation masks.

Next, we will define the Boundary Region, introduce the pro-
posed Boundary-Enhanced Training involving IBDL and CBDL, and
present BEIS along with a multi-stage refinement pipeline.

3.2 Definition of the Boundary Region

Consider Mk ∈ RHk×Wk , representing the k-th instance mask, with
Hk and Wk denoting its height and width. The boundary region of
Mk is the set of pixels adjacent to contour pixels. We define a bound-
ary pixel set Bk for this region. The formulation is as follows:

Bk = {xi|xi ∈ Mk, di ≤ t}, (1)

where di signifies the Euclidean distance from pixel xi to the nearest
mask contour pixel, and t = 3 is a predefined threshold. To optimize
efficiency, we use a convolution operator for approximate calcula-
tions. Bk consists of two subsets, b1 and b0, which each specifically
encompass the foreground and background pixels, correspondingly.

3.3 Boundary-Enhanced Training

Boundary segmentation has been an enduring challenge in the in-
stance segmentation, as boundary regions often confuse networks
due to semantic similarities. Prior research has mainly focused
on re-weighting boundary segmentation [5] and intricate post-
processing [15, 13, 34] to refine boundaries. Yet, the challenge of dis-
tinguishing boundary features has been neglected. As demonstrated
in Table 1, features across boundaries, within the same mask or dif-
ferent images, display notably higher similarity compared to non-
boundary features. This high similarity leads to inaccurate boundary
segmentation by deep networks. Consequently, separating boundary
features is crucial for enhancing boundary segmentation. In this sec-
tion, we present our approach of intra-mask and cross-image bound-
ary discrimination learning on XBEF , using fully-supervised pixel
losses to resolve boundary mask conflicts.

3.3.1 Intra-mask BDL

We introduce the intra-mask boundary discrimination loss Libdl to
cultivate discriminative boundary-aware features within the bound-
ary region Bk, leveraging the boundary-enhanced features XBEF as
follows:

Libdl =
∑

bi⊂Bk

∑

bj⊂Bk,i �=j

Li,j
ibdl, (2)

Li,j
ibdl =

1

nbi

∑

xl∈bi

− log

∑
xm∈bj

e(−D(fl,fm))

∑
xn∈(bi∪bj)

e(−D(fl,fn))
, (3)

where fl represents the mask feature of pixel xl, and nbi is the count
of boundary pixels in bi. D(., .) denotes the L2 distance. Discrimina-
tive targets effectively segregate mask features in different instances’
boundary regions, enhancing segmentation accuracy. For discrimi-
nating bi with bj , we select 16 query features from bi, and for each
query, 4 positive and 32 negative keys are chosen from (bi ∪ bj).
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3.3.2 Cross-image BDL

Intra-mask boundary discrimination learning improves boundary
segmentation by exploring boundary relationships within masks.
However, real-world scenarios have a more complex distribution of
boundary scenes than the training data. Instances can encounter di-
verse backgrounds, necessitating a broader focus. Thus, solely rely-
ing on intra-mask relations may not capture this diversity sufficiently.

Figure 3 illustrates the proposed boundary-aware feature bank T ,
enhancing cross-image boundary discrimination learning. This fea-
ture bank comprises two sub-banks, T0 and T1, designated for stor-
ing background and foreground boundary features, respectively. To
diversify the stored embedding, we introduce aggregated representa-
tions of either the foreground or background boundary from a single
mask into the feature bank. The aggregated boundary feature Rc

k is

defined as Rc
k =

∑

xi∈Bk

I(li=c)fi

∑

xi∈Bk

I(li=c)
, with I(.) indicating foreground

(c = 1) or background (c = 0). The bank solely storing aggregated
features incurs negligible memory usage. The cross-image discrimi-
nation loss is then directly formulated as:

Lcbdl =
−1

|Bk|
∑

xi∈Bk

log

∑
Rj∈Tl,l �=li

e(−D(fi,Rj))

∑
Rs∈(T0∪T1)

e(−D(fi,Rs))
. (4)

CBDL efficiently uses negative samples from the feature bank to en-
hance holistic learning and complement IBDL. In implementation,
16 query features are sampled per mask, with 16 positive keys and
128 negative keys selected from the feature bank for each query. We
implement the boundary feature bank using a first-in, first-out queue
with a length of 65,536. The memory cost is calculated as 2 (two
banks) × 65536 × 256 (feature dims) × 4 (number of bytes occu-
pied by float32) ÷ 1048576 (number of bytes in one MB) = 128 MB.

3.3.3 Adaptive Query and Key Feature Selection

Employing pixel-level discrimination learning across numerous
boundary regions within multiple instance masks entails significant
computational demands and substantial memory resources. To ad-
dress this, our study introduces an adaptive query and key feature
selection algorithm, focusing on the most discriminative pairs.
Adaptive Query Selection. Segmentation networks adeptly distin-
guish common boundaries prevalent in training data. Hence, we
choose to sample challenging queries with low confidences below
a defined threshold δ = 0.97:

Bhard
fore = {xi|xi ∈ Bk, yi < δ, li = 1}, (5)

Bhard
back = {xi|xi ∈ Bk, yi > 1− δ, li = 0}, (6)

where yi denotes the predicted confidence of xi post Sigmoid nor-
malization. Adaptive query selection focuses on boundary pixels,
categorized as background (Bhard

back ) or foreground (Bhard
fore ).

Adaptive Key Selection. In instance segmentation, networks effec-
tively distinguish between different instances (e.g., person and bird).
However, challenges arise when delineating boundaries between in-
stances with close semantic relationships (e.g., two people). Ran-
domly sampling negative keys for each query, without considering
semantic confusion, proves suboptimal. To address this, we propose
a non-uniform negative key selection strategy. We establish a cate-
gory confusion matrix P to define probabilities for selecting bound-
ary pixels of different categories as negative keys. P (u, v) denotes

the probability of selecting boundary pixels of instances with cate-
gory v as negative keys, when the query instance belongs to category
u. We initialize P with 0.1 and update it during training based on
feature confusion:

p(u, v) = (Ru
k ·Rv

k), ∀v ∈ CMk , (7)

P (u, v) = λ ∗ P (u, v) + (1− λ) ∗ p(u, v). (8)

Ru
k and Rv

k are aggregated boundary features of the query instance
with category u in mask Mk (with category set CMk ) and other in-
stances with category v, respectively. (·) calculates the normalized
cosine similarity. An exponential moving average (EMA) strategy
with coefficient λ = 0.99 is proposed to smooth P (u, v).

Negative keys for IBDL and CBDL are dynamically chosen based
on P . In IBDL, for query of class u, the probability of selecting a
negative key with class v in Mk is exp(P (u,v))∑

w∈CMk
exp(P (u,w))

. In CBDL,

for query of class u, the probability of selecting a negative key with
class v in the boundary feature bank is exp(P (u,v))∑

w∈C exp(P (u,w))
, where C

is the dataset’s category set. Adaptive negative key selection priori-
tizes confusing pairs, aiding the segmentation network in improving
boundary discrimination.

3.4 Multi-stage Refinement and Loss Function

While the proposed BEIS framework significantly enhances bound-
ary segmentation, the ultimate performance is constrained by the
28 × 28 mask resolution. BEIS effectively enhances boundary dis-
crimination and harmoniously integrates with various mask segmen-
tation resolutions, like 112×112. To unleash BEIS’s potential, we in-
troduce a multi-stage refinement instance segmentation framework.

Initially, a 14 × 14 coarse instance mask is generated using stan-
dard Mask R-CNN and a fusion module consisting of three 3 × 3
convolutional layers. Subsequently, a multi-stage refinement process
iteratively elevates mask quality. Each stage takes three inputs: in-
stance features from the prior stage, instance mask, and boundary-
enhanced features XBEF . These inputs are combined using three
3 × 3 convolutional layers, and the resulting features are upscaled.
The mask head reiterates the refinement process, culminating in a
high-quality instance mask up to 112× 112. Within each refinement
module, an independent projection head produces XBEF based on
instance features Xins, followed by BEIS. Loss functions for initial
mask prediction and subsequent refinement stages are:

LBEIS = Lbox +
4∑

i=1

(Lmask,i + (Libdl,i + Lcbdl,i)). (9)

Lbox is box detection loss. Lmask,i, Libdl,i, and Lcbdl,i correspond
to mask segmentation, intra-mask and cross-image discrimination
learning losses at the i-th stage, respectively. Formulations for Lbox

and Lmask are defined in Mask R-CNN. The BEIS exhibits robust-
ness when it comes to loss weight, and all loss weights are uniformly
assigned a value of 1.0.

4 Experiments

4.1 Datasets and Implementation Details

Our experimentation covers COCO, LVIS, and Cityscapes, widely-
used benchmarks for instance segmentation evaluation. COCO holds
118k training, 5k validation, and 20k test images in the train2017
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subset. LVIS comprises 2 million annotations across 1, 203 cate-
gories, with 100k training, 20k validation, and 20k test images.
Cityscapes, tailored for autonomous driving, features 2, 975 training,
500 validation, and 1, 525 high-resolution (2048 × 1024) test im-
ages. BEIS is also evaluated on the COCO-OCC val-set [12], hous-
ing 1, 005 images with densely-overlapping objects.

The implementation of BEIS is based on Mask R-CNN. Train-
ing schedules for the backbone, box head, and mask head followed
Detectron2’s [31] standards. We evaluated BEIS’s components on
COCO val2017 through comprehensive ablation studies. In ablation
studies, unless otherwise specified, BEIS was trained with R50-FPN
using a 1× learning schedule.

4.2 Ablation Experiments

Different numbers of negative keys. Analyzing the influence of
negative keys on IBDL and CBDL performance (Table 2 and 3),
models with more negative keys exhibit improved results for both.
However, excessive negative keys provide marginal gains while in-
creasing memory demands during training. Thus, a balanced number
of negative keys is chosen for IBDL and CBDL.

Boundary-Enhanced feature. Investigating the impact of the
boundary-enhanced feature XBEF (Table 4), fusion feature XBEF

from Xroi and XP2 outperforms using just Xroi or semantic feature
maps from P2 in FPN. Moreover, results suggest that BEIS benefits
from finer feature maps like P2.

Multi-stage BEIS. Comparing multi-stage refinement (Table 5),
with all models trained using 3× schedules, the one-stage BEIS
with 28 × 28 masks competes with SOTA, with minor runtime im-
pact (15.0 FPS) compared to Mask R-CNN. Both the two-stage and
three-stage BEIS enhance accuracy with limited computational cost.
Three-stage BEIS (112 × 112 masks) achieves a balance between
precision and complexity, making it the preferred choice.

Adaptive Query and Key Selection. Table 6 shows adaptive
query and key strategies provide more improvements than treating all
pairs equally. This underscores the value of hard negative keys with
indistinguishable semantics in boundary segmentation, as demon-
strated by the 1.3 APB increase. As shown in Table 7, adaptive query
selection is not sensitive to the value of δ.

Intra-mask and cross-image discrimination learning. In ana-
lyzing the impact of IBDL and CBDL (Table 8), with models trained
with 3× schedules, IBDL boosts AP by 1.3 and boundary APB by
1.4. CBDL alone enhances AP by 0.8 and boundary APB by 1.0.
Combining both achieves further improvements. Both techniques
add little to computational load, being used only in training.

N APval APB AP50
B AP∗

8 37.0 24.4 49.3 40.1
16 37.2 24.5 49.4 40.9
32 37.5 24.7 49.7 41.2

64 37.3 24.5 49.5 41.0

Table 2. Numbers of negative keys for IBDL.

4.3 Comparison with State-of-the-Arts

We present comparisons between our approach against state-of-the-
art methods on COCO, Cityscapes and LVIS-1.0. Evaluation metrics
encompass APval, boundary APB [4], AP∗, and APtest.

N APval APB AP50
B AP∗

32 37.2 24.4 49.4 40.7
64 37.4 24.7 49.4 40.8
128 37.5 24.7 49.7 41.2

256 37.4 24.5 49.6 41.0

Table 3. Numbers of negative keys for CBDL.

Feature APval APB AP50
B AP∗

XP2 36.8 23.7 48.3 40.4
Xroi 37.3 24.0 49.2 40.7

XP2 +Xroi 37.5 24.7 49.7 41.2

Table 4. Effect of boundary-enhanced features (BEF).

Stage Output Size APval APB AP∗ FPS

1 28×28 39.3 25.9 42.7 15.0
2 56×56 39.8 26.4 43.5 13.5
3 112×112 40.5 27.0 44.7 12.3
4 224×224 40.6 26.8 44.3 8.4

Table 5. Mask AP obtained using multi-stage BEIS.

AQS AKS APval APB AP∗

36.7 23.4 40.1
� 37.0 24.0 40.6

� 37.3 24.4 41.0
� � 37.5 24.7 41.2

Table 6. Effectiveness of AQS and AKS.

δ APval APB APB
50 AP∗

0.99 37.3 24.6 49.6 41.1
0.97 37.5 24.7 49.7 41.2

0.95 37.4 24.6 49.4 41.2

Table 7. Effect of δ in AQS.

IBDL CBDL APval APB AP50
B AP∗

38.9 25.2 47.5 42.0
� 40.2 26.6 49.4 44.3

� 39.7 26.2 49.0 43.8
� � 40.5 27.0 49.7 44.7

Table 8. Effectiveness of IBDL and CBDL.

COCO. Table 9 compares BEIS to COCO’s SOTA instance seg-
mentation methods. Across various backbones, BEIS consistently
outperforms PatchDCT and DynaMask by 1.6 AP and 1.1 AP
with an R101-FPN. Remarkably, even against multi-stage refine-
ment methods like Mask Transfiner and RefineMask that employ
additional semantic segmentation and boundary loss optimizations,
BEIS, using an R50-FPN, outperforms Mask R-CNN and PointRend
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Method Backbone Resolution APval APtest AP∗ APB APS APM APL FPS

Mask R-CNN (ICCV17) R50-FPN 28× 28 37.2 37.3 38.2 21.2 18.6 39.5 53.3 15.7
BMask R-CNN (ECCV20) R50-FPN 28× 28 38.2 38.4 41.7 25.2 19.2 39.8 54.1 12.4

BCNet (CVPR21) R50-FPN 28× 28 38.4 38.6 41.4 25.0 21.9 40.9 49.3 9.4
PointRend (CVPR20) R50-FPN 224× 224 38.5 38.6 41.9 25.7 19.1 40.6 53.8 11.0

Mask Transfiner (CVPR22) R50-FPN 112× 112 38.8 39.3 41.9 25.8 21.6 40.8 49.8 6.2
BEIS (Ours) R50-FPN 112× 112 40.5 40.9 44.7 27.0 23.1 43.6 53.9 12.3

Mask R-CNN (ICCV17) R101-FPN 28× 28 38.6 39.0 40.8 23.1 19.5 41.4 50.5 13.4
BCNet (CVPR21) R101-FPN 28× 28 39.8 40.2 42.8 26.1 22.7 42.4 51.1 7.5
HTC (CVPR19) R101-FPN 112× 112 40.2 40.5 43.2 26.4 21.9 42.6 56.3 4.7

PointRend (CVPR20) R101-FPN 224× 224 40.1 40.4 43.6 26.7 23.2 42.9 54.6 9.7
Mask Transfiner (CVPR22) R101-FPN 112× 112 40.0 40.5 43.0 26.9 22.5 42.2 53.6 5.5

RefineMask (ICCV21) R101-FPN 112× 112 40.8 41.2 44.6 27.8 23.4 44.6 55.0 11.0
PatchDCT (ICLR23) R101-FPN 112× 112 40.5 40.7 45.0 27.6 20.8 43.3 57.7 11.4

DynaMask (CVPR23) R101-FPN 112× 112 41.0 41.3 44.6 27.4 22.8 43.4 54.0 8.3
BEIS (Ours) R101-FPN 112× 112 42.1 42.3 45.7 29.2 25.0 45.4 55.4 11.2

Mask Transfiner (CVPR22) Swin-B 112× 112 44.9 44.5 45.4 28.2 27.8 47.6 58.5 3.5
PatchDCT (ICLR23) Swin-B 112× 112 46.6 46.4 47.8 29.4 29.0 49.0 59.9 7.3

BEIS (Ours) Swin-B 112× 112 47.8 47.6 49.0 31.4 31.5 51.6 59.4 7.4

Table 9. Comparison with SOTA methods. All methods are trained on COCO train2017 with ImageNet-pretrained weights and 3× schedules. APval,
APtest, and AP∗ are evaluated on COCO-val, COCO-test, and COCO-val sets with LVIS annotations. FPS is measured on one single V100.

by 3.3 AP and 2.0 AP, respectively. Notably, BEIS also signif-
icantly improves boundary APB over these methods, reaffirming
its effectiveness in boundary discrimination. Additionally, experi-
ments on the LVIS-0.5 val-set, with more accurate boundary anno-
tations, demonstrate further improvement. Importantly, BEIS’s effi-
ciency stands out among multi-stage refinement methods since most
discrimination learning modules are used only during training. These
outcomes highlight BEIS’s capacity to generate high-quality masks.

Cityscapes. Table 10 displays the Cityscapes benchmark results.
BEIS achieves the best mask AP of 39.2 and boundary APB of
21.2. Compared to the baseline Mask R-CNN, BEIS substantially
enhances boundary APB from 11.4 to 21.2, evidencing the ef-
fectiveness of the boundary enhancement framework. Furthermore,
BEIS surpasses other state-of-the-art (SOTA) methods like Mask
Transfiner and PatchDCT by margins of 4.8 and 2.4 APB , respec-
tively, with an R-50 FPN model and ImageNet-pretrained weights.
These significant improvements, leveraging high-quality annotations
in Cityscapes, underscore BEIS’s superiority. All models are trained
with 64 epochs and R50-FPN for fair comparisons.

LVIS-1.0. Table 11 presents LVIS-1.0 dataset results, where BEIS
achieves the highest mask AP of 26.5, surpassing the baseline by
3.2 APf , showcasing its efficiency. All Models are trained with 1×
schedule for fair comparisons.

COCO-OCC. BEIS’s performance is compared against other
occlusion-aware segmentation models (BCNet, and MS R-
CNN [11]) using the COCO-OCC split. Table 12 demonstrates BEIS
outperforming BCNet by 3.4 AP and 5.1 APB , indicating its profi-
ciency in boundary segmentation, particularly for occlusion scenar-
ios. All Models are trained with 1× schedule for fair comparisons.

Qualitative Results. Figure 4 presents qualitative comparisons on
COCO, demonstrating that our BEIS achieves notably higher mask
precision and quality, particularly in overlapping regions. In Figure
5, we present qualitative comparisons on the Cityscapes dataset. Our
BEIS framework, using 112×112 mask size, produces more accu-
rate and precise predictions compared to RefineMask with 112×112
mask size, and PointRend with a 224×224 mask size.

Method Resolution APB AP50
B APval AP50

Mask R-CNN (ICCV17) 28× 28 11.4 37.4 33.8 61.5
BMask R-CNN (ECCV20) 28× 28 15.6 45.7 36.2 62.6

DCTMask (CVPR21) 112× 112 14.6 44.5 36.9 62.9
PointRend (CVPR20) 224× 224 16.6 47.2 35.9 61.8
RefineMask (ICCV21) 112× 112 18.0 50.2 37.6 63.3

Mask Transfiner (CVPR22) 112× 112 16.4 46.0 36.0 62.1
PatchDCT (ICLR23) 112× 112 18.8 51.0 38.2 64.5

DynaMask (CVPR23) 112× 112 18.4 49.5 38.0 63.6
BEIS (Ours) 112× 112 21.2 53.6 39.2 65.3

Table 10. Performance comparison on Cityscapes val-set.

Method APval APr APc APf

Mask R-CNN (ICCV17) 22.1 10.1 21.7 30.0
RefineMask (ICCV21) 25.5 14.2 24.3 31.7

BEIS (Ours) 26.5 13.5 25.1 33.2

Table 11. Performance comparison on LVIS-1.0 val set.

Method APval APB AP50

Mask R-CNN (ICCV17) 29.7 13.7 49.9
MS R-CNN (CVPR19) 30.3 16.2 50.0

BCNet (CVPR21) 31.7 17.4 51.1
BEIS (Ours) 35.1 22.5 55.8

Table 12. Performance comparison on COCO-OCC val-set.
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PointRend Mask Transfiner Ours: BEISRefineMask PatchDCTMask R-CNN

Figure 4. Qualitative comparisons with Mask R-CNN, PointRend, Mask Transfiner, RefineMask, and PatchDCT on COCO.

 PointRend RefineMask Ours: BEIS

Figure 5. Qualitative comparisons with instance segmentation methods PointRend and RefineMask on Cityscapes.

5 Limitation and Conclusion

In this study, we introduce BEIS, a novel and effective instance
segmentation method that prioritizes boundary enhancement. BEIS
employs intra-mask and cross-image boundary-aware discrimination
learning to augment the discernibility of boundary regions, result-
ing in accurate boundary and overall segmentation. Unlike previ-
ous approaches focusing solely on intra-mask features, BEIS incurs
minimal computational and memory overhead while yielding sub-
stantial segmentation improvements. Our experiments on COCO,
Cityscapes, and LVIS benchmarks demonstrate BEIS’s superiority.

However, the current efficacy of BEIS is constrained by the quality
of segmentation annotations. Future efforts will target this issue by
refining annotations based on predictions. Meanwhile, we will also
apply BEIS for video and point cloud instance segmentation.
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