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Abstract. Existing unsupervised domain adaption approaches for
cross-user Wearable Human Activity Recognition (WHAR) typically
assume that users utilize the uni-modal sensor deployment configu-
ration and cannot transfer across different sensor modalities. In this
paper, we consider the more realistic cross-modal wearable human
activity recognition setting to investigate the unsupervised domain
adaptation task. This new context presents two formidable chal-
lenges: (1) how to alleviate modality heterogeneity across users,
and (2) how to explore cross-modal domain correlation for bet-
ter unsupervised domain adaptation. We propose a cross-modal un-
supervised domain Adaptation model with Class-Aware Sample
Weight Learning (CASWL-Adapt) to address both challenges. First,
a spherical modality discriminator is designed to capture modal-
specific discriminative features of each user during domain adapta-
tion, thus achieving a reduction of sample variance caused by modal
heterogeneity. Given a user-specific modal, modality-independent
domain-invariant features can be efficiently generated by the well-
developed modality discrimination loss and adversarial training. Sec-
ond, a class-aware weight network is devised to calculate sample
weights through classification loss and activity class similarity for
each sample. Furthermore, the network leverage end-to-end learning
and meta-optimization update rules to explore inter-domain correla-
tions. Cross-modal activity classes are expected to adaptively imple-
ment different weighting schemes based on their intrinsic bias char-
acteristics to select the most appropriate samples for domain knowl-
edge transfer. We demonstrate that CASWL-Adapt achieves state-
of-the-art results on three challenging benchmarks: Epic-Kitchens,
Multimodal-EA and RealWorld, especially effective for new users of
unseen modality.

1 Introduction

Wearable devices based on sensors can be used to collect data
through sensing devices mounted on the subject, which in turn can
be used to perform Wearable Human Activity Recognition (WHAR).
Since such devices can protect user privacy in a non-intrusive way
and can obtain information from multiple sensors installed in differ-
ent parts of the human body without affecting the user’s normal life
and work, this makes sensor-based HAR research more realistic [33].
Although WHAR has been widely used in many applications [5],
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Figure 1. (a) Traditional UDA methods assume the same uni-modal sensor
deployment across different users. (b) Our method deals with a more
practical cross-modal UDA setting (CMA-WHAR) in real-world scenarios.

the real-world application still faces the challenge of high-precision
recognition triggered by the scarcity of data annotation.
Unsupervised Domain Adaptation (UDA) aims to train a model
that can migrate knowledge learned in the source domain with la-
beled data to the target domain with unlabeled data, thus alleviating
the problem of scarcity of user data annotations in real-world scenar-
ios. Recent progress has been made with domain difference metrics
[13, 15, 23] and adversarial learning [42, 4, 37] domain invariant rep-
resentations: instead of learning any training classes explicitly, these
approaches utilize the training classes by attempting to learn trans-
fer through finding commonalities between the source and target do-
mains. Excellent results are achieved on common benchmarks (e.g.,
RealWorld [34]) by a series of methods [40, 9, 21]. Despite their suc-
cess, most of them are trained and evaluated only on sensor datasets
of the same type (i.e., uni-modal), and fail to learn generalized mod-
els across different types of sensors (i.e., cross-modal). In practical
applications, the need for cross-modal adaptation is imperative as it
will facilitate the deployment of models on large-scale user wear-
ables [18, 14]. For example, we would like models developed using
accelerometer sensors to be adaptable to visual sensors without the
necessity of gathering extra target training examples (Figure 1).
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To break the limitations of existing UDA methods and bench-
marks, we propose a new Cross-Modal unsupervised domain Adap-
tation task for cross-user Wearable Human Activity Recognition
(CMA-WHAR), which focuses on adapting to new users of unseen
modalities using models learned from user data of different modal-
ities as shown in Figure 1. It differs from traditional unimodal un-
supervised domain adaptation in two aspects: (1) it contains differ-
ent modal data from multiple different users for training and unseen
modal data for testing; and (2) there is a large modal heterogeneity
between the source and the target domains, and also potential domain
correlation across modalities.

These differences pose two challenges for Cross-User Wearable
Human Activity Recognition. (1) How to alleviate modality hetero-
geneity across users. In traditional UDA settings, where user data
comes from the same type of sensor, the heterogeneity of the sample
distribution mainly originates from the different types of activities
of different users [26, 2]. However, in the CMA-WHAR task, there
are different feature dimensions and modality heterogeneity between
data from different users, a property that leads to greater distribu-
tional heterogeneity. (2) How to explore cross-modal domain corre-
lation for better unsupervised domain adaptation. Traditional UDA
tasks only consider user data from the same type of modality, which
makes the knowledge learned on the source domain user samples
always shareable by the target domain. In contrast, for the CMA-
WHAR task, different recognition patterns are required for different
activity classes due to the huge heterogeneity among user data. For
example, the ability to recognize activity classes using visual data
is ambiguous for those activity classes only using accelerometer or
gyroscope signals [39].

To address the above challenges of the CMA-WHAR task, we
propose a cross-modal unsupervised domain Adaptation model with
Class-Aware Sample Weight Learning (CASWL-Adapt) for cross-
user WHAR. First, a spherical modality discriminator is designed
to capture modal-specific discriminative features of each user dur-
ing domain adaptation, thus achieving a reduction of sample vari-
ance caused by modal heterogeneity. Given a user-specific modal,
modality-independent domain-invariant features can be efficiently
generated by the well-developed modality discrimination loss and
adversarial training.

Second, to explore the cross-modal domain correlation, we devise
a novel class-aware weight network, which treats each user activity
class as an individual learning task (taking sample loss along with
class/task features as input and the sample weights as output). Specif-
ically, we conduct the K-means clustering of all activity classes to
generate task clusters of different sample sizes. These clusters are
combined with a sample weighting network to compose the class-
aware weight network. Then, with the class-aware weight network,
per sample weight is computed from the classification loss and activ-
ity class similarity of each sample. Moreover, the class-aware weight
network leverages end-to-end learning and meta-optimization up-
date rules to explore inter-domain correlations. Intuitively, the cross-
modal activity classes are expected to adaptively implement different
weighting schemes based on their intrinsic bias characteristics to se-
lect the most appropriate samples for domain knowledge transfer.

Experimentally, we show the effectiveness of each devised com-
ponent, and explain how the class-aware weight network works
on cross-modal domain correlation through a modality-strictly-
differentiated setup. In summary, our contributions are threefold:

e We propose a new cross-modal UDA task (CMA-WHAR) for
cross-user wearable human activity recognition, which is impor-

tant for deploying HAR models with different data modalities on
large-scale user wearable devices.

e We propose a cross-modal unsupervised domain Adaptation
method with Class-Aware Sample Weight Learning (CASWL-
Adapt). It can effectively alleviate cross-modal heterogeneity and
explore cross-modal domain correlation.

e We achieve state-of-the-art performance on the challenging Epic-
Kitchens, Multimodal-EA and RealWorld benchmarks, especially
effective for new users of unseen modality.

2 Related Work
2.1 Unsupervised Domain Adaptation

The difference in domain distribution leads to the poor performance
of deep network models when trained on the source domain and
applied to the target domain. And these models typically face the
problem of scarcity of data labeling in practical applications, which
prevents them from being used in real-world scenarios [36]. To al-
leviate this problem, existing methods generally use unsupervised
domain adaptation (UDA) to guide the human action recognition
(HAR) model. The prevailing inference of this approach is to reduce
inter-domain distributional differences by aligning human activity-
related features in the source/target domains [25, 20]. In addition, the
more popular approach [10, 38] exploits the confounding properties
of generative adversarial networks to learn domain-invariant feature
representations of domain discriminators inversely. Alternatively, the
recognition error between different domains can be reduced by sam-
ple mapping [9, 40].

2.2 Sample Weight Learning in UDA

Inspired by the development of meta-learning [12], some recent work
[35, 23, 24] attempts to build models that can adaptively learn the
weights of data samples to make learning more automatic, which
improve the reliability in some approaches using UDA for human
activity recognition. In addition, some work [31, 41, 28] attempts to
align the differences between different samples in particular scenar-
ios, allowing some of the negative samples to be selectively discarded
during the domain alignment process. The significant limitations of
these UDA models are that they all require manual pre-specification
of the form of the sample weighting function and complex hyper-
parameter settings that rely on a priori knowledge, which results in
a model with limited flexibility to adapt to user data that have an
interclass bias-heterogeneous distribution [30].

2.3 UDA for Cross-user WHAR

UDA has made some progress on cross-user WHAR [4, 27, 42]. With
the rise of deep learning, the use of deep neural networks [6, 3, 11] as
reliable feature extractors has become a consensus. It is worth noting
that all of these approaches require the data acquisition source to be
controlled within a single sensor, which means that the HAR model
is not designed to handle cross-modal differences in user data. There-
fore, when applied to cross-user WHAR tasks in real-life scenarios
where data modalities are heterogeneous, it may show degraded per-
formance [5]. In addition, these methods require retraining of the
model when it is tested with datasets of different modalities. Un-
like the previous methods, we proposed a novel cross-modal unsu-
pervised domain adaptation model with class-aware sample weight
learning, which is both effective and free from re-training for multi-
modal datasets.
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Figure 2. The proposed CASWL-Adapt framework for cross-user wearable human activity recognition. At first, we build the basic activity recognition
network by employing the feature extractor and the classifier. Then, we design two novel components for cross-modal cross-user recognition. (1) The spherical
modality discriminator is adversarially trained on user data from source and target domains through a Gradient Reversal Layer (GRL) to obtain cross-modal
domain invariant features. (2) In the class-aware weighting network, samples from the source domain are guided by samples from the target domain, and
adaptive weighting is implemented to achieve cross-modal domain correlation.

3 Methodology
3.1 Problem Definition

For the CMA-WHAR task, we treat it as a multimodal multi-
classification task with data bias. The difficulty of this task is mainly
due to the collection of multimodal user data in real-life scenarios
and the imbalance of user sample classes across modalities. For-
mally, We denote a set of labeled data with several training users
as the source dataset D° = {(z, s, z:) }|'5,, where x; is the sam-
ple, y; is the activity class label, z; is the modality label and ns is the
number of samples from source domain users. Meanwhile, we also
require the new user data (target dataset) DT = {x;, z; }?:S::fl with
samples x; and modality labels z; from the target domain, where nr
is the number of samples from target domain users. The total number
of samples is N = ng + nr, and we use DY = {(s, 24, di)}il
to denote all samples with domain label d;. Here, d; = 0 for source
domain samples and d; = 1 for target domain samples. We assume
the source domain and target domain (new users) share the same ac-
tivity set. The new user’s modality label (z;) is known, and only the
activity class label is unlabeled.

3.2 Overall Framework of CASWL-Adapt

Our overall framework of the proposed CASWL-Adapt is shown in
Figure 2, which consists of four subnetworks, i.e., feature extrac-
tor Gy (+;0y), classifier G (+;6.), spherical modality discrimina-
tor G, (+; 0 ) and class-aware weight network G, (,; 0, Q) with
learnable parameters ¢, 6., 0.,,, © and €2, respectively.

In current WHAR applications, the feature extractor and classi-
fier are usually composed using convolutional neural networks and
deep neural networks. Similarly, our activity recognition network
also adopts this standard feed-forward architecture. However, we de-
signed several novel modules to address the cross-user cross-modal
action recognition setting. Specifically, in our model, the spherical

modality discriminator is connected to the feature extractor via a
Gradient Reversal Layer (GRL) to achieve cross-modal unsupervised
domain adaptation. In the subsequent processing, we pass the sample
and class/task features together to the class-aware weight network to
generate per sample weight, which is then multiplied by the outputs.
Finally, using the target domain samples as guidance, the results of
the class-aware weighting network will be used to perform class-
aware adaptive reweighting on the source domain samples.

3.3 Model Details and Training Losses

Next, we illustrate the important model components: the spherical
modality discriminator used to constrain CASWL-Adapt, the class-
aware weight network used for adaptive re-weighting of source do-
main samples, as well as more details on the model loss function.

3.3.1 Modality Discriminator and Discrimination Loss

Similar to the traditional domain classifier setting, we expect to train
the spherical modality discriminator through an adversarial approach
[10] to make it indistinguishable between samples from the source
and target domains and to assume that the features of the two do-
mains are already aligned by default.

To make it easier to explain, we first represent the spherical
modality discriminator as G, (g; 0m) = Softmax(W 7' v(g)), where
g = Gy (z;0¢) denote the deep features from the feature extractor
Gy¢(+;05) and v denote a single-layer perception with the ReLU ac-
tivation function. W is the weight matrix without bias terms in the
modality discriminator. Since each user has only one class of modal-
ity and there is an inter-modal similarity between samples from dif-
ferent users, this creates a significant ambiguity in modal decision
boundaries when using multi-classification loss function (e.g., cross-
entropy loss). To address this issue, we perform a small amount of
normalization on each column of W and use additive angular margin
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loss [8] to enhance the intra-class tightness of the modality discrimi-
nator in the spherical:

6 cos(0+n)

ed cos(0+n) + Z

E(Lm(g,z) = _IOg (1)

Scosf; ’
=1,z € J

where cos ; = arccos < ol I ), and 6; is the angle between

lg:ll

the deep feature g; of the i-th sample =; and weight W;. Similarly, an
additive angular margin factor ) is added between the sample feature
¢: and the target weight W to obtain cos (6. + 7). Furthermore,
0 is a scale factor and z denotes the ground-truth modality label.
M denotes the total number of modalities. Based on the above idea,
we can derive modality discrimination loss for all user samples as
follows:

1
Lon (07,0m) = 5 S Lam(gi2) - )
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3.3.2 Classification Loss and Class-aware Weight Network

Generally, when using the activity recognition network for standard
training, we can obtain the classification loss of the CMA-WHAR
task on the training samples:

Ly(05,0:) =

— > U(Gel(gis0e),vi) 3)

ze{d =0}

where G. (g;;0.) denotes the network output and ¢ is the cross-
entropy loss function. For notation convenience, we denote that
L£Y(0.) = £(Ge(gi;0.),ys). However, due to the modality het-
erogeneity between different user data, activity recognition networks
with deep neural networks as a classifier can easily overfit biased
training data with class imbalance, making it difficult to generalize
existing UDA models to real-world scenarios.

Inspired by the explicit class-aware mapping of sample weights
[30], we use a class-aware weight network to adaptively learn
the explicit weighting of training samples, which is used to over-
come the apparent inter-class bias variations in heterogeneous user
data. Specifically, we pass the sample and task features together
to the class-aware weight network. In our study, we attempt to
take the scale level (i.e., the number of training samples) of each
training class/task to represent its task feature. Specifically, denote
N; (i =1,...,N;d; = 0) as the number of samples contained in ac-
tivity classes to which the ¢-th sample x; belongs and put it as a
task feature into the left branch of the network. This branch con-
tains a hidden layer of K nodes with a K-level scale Q = {ux}1—,
in ascending order. The outcome of this branch is a K-dimensional
one-hot vector (i.e., a task family label) whose 1 element is located
in its K-th dimension, corresponding to puy that is closest to the
input N;. For notation convenience, we denote the left branch as
L (N; Q) € {0,1}*. Then, we pass the £Y(6..) to the right branch
of the network. This branch inputs the classification loss value of the
¢-th training sample into a multi-layer perceptron (MLP) consisting
of a hidden layer and a K-dimensional weighted output. For notation
convenience, we denote the right branch as R (£Y (6..); ©) € [0,1]*
Then the class-aware weight network function can be formulated as
follows:

Guw (L] (0c), Ni; ©,9) = L(Ni; Q) @R (L{(6.); ©), ()

where @) denotes the dot product between two vectors. By modu-
lating the high-level task feature information, the class-aware weight
network is expected to learn a class-aware function by accumulating
class/task with homogeneous bias situations and allowing different
classes/tasks to adaptively implement different weighting schemes
based on their inherent bias situation. Now, the objective function of
the class-aware weight network can be simplified to the following
bi-level optimization problem:

(0,0} —argmin— 3 £70,0,9),

©.9 N, ia—y
= — Y c Ni; 7Q H c)y
0; argmmns 6;()}6‘ (L£7(0:), Ni;©,9Q) LI (0:), (5)

where £ (0%, 0, Q) is the meta classification loss computed us-
ing the parameter 6 and 07 by using the target domain user data.
Notably, the class-aware weight network needs to be updated with
unlabeled target domain user data for the meta-learning approach.
Therefore, the target domain’s user data must be pseudo-labeled [18]
with the activity recognition network before a new round of model
training.

3.4 Optimization

To make the model easy to optimize, we pre-count the number of
samples in different activity classes /V; and apply the standard K-
means algorithm [1] to the training samples to obtain the cluster cen-
ters 2 = {,uk}le sorted in ascending order. Based on the tuning
experience of previous work [30], we set K = 3 to achieve dif-
ferentiation between small, moderate, and large task families with
different user data. At each training step, we sample a small batch
of labeled source samples and another small batch of unlabeled tar-
get samples. We denote the learning rate of the class-aware weight
network as [ and the learning rate of the other three sub-networks a.

1) Updating feature extractor and classifier parameters. The
first update formulates the learning modality of the activity recogni-
tion network so that it can learn category differentiation patterns on
labeled source domain samples. The formulation is as follows:

o+t = ol —avgmu 0,00y, ©6)

6 = 01 — aGu (£2(00);09) ¥y £7(01)) . ()

2) Updating class-aware weight network parameters. We design
a meta-optimization updating rule for the second update and aim at
learning an adaptive sample weighting function, which helps to en-
able the activity recognition network to have the ability to specify an
appropriate weighting scheme based on the internal bias characteris-
tics of the different classes/tasks themselves. The formulation is as
follows:

et+D) — g® _ /Bve(t)[’meta(éﬁt+l)7®(t))’ ®)
00" =00 — aGu (£2(00);01)) 7,00 £(60). ©)

3) Updating feature extractor and modality discriminator pa-
rameters. The third update enables the spherical modality discrim-
inator to learn the modality discriminative knowledge on labeled
source samples and pseudo-labeled target samples. This adversarial
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Table 1. Comparison with the state-of-the-art UDA models (mean+std). “x” indicates that CASWL-Adapt is statistically superior to the compared model
according to the pairwise t-test at a 95% significance level.

Epic-Kitchens Multimodal-EA RealWorld
Model (Venue)
Acc. Mac.F1 Acc. Mac.F1 Acc. Mac.F1

HDCNN (PerCom 2018) 0.587+0.004* 0.565+0.004* 0.624+0.003* 0.611+0.004* 0.651+0.009* 0.632+0.006*
MMD (TPAMI 2019) 0.582+0.006* 0.567+0.007* 0.623+0.011* 0.607+0.005* 0.645+0.012* 0.629+0.008*
AdvSKM (IJCAI 2021) 0.628+0.003* 0.612+0.008* 0.689+0.006* 0.679+0.004* 0.713+0.013* 0.683+0.012*
DANN (JMLR 2016) 0.639+0.007* 0.621+0.009* 0.708+0.005* 0.685+0.003* 0.738+0.011* 0.712+0.007*
DUA (CVPR 2022) 0.566+0.011* 0.563+0.008* 0.647+0.007* 0.632+0.005* 0.678+0.003* 0.636+0.005*
ETN (CVPR 2019) 0.648+0.005* 0.632+0.009* 0.703£0.004* 0.689+0.008* 0.739+0.012* 0.709+0.027*
TCL (AAAI 2019) 0.652+0.007* 0.639+0.007* 0.719+0.005* 0.705+0.011* 0.741£0.025* 0.705+0.032*
SS-UniDA (AAAI 2021) 0.657+0.009* 0.642+0.002* 0.722+0.001* 0.707+0.008* 0.743+0.031* 0.712+0.039*
SWL-Adapt (AAAT 2023) 0.663+0.006* 0.643+0.003* 0.727+0.007* 0.723+0.006* 0.753+0.038* 0.742+0.048*
CASWL-Adapt 0.694+0.005 0.688+0.004 0.748+0.008 0.743+0.002 0.764+0.039 0.756+0.042

goal is achieved through a gradient reversal layer (GRL), which is
updated as follows:

95}“) _ é}t+1) B avé}m)ﬁm(é}””ﬁﬁ))v (10)
ogri+1) _ 9%) + avg(t)ﬁm(é}t“), 955)) . (11)

4 Experiments
4.1 Datasets and Evaluation Metrics

Epic-Kitchens. This is the largest public multimodal dataset in
egocentric HAR [7]. In Epic-Kitchens, which included 89,977 video
clips of human-object interactions captured by 37 participants and 16
participants who also provided audio and sensor data. For the CMA-
WHAR task, we used the unique 35 verb labels as activity classes and
considered four modalities (i.e., video, optical flow, audio, and sen-
sor) to simulate cross-modal WHAR scenarios in real environments.
‘We randomly select 4 participants for each schema and treat three of
them as source-domain users and the remaining one participant as a
target-domain user, each of which retains data for only one schema.
Finally, we obtain a 16-user 97-class 4-modality CMA-WHAR task
with 34018 samples.

Multimodal-EA. This is an early multimodal dataset for self-
centered HAR [32] that contains 50 minutes of video and 20 ac-
tive sensor signals. We randomly split this dataset into four users,
with two clients having 100 video modal samples and the other two
clients having 100 sensor modal samples. Finally, we obtain a 4-user
20-class 2-modality CMA-WHAR task with 400 samples.

RealWorld. This dataset [34] provides data on the daily activities
of a total of 15 users in a realistic environment and under uncon-
trolled conditions. We randomly select four users, three of which are
used as source domain data and the remaining one as target domain
data. Finally, we obtain a 15-user 8-class 1-modality HAR task with
36980 samples.

Dataset Splitting. For the above three datasets, we randomly di-
vide the labeled user data of the source domain dataset into training
and validation sets according to the ratio of 0.75:0.25, while for the
unlabeled user data of the target domain dataset, we randomly divide
it into adaptation and test sets according to the ratio of 0.5:0.5. All

models are trained on the training set and the adaptation set, tuned
on the validation set, and tested on the test set.

Evaluation Metrics. Following the existing UDA-based WHAR
approach, we use accuracy as the basic evaluation metric and sup-
plement it with a macro F1 score to observe the model’s ability to
balance performance on inter-classes [14].

4.2 Implementation Details

The three datasets in our experiments employ user data from up to
four different modalities. To provide a fair comparison of existing
methods, we use the same dimensional raw features for the differ-
ent modalities of users’ data and incorporate them into our model or
other baseline methods to perform the CMA-WHAR task.

The overall framework of our method is implemented with Py-
torch [22]. For all baselines, we use the publicly released code and
compare it with our proposed model after retraining. Specifically, the
activity recognition network is constructed based on the SWL-Adapt
model [14] and pseudo-labels the user data in the target domain by
similar tactics [18], but with the difference that the target domain
data is not mixed with the source domain data for training. The hid-
den layer of the MLP contains one hundred nodes that constitute a
universal approximator for almost any continuous function, allowing
our model to fit a wide range of weighting functions [29], includ-
ing those assumed in traditional sample weighting methods. For the
modality discriminator, the output dimension of the single-layer per-
ceptron v is set to 128. The additive angular margin factor n and scale
factor § of the additive angular margin loss [8] is set to 0.5 and 72.
Both our model and baseline were trained using the Adam optimizer
[17], and the cosine annealing scheme was applied to the learning
rate of the model to progressively reduce it from le-3 to le-4 and to
make the gradient of the class-aware weighting network parameter
of the same magnitude as the gradient of the parameters of the other
three sub-networks. Training batch size is set to 128 and the total
number of epochs is set to 300.

4.3 Comparison with State-of-the-art Methods

Baselines. We compare CASWL-Adapt with the following two
categories of state-of-the-art UDA models: UDA models without the
differentiation of samples: HDCNN [16], MMD [25], AdvSKM [19],
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Table 2. CASWL-Adapt ablation experiments on three datasets (meanzstd).
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indicates that CASWL-Adapt is statistically superior to the compared model

according to pairwise t-test at a 95% significance level.

Epic-Kitchens Multimodal-EA RealWorld
Model
Acc. Mac.F1 Acc. Mac.F1 Acc. Mac.F1
Base (DANN) 0.639+0.007*  0.621£0.009*  0.708+0.005*  0.685+0.003*  0.738+0.011*  0.712+0.007*
CASWL-M (Only modality discriminator) 0.678+0.004*  0.658+0.005*  0.731£0.009*  0.705+£0.006*  0.753+£0.037*  0.731+0.035*
CASWL-W (Only class-aware weight network) — 0.685+0.008*  0.668+£0.003*  0.737+0.003*  0.719+£0.005*  0.759+0.034*  0.752+0.038*
CASWL-K (Only simple weight network) 0.675+0.007*  0.653+£0.006*  0.729+0.006*  0.713+£0.007*  0.756+0.035*  0.745+0.032*
CASWL-Adapt 0.694+0.005 0.688+0.004 0.748+0.008 0.743+0.002 0.764+0.039 0.756+0.042
Table 3. Comparison with state-of-the-art UDA models (mean+std) under 70
the 4-client 97-class 4-modality CMA-WHAR task.
60
Epic-Kitchens
Model (Venue) = 50
Acc. Mac.Fl1 S
HDCNN (PerCom 2018) 0.534+0.005  0.501+0.003 § 40
MMD (TPAMI 2019) 0.531£0.003  0.505+0.002 E
30
AdvSKM (IJCAI 2021) 0.568+0.004  0.537+0.006 §
DANN (JMLR 2016) 0.574+0.008  0.551+0.004 § 20 —DUA —MMD
DUA (CVPR 2022) 051320005  0.479+0.008 HDCNN AdvSKM
10 DANN ETN
ETN (CVPR 2019) 0.595+0.011  0.568+0.003 —TCL  ——SWL-Adapt
TCL (AAAI 2019) 0.604+0.007  0.565+0.007 0 §8-UniDA——CASWL-Adapt
SS-UniDA (AAAI2021)  0.615£0.009  0.585£0.006 0 30 100 150 2000250 300
training epochs
SWL-Adapt (AAAI2023) 0.631+0.007  0.617+0.009
CASWL-Adapt 0.659+0.008  0.642+0.007

DANN [10], and DUA [21]. UDA models with the differentiation of
samples: ETN [2], TCL [31], SSUniDA [18], and SWL-Adapt [14].

Results. Overall, from Table 1, the proposed CASWL-Adapt out-
performs all baselines, suggesting that our model can effectively mit-
igate cross-modal heterogeneity. Specifically, our model improves
the Acc and Mac.F1 metrics on the Epic-Kitchens dataset by 3.1%
and 4.5% in the case of multimodal and multi-activity classes, re-
spectively. In the two-modal stochastic mixing case, our model rises
by more than 2% for each indicator on the Multimodal EA dataset.
Even in the simplest single-modality setting, CASWL-Adapt is still
more competitive than all baselines, which demonstrates that sample-
weighted learning with activity classes/tasks as additional supple-
mentary information is better able to adapt to new users.

To further assess the effectiveness of our model in mitigating
cross-modal heterogeneity, we conducted additional experiments un-
der the more challenging 4-client 97-class 4-modality CMA-WHAR
task. Specifically, we randomly select a modality for each user and
ensure that no two users have the same modality between them. As
seen in Table 3, CASWL-Adapt still outperformed all baselines in the
strict cross-modality condition. This demonstrates that the modality
discriminator is more capable of helping models to improve intra-
class compactness than the traditional domain discriminator and thus
mitigate data heterogeneity caused by user cross-modality. Further-
more, we can observe a clearer contrast in Figure 3, where CASWL-
Adapt already shows the potential to mitigate cross-modal hetero-
geneity early in the training, and the class-aware weight network
can capture sample inter-class differences in the cross-modality case
more consistently and efficiently as the training progresses.

Figure 3. User-averaged test accuracy under strict cross-modality
conditions with different training epochs. Our CASWL-Adapt method
performs better than all other baselines.

4.4 Ablation Studies

Analysis of several variants of CASWL-Adapt. Table 2 demon-
strates ablation experiments on different sub-networks within
CASWL-Adapt. Specifically, the classical UDA model DANN
[10] serves as the Base, which, compared to our CASWL-Adapt,
uses the original domain discriminator and no additional sample
weighting function. CASWL-M is obtained by removing the class-
aware weighting network from CASWL-Adapt. CASWL-W is ob-
tained by removing the modality discriminator from CASWL-Adapt.
CASWL-K is obtained by removing the modality discriminator of
CASWL-Adapt as well as the class/task input branch in the class-
aware weight network.

From the results of ablation comparison experiments, CASWL-
Adapt consistently outperforms CASWL-M and CASWL-W, which
implies that the modal discriminator and the class-aware weight net-
work, are useful for mitigating cross-modal heterogeneity. Further-
more, CASWL-K also outperforms DANN in terms of performance
by simply weighting the samples without considering the additional
task-level feature branches and modality discriminator. CASWL-W
outperforms CASWL-K on all datasets, demonstrating that the in-
troduction of additional class/task feature branches into the sample
weight network is beneficial in helping UDA models using deep neu-
ral networks as classifiers to overcome the tendency to overfit when
using cross-modal heterogeneous data, and is effective in reducing
inter-class variance to increase activity recognition accuracy.

Analysis of Class-aware Sample Weights on Unimodal Set-
ting. From Figure 4, it can be seen that in the unimodal setting,
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Figure 4. The confusion matrices generated by SWL-Adapt (left) and
CASWL-Adapt (right). Training is performed using the RealWorld dataset.

Table 4. Modality discriminator results using different losses. # denotes
models to which the sample weighting is simply applied.

Epic-Kitchens

Model
Acc. Mac.F1
CE-Loss 0.682+0.004  0.664+0.005
CASWL-Adapt 0.694+0.005  0.688+0.004
CE-Loss# 0.657+0.003  0.639+0.006
CASWL-Adapt#  0.669+0.004  0.651+0.007

CASWL-Adapt degrades the modality discriminator to the same do-
main discriminator as SWL-Adapt [14]. With the sample-weighted
strategy, CASWL-Adapt achieves higher recognition performance
and mitigates the differences between user data simply by addi-
tional input class-aware features compared to SWL-Adapt using do-
main/classification feature differentiation.

Analysis of Modality Discrimination Loss. To verify the effect
of the modality discrimination loss on the model performance, we
re-evaluated the model on the Epic-Kitchens dataset after replacing
it with the CE-loss. From Table 4, it can be seen that CE-Loss re-
duces the model performance by at least 2.00% and performs much
worse than CASWL-Adapt™ with modality discrimination loss when
simple sample weighting [29] is applied.

4.5 Visualization of Categorical Feature Distributions

Figure 5 shows the distribution of classification features of t-SNE
for RealWorld user 15. These features are the output of the dense
layer of the classifier (before softmax). The target domain samples
are usually close to the source domain samples of the same activity
class, and CASWL-Adapt employs additional class-aware high-level
task features to make multiple small similarity clusters, which sug-
gests that our approach reduces not only the domain differences but
also the interclass differences across modal activity types, making
the target domain samples more discriminative.

4.6  Recall per User and per Activity Class

Figure 6 shows the recall per user and per activity class on Real-
World dataset, where the recall is calculated from the test set and av-
eraged over 5 repetitions of the experiment. Based on the experimen-
tal setup, five users aged 30 years or older were selected as new users.
Across new users, user 15, age 30, performs best on average results
per activity class, benefiting from cross-modal domain correlation.
Moreover, each new user performs well on the lying activity class.

I stairs up
I jumping
I lying
running
I sitting
standing
e walking
I stairs down

Figure 5. Visualization of categorical feature distributions using t-SNE.

Different colors represent different activity classes. Dots represent source

samples, and diamonds represent target samples. For clarity, diamonds are
framed to distinguish target samples from source samples.
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Figure 6. Recall per user and per activity class (mean).

This suggests that the model is better able to transfer knowledge by
learning the different activity classes itself during main adaptation.

5 Conclusion

In this paper, we proposed a new cross-modal unsupervised domain
adaptation task for cross-user wearable human activity recognition. It
differs from traditional unimodal unsupervised domain adaptation in
two aspects: (1) it contains different modal data from multiple differ-
ent users for training and unseen modal data for testing, and (2) there
is a large modal heterogeneity between the source and the target do-
mains, and also potential domain correlation across modalities. We
proposed a cross-modal unsupervised domain adaptive model named
CASWL-Adapt to solve the new task by using class-aware sample
weight learning and a spherical modality discriminator with modal-
ity discrimination loss. Experiments on three benchmark datasets
demonstrated the strength and flexibility of CASWL-Adapt. More-
over, our method is verified to not only reduce the cross-modal het-
erogeneity but also exploit cross-modal domain correlation for better
unsupervised domain adaptation.
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