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Abstract. Artificial intelligence has become a crucial tool for med-
ical image analysis. As an advanced cerebral angiography technique,
Digital Subtraction Angiography (DSA) poses a challenge where the
radiation dose to humans is proportional to the image count. By re-
ducing images and using AI interpolation instead, the radiation can
be cut significantly. However, DSA images present more complex
motion and structural features than natural scenes, making inter-
polation more challenging. We propose MoSt-DSA, the first work
that uses deep learning for DSA frame interpolation. Unlike natural
scene Video Frame Interpolation (VFI) methods that extract unclear
or coarse-grained features, we devise a general module that models
motion and structural context interactions between frames in an ef-
ficient full convolution manner by adjusting optimal context range
and transforming contexts into linear functions. Benefiting from this,
MoSt-DSA is also the first method that directly achieves any num-
ber of interpolations at any time steps with just one forward pass
during both training and testing. We conduct extensive comparisons
with 7 representative VFI models for interpolating 1 to 3 frames,
MoSt-DSA demonstrates robust results across 470 DSA image se-
quences (each typically 152 images), with average SSIM over 0.93,
average PSNR over 38 (standard deviations of less than 0.030 and
3.6, respectively), comprehensively achieving state-of-the-art perfor-
mance in accuracy, speed, visual effect, and memory usage. Our code
is available at https://github.com/ZyoungXu/MoSt-DSA.

1 Introduction

Frame interpolation, a class of fundamental tasks in computer vi-
sion, aims to deduce intermediate frames from given preceding and
succeeding ones [11, 21]. These tasks are classified into single-frame
and multi-frame interpolation based on the number of frames inferred
[29, 14, 16]. Traditionally, multi-frame interpolation is achieved re-
cursively. For instance, an intermediate frame Ib is inferred first, and
then used with the ground truths of adjacent frames to deduce addi-
tional frames Ia and Ic [26, 23, 24]. However, this approach neither
supports direct multi-frame interpolation nor allows flexible determi-
nation of frame count (typically odd).

DSA is an advanced medical imaging technology widely used in
interventional surgery [25]. It is crucial for diagnosing and treating
various vascular diseases, including brain, heart, and limbs. DSA op-
erates by injecting a contrast agent, usually iodine-based, into the
patient and capturing vascular images with X-rays. DSA technology
varies: 2D DSA provides basic two-dimensional images. 3D DSA,
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Figure 1. SSIM-Time-Memory comparison of different methods for

direct interpolating 1 to 3 frames on our DSA dataset. Our
MoSt-DSA-L1 achieves 94.62, 94.35, 93.58 SSIM, 0.024s, 0.070s, 0.117s
inference time, and 2.59G, 2.61G, 2.61G memory usage for interpolating 1

to 3 frames, respectively, outperforming SOTA EMA-VFI [38] in all aspects.
Details in Tab. 1,2,3.

capturing images from multiple angles [39]. 4D DSA adds a time
dimension, forming a sequence that captures dynamic blood flow’s
changes over time [12].

Moreover, frame interpolation for DSA images differs signifi-
cantly from natural images. As comparing Fig. 2 with Fig. 3, DSA
images present more complex structural and motion details [9]. Cur-
rently, no specific interpolation solutions for DSA images exist.

As we move from 2D to 4D DSA, frame interpolation complexity
increases. Our research targets direct multi-frame interpolation for
4D DSA. Hereafter, DSA refers specifically to 4D DSA unless stated
otherwise. Frame interpolation for DSA images confronts challenges
from complex structures and motions. First, the vascular structure is
complex: vessels are irregular, dense, and varied in size, like Fig.
3(a). Second, the imaging captures the contrast agent’s diffusion, a
non-rigid and complex motion depicted in Fig. 3(b). Third, vessels
rotate during imaging, causing occlusions and overlaps that compli-
cate motion analysis, as shown in Fig. 3(c).

To address the above challenges, extracting fine-grained and pre-
cise motion and structural features is critical. However, existing
frame interpolation methods are tailored for natural scenes, resulting
in unclear or coarse extraction of motion and structural features for
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Figure 2. Various motions in natural scenes. Motion subjects have
simple structure and coarse texture feature granularity, also easy to predict

the motion trajectory.

(a) Complex structure

(b) Complex diffuse motion of contrast agents

(c) Complex rotational motion

Figure 3. Various challenges for frame interpolation in DSA images.

DSA images. Common approaches fall into three categories. The first
uses a single module to mix and extract both motion and structural
features, resulting in ambiguity in both aspects[16, 17, 21, 1, 5]. The
second designs multiple modules to sequentially extract structural
features of each frame and motion features between frames, although
clear motion features are obtained, the corresponding structural rela-
tionships between frames are lacking[6, 40, 37, 4, 13, 22, 24, 26,
32, 36]. The third designs a single module to extract relative mo-
tion and structural features from frames simultaneously, but due to
coarse context granularity, it fails to adapt to the fine-grained, com-
plex structures of DSA images[38]. These methods commonly ex-
hibit issues such as motion artifacts, structural dissipation, and blur-
ring in DSA frame interpolation, as shown in Fig. 4.

In this work, we propose a network for flexible, efficient, and di-
rect multi-frame interpolation in DSA images. Initially, we extract
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Figure 4. Existing frame interpolation methods are tailored for natural
scenes, and commonly exhibit issues such as motion artifacts, structural

dissipation, and blurring in DSA frame interpolation.

multi-scale features from input frames and enhance them through
cross-scale fusion. Inspired by the EMA-VFI [38], we propose a
general module named MSFE that extracts motion and structural
features between enhanced frames by cross-attention. Unlike EMA-
VFI, MSFE doesn’t rely on expensive attention maps and can flexibly
adjust context-aware granularity. Specifically, by adjusting the opti-
mal context range and transforming contexts into linear functions,
MSFE calculates cross-attention between input frames in a fully con-
volutional manner, which reduces the storage cost and increases the
computing speed. After extracting general motion and structural fea-
tures through MSFE, we map the motion features at different times t
and decode them together with the structural features to obtain flows
and masks. Finally, a simplified UNet [28] refines features at dif-
ferent scales, decoding the flows, masks, and structural features to
produce the corresponding intermediate frame It. A key advantage
is that by extracting general motion and structural features only once,
our MoSt-DSA can interpolate any intermediate frame by combining
different time t during both training and testing. This is more flexible
than methods interpolating for fixed t [24], more efficient than meth-
ods extracting different features for multiple t [16], and more direct
than methods interpolating multi frames recursively [26, 23].

In summary, our work offers these main contributions:

• To our knowledge, MoSt-DSA is the first work that uses deep
learning for DSA frame interpolation, and also the first method
that directly achieves any number of interpolations at any time
steps with just one forward pass during both training and testing.

• We propose a general module named MSFE that models mo-
tion and structural context interactions between frames by cross-
attention. Significantly, by adjusting the optimal context range
and transforming contexts into linear functions, MSFE calculates
cross-attention in a fully convolutional manner, which reduces the
storage cost and increases the computing speed.

• We conduct extensive comparisons with 7 representative VFI
models for interpolating 1 to 3 frames, MoSt-DSA demonstrates
robust results across 470 DSA image sequences (each typically
152 images), with average SSIM over 0.93, average PSNR over
38 (standard deviations of less than 0.030 and 3.6, respectively),
comprehensively achieving state-of-the-art performance in accu-
racy, speed, visual effect, and memory usage. If applied clinically,
MoSt-DSA can significantly reduce the DSA radiation dose re-
ceived by doctors and patients, lowering it by 50%, 67%, and 75%
when interpolating 1 to 3 frames, respectively.

Z. Xu et al. / MoSt-DSA: Modeling Motion and Structural Interactions for Direct Multi-Frame Interpolation in DSA Images538



2 Related Work

2.1 Direct Multi-Frame Interpolation

Interpolation tasks for continuous image sequences, known as Video
Frame Interpolation (VFI), aim to generate one or multiple interme-
diate frames between input frames [16, 14]. Considering that in DSA
imaging, where the radiation dose correlates with image count, re-
ducing frames and using AI interpolation instead can cut radiation
significantly. Further, if multi-frame interpolation could be rapidly
achieved with just one forward pass, it would not only further re-
duce radiation dose but also shorten the time consumed, securing
more precious time for patient treatment. However, advanced VFI
methods primarily focused on single-frame interpolation, with multi-
frame interpolation often reliant on recursion [38, 26, 23, 24]. During
training, these methods are limited as they neither directly complete
multi-frame interpolation nor allow flexible frame number determi-
nation, leading to a significant decrease in accuracy for direct multi-
frame interpolation during testing. Unlike these methods, our MoSt-
DSA can directly achieve any number of frame interpolations at any
time steps with just one forward pass during both training and testing.

2.2 Modeling Motion and Structural Interactions

Modeling the motion and structural interactions is essential for
extracting motion and structural features. Existing frame interpo-
lation methods are tailored for natural scenes, and the modeling
of motion and structural interactions could divided into three cat-
egories. The first category concatenates input frames to a back-
bone network that extracts mixed features of motion and structure
[16, 17, 21, 1, 5]. While straightforward to implement, these meth-
ods lack clear motion information, leading to restrictions in inter-
polating frames with various numbers and time steps [31, 8, 11].
The second category utilizes multiple modules to sequentially ex-
tract the structural features of each frame and the motion features
between frames [6, 40, 37, 4, 13, 22, 24, 26, 32, 36]. Although these
methods provide explicit motion features, they require modules with
high computational costs, such as cost volume [13, 24, 26]. More-
over, capturing structural features from individual frames does not
adequately identify the structural correspondence between frames, a
critical aspect noted by [13] for VFI tasks. The third category, repre-
sented by [38], utilizes a single module for concurrent extraction of
relative motion and structural features from frames. This approach’s
advantages include preserving and enhancing the detailed structural
features of input frames without interference from motion features,
mapping motion features to any moment for arbitrary intermediate
frame generation, and significantly lowering training costs. How-
ever, due to coarse context granularity, it fails to adapt to the fine-
grained, complex structures of DSA images. These methods com-
monly exhibit issues such as motion artifacts, structural dissipation,
and blurring in DSA frame interpolation, as shown in Fig. 4. Our
method, aligning with the third category, introduces a general mod-
ule named MSFE that models motion and structural context interac-
tions between frames by cross-attention. Differing from [38], MSFE
doesn’t rely on expensive attention maps and can flexibly adjust
context-aware granularity. By adjusting the optimal context range
and transforming available contexts into linear functions, MSFE cal-
culates cross-attention in a fully convolutional manner, which further
reduces the storage cost and increases the computing speed.
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Figure 5. An illustration of the MoSt Attention in the MSFE module

for calculating motion and structural features. The enhanced structural
features of I0 and I1 are involved in subsequent calculations in the MSFE

module to generate the final structural features, see Fig. 7 for details.

= * *=*=

Features = Lambda * Query

Figure 6. An illustration of how we use Lambda Layer to calculate

features in our MoSt Attention. Lambda Layer summarizes contextual
information (within a scope r) into a fixed-size linear function (i.e. a matrix)

applied to the corresponding query, thus bypassing the need for
memory-intensive attention maps.

3 Method

Presenting a groundbreaking approach to direct multi-frame interpo-
lation in DSA images, Fig. 7 delineates the overall network archi-
tecture of our method. Briefly, it is divided into five key modules.
Initially, it employs the Multi-Scale Feature Extractor (FE), Cross-
Scale Feature Fusion (CSFF), and Motion-Structure Feature Extrac-
tor (MSFE) to extract general motion and structural features. Subse-
quently, the Flow-Mask Estimator (FME) and Refiner decode and
refine these features for different moments t to generate frame It.

3.1 Extracting General Motion and Structural
Features

Multi-Scale Feature Extractor (FE). To excavate foundational fea-
tures of blood vessels of various sizes before extracting motion and
structural features, we first employ the FE to derive three different
scales of neurovascular features. For input frames I0 and I1, we ini-
tially compute the third layer of low-level features L0

0 and L0
1, re-

spectively, using 3x3 convolutions followed by PReLU [10]. Subse-
quently, through downsampling and the same convolution and activa-
tion configuration, we calculate the second layer of low-level features
L1

0 and L1
1, as well as the first layer of low-level features L2

0 and L2
1

for I0 and I1 respectively. Mathematically,
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Figure 7. Overall network architecture of our MoSt-DSA. First, the Multi-Scale Feature Extractor (FE) processes the input frames I0 and I1 to obtain
features at three different scales through continuous convolution and down-sampling. Next, Cross-Scale Feature Fusion (CSFF) uses multi-scale atrous

convolutions [3] to generate fused features for I0 and I1, which are linearly mapped and normalized. The Motion-Structure Feature Extractor (MSFE) then
calculates motion and structural features from these fused features. Subsequently, for the intermediate time t, motion features are mapped. These mapped

motion features, along with structural features and the original frames, feed into the Flow-Mask Estimator (FME) to predict flow and mask. Finally, the Refiner

combines the various scale features from FE and structural features from MSFE, along with flow and mask, refining them into the image of intermediate time t.

⎧
⎨
⎩

L0
j = H (Ij)

L1
j = D

(
L0

j

)
L2

j = D
(
L1

j

) , (1)

where H is a stack of convolution and activation functions, while
D represents an integration of H with an additional downsampling
operation, and j is 0 or 1.

Cross-Scale Feature Fusion (CSFF). To fuse neurovascular fea-
tures of different scales and enhance the representation of founda-
tional features, we further employ the CSFF for I0 and I1 to per-
form cross-scale feature fusion. Specifically, for the i-th layer low-
level features Li

0 and Li
1, we use 2i−1 atrous convolutions [3] (with

a fixed kernel size of 3, stride of 2i, and for the n-th atrous convolu-
tion, both padding and dilation size are n). Mathematically,

F
(
Li

j

)
=

(
A1

(
Li

j

)
, . . . ,An

(
Li

j

))
, (2)

where F signifies feature fusion, A indicates atrous convolution. The
variable n, representing the number of atrous convolutions, takes a
value of 2i−1 for i equal to 0, 1, or 2. Moreover, by merging the
fused features from various scales and implementing a linear map-
ping, we obtain the cross-scale fused features F0 and F1 for I0 and
I1 respectively, as:

Fj = T
[
C
(
F

(
L0

j

)
,F

(
L1

j

)
,F

(
L2

j

))]
, (3)

where T represents the linear mapping, with C indicates the con-
catenation operation. Finally, we flatten Fj and then normalize it,
preparing for subsequent processing by the MSFE.

Motion-Structure Feature Extractor (MSFE). We propose
MoSt Attention to calculate relative motion features while enhancing
structural features between frames, as shown in Fig. 5 and 6 in detail.
To facilitate and simplify understanding, the following formulas we
give is based on our actual code implementation. We first concatenate
F0 and F1 to obtain Fa ∈ R

|n|×d, and then acquire F ′
a ∈ R

|n|×d

through reverse concatenation, as:

{
Fa = C (F0,F1)
F ′

a = C (F1,F0)
. (4)

Furthermore, we employ a Lambda Layer [2] to simulate content-
based and position-based contextual interactions in a fully convolu-
tional manner. Specifically, we denote the depth of query and value
as |k| and |v|, respectively, and denote the position information with
P ∈ R

|n|×d. The queries, keys, and values are calculated as follows:
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⎧
⎨
⎩

Q = FaWQ ∈ R
|n|×|k|

K = F ′
aWK ∈ R

|n|×|k|

V = F ′
aWV ∈ R

|n|×|v|
. (5)

Then we represent relative position embeddings as E ∈ R
|n|×|k|.

By normalizing the keys, we obtain K̄ = softmax(K, axis = n).
Next, we compute the content-based contextual interactions λc and
position-based contextual interactions λp, as:

{
λc = K̄TV ∈ R

|k|×|v|

λp = ETV ∈ R
|k|×|v| . (6)

Finally, by applying contextual interactions to the queries as well
as P , we obtain the general motion and structural features necessary
for inferring any intermediate frame, as:

{
S = Qλc +Qλp = C (S0,S1)
M = Pλc + Pλp = C (M0,M1)

. (7)

3.2 Decoding and Refining for Multi Intermediate
Frames

To further obtain motion features corresponding to multiple differ-
ent intermediate times t, we multiply each t with the general motion
features to map and obtain M0→t and M1→t.

Flow-Mask Estimator (FME). For a specific t, M0→t and
M1→t are concatenated with S0 and S1, respectively, and this com-
bination serves as part a of the input for the FME, while part b is the
concatenation of I0 and I1. As shown in Fig. 7, FME (denote by F )
applies PixelShuffle [30] upsampling to part a, and downsampling to
part b. Subsequently, parts a and b merge and undergo continuous
convolution operations, eventually leading to the generation of bidi-
rectional optical flow φt and mask μt corresponding to the specific
t through upsampling, as:

φt,μt = F (C (M0→t,M1→t,S0,S1) ,C (I0, I1)) . (8)

Next, we initially employ φt to warp I0, I1, as well as the low-
level features Li

j from different layers extracted by FE, and the gen-
eral structural features S0 and S1 extracted by MFSE. For instance,
for Xy

z , the result after warping is denoted as X̃y
z . Subsequently, we

concatenate I0, I1, Ĩ0, Ĩ1, φt, and μt together, referred to as Ot.
Refiner. Finally, through the Refiner (a simplified UNet [28]), by

integrating and refining features of different scales into Ot layer by
layer, and then utilizing skip connection, we obtain the intermediate
frame Ît corresponding to t, as depicted in Fig. 7. Mathematically,

Ît = Ĩt +R (Ot,L,S) , (9)

where R signifies the Refiner, L denotes the collection of Li
j , and S

refers to the collection of S0 and S1. The symbol � represents the
Hadamard product, and Ĩt is determined as follows:

Ĩt = μt � backwarp (I0,φt→0)

+ (1− μt)� backwarp (I1,φt→1) .
(10)

3.3 Loss Functions

To further enhance the inference quality, we employed a combination
of three types of loss functions, as follows:

L = w1L1 +wVGGLVGG +wStyleLStyle, (11)

where L1 denotes the L1 reconstruction loss, which minimizes the
pixel-wise RGB difference. Additionally, LVGG employs the L1
norm of the VGG-19 features to enhance finer image details and tex-
ture quality [33]. The style loss LStyle utilizes the L2 norm of the
auto-correlation of the VGG-19 features [7, 27, 18]. This approach
aims to further leverage the benefits of LVGG by capturing and repli-
cating style patterns and textures more effectively. Regarding the se-
lection of the weights (w1, wVGG, wStyle), we referenced [26].

4 Experiments

4.1 Datasets

We collected 470 head DSA image sequences from 8 hospitals, each
from a different patient, typically containing 152 images of 489x489
resolution. These were split into 329 for training and 141 for testing,
maintaining a 7:3 ratio. For each sequence targeting n-frame inter-
polation, we arrange it into several groups, each with consecutive
n + 2 frames. Adjacent groups start one frame apart. For details re-
garding data acquisition, we use NeuAngio33C, NeuAngio43C, and
NeuAngio-CT equipment, following the SpinDSA protocol.

4.2 Implementation Details

Model Configuration. For interpolating 1 to 3 frames, time (t) se-
quences are set to [0.5], [0.33, 0.67], and [0.25, 0.50, 0.75], re-
spectively. For simulating contextual interactions, context modeling
scope (r) sizes are 29, 29, and 21. Effects of varying r are compared
in the ablation study.

Training Details. We trained on 4 A100 GPUs, and for tasks in-
terpolating 1 to 3 frames, we set the batch sizes to 10, 10, and 6,
with warm-up steps set to 9000, 12000, and 16000, respectively. We
use the AdamW [20] optimizer with β1 = 0.9, β2 = 0.999, and a
weight decay of 1e−4. The learning rate is warmed up to 2e−4 and
then decays following a cosine schedule [19], decreasing to 2e − 5
over 300 epochs. We crop each frame to a resolution of 320 × 320
and apply random flip and rotation for augmentation. Regarding the
selection of loss weights (w1, wVGG, wStyle), we referenced [26],
assigning weights of (1.0, 1.0, 0.0) for the first epoch and weights of
(1.0, 0.25, 40.0) for the subsequent epochs.

Testing Details. To highlight our method’s advantages, we com-
pared MoSt-DSA with representative VFI methods. For ABME [24]
and SoftSplat [23], we tested on released pre-trained weights due to
the absence of training codes. For EMA-VFI (state-of-the-art) [38]
and FILM [26], we retrained them on our dataset following their
original setups. All tests were performed on a single RTX 3090 GPU.

Comparison Details. We trained two versions: one (MoSt-DSA-
L1) using only the L1 loss, which achieves higher test scores; the
other (MoSt-DSA) using our proposed combined loss L, which bene-
fits image quality (see supplementary materials [35] for proof). When
comparing visual effects, we use the version of the model that yields
high image quality[26, 7], i.e., FILM-LStyle, and SoftSplat-LF .
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Figure 8. Visual comparison for interpolating one frame with methods in VFI. "�" indicates the SOTA method in VFI. The first and third rows (on the
right side) correspond to the green box in blend, and the second and fourth rows (on the right side) correspond to the blue box in blend. M stands for motion
artifact, S for structural dissipation, and B for blurring. By comparing the inference and residual results of various methods, it can be proved that the natural
scene VFI method has many problems of motion artifact, structural dissipation and blurring, while MoSt-DSA relatively obviously alleviates these problems.

Table 1. Quantitative comparison with VFI methods on single-frame

interpolation. Best scores for color losses in blue, and for
perceptually-sensitive losses in red. The second lowest memory usage in
green. "�" indicates the SOTA VFI method. EMA is short for EMA-VFI.

SSIM (%) PSNR Time (s) Memory

Mean↑ STD↓ Mean↑ STD↓ 1 frame↓ 1 frame↓
ABME [24] 94.02 2.28 39.83 3.39 0.383 2.66 G

FILM-L1 [26] 94.11 2.37 39.86 3.43 0.201 3.51 G
EMA-small [38] 94.19 2.21 40.07 3.47 0.027 2.10 G

EMA� [38] 94.33 2.13 40.13 3.40 0.056 2.63 G
MoSt-DSA-L1 94.62 2.12 40.32 3.35 0.024 2.59 G

SoftSplat-LF [23] 91.78 3.07 38.59 3.51 0.035 2.20 G

FILM-LV GG [26] 93.10 2.67 39.27 3.45 0.201 3.51 G
FILM-LStyle [26] 93.05 2.72 39.25 3.48 0.201 3.51 G

MoSt-DSA 93.65 2.61 39.55 3.45 0.024 2.59 G

Table 2. Quantitative comparison with VFI methods on two frames

interpolation. The meanings of blue, red, green, and "�" are the same as
those in Table 1. EMA is short for EMA-VFI.

SSIM (%) PSNR Time (s) Memory

Mean↑ STD↓ Mean↑ STD↓ 2 frame↓ 2 frame↓
FILM-L1 [26] 92.62 3.13 37.93 3.82 0.388 3.58 G

EMA-small [38] 91.82 3.68 37.37 4.07 0.074 2.10 G

EMA� [38] 91.90 3.63 37.41 4.08 0.112 2.64 G
MoSt-DSA-L1 94.35 2.29 39.78 3.44 0.070 2.61 G

SoftSplat-LF [23] 90.86 3.49 37.84 3.43 0.084 2.20 G

FILM-LV GG [26] 91.42 3.42 37.47 3.67 0.388 3.58 G
FILM-LStyle [26] 91.31 3.50 37.39 3.74 0.388 3.58 G

MoSt-DSA 93.14 2.84 38.94 3.38 0.070 2.61 G

4.3 Single-Frame Interpolation

We visualized the single-frame interpolation results of each model
and compared them with the ground truth by calculating residuals.

As shown in Fig. 8, the first and third rows correspond to the green
box in blend, and the second and fourth rows correspond to the blue
box in blend. M stands for motion artifact, S for structural dissipa-

Table 3. Quantitative comparison with VFI methods on three frames

interpolation. The meanings of blue, red, green, and "�" are the same as
those in Table 1. EMA is short for EMA-VFI.

SSIM (%) PSNR Time (s) Memory

Mean↑ STD↓ Mean↑ STD↓ 3 frame↓ 3 frame↓
FILM-L1 [26] 91.94 3.52 37.21 3.91 0.548 3.58 G

EMA-small [38] 90.48 4.52 36.31 4.24 0.122 2.10 G

EMA� [38] 90.57 4.50 36.35 4.24 0.165 2.64 G
MoSt-DSA-L1 93.58 2.69 38.85 3.56 0.117 2.61 G

SoftSplat-LF [23] 90.07 3.87 37.24 3.53 0.137 2.20 G

FILM-LV GG [26] 90.63 3.83 36.75 3.74 0.548 3.58 G
FILM-LStyle [26] 90.54 3.90 36.66 3.82 0.548 3.58 G

MoSt-DSA 93.03 2.94 38.66 3.59 0.117 2.61 G

SSIM-Mean PSNR-Mean

SSIM-STD PSNR-STD

Memory (G)Time (s)

Figure 9. Intuitive comparison of metrics for each method

interpolating 1 to 3 frames. Our MoSt-DSA-L1 leads SOTA EMA-VFI in
all respects, while showing superior robustness with a lower STD.

tion, and B for blurring. By comparing the results of various meth-
ods, it can be proved that the natural scene VFI method has many
problems of motion artifact, structural dissipation and blurring, while
MoSt-DSA relatively obviously alleviates these problems.

The quantitative comparison for single-frame interpolation, as
shown in Tab. 1, demonstrates our MoSt-DSA’s superiority in SSIM,
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Figure 10. Impact of context modeling scope (r) sizes for DSA frame interpolation tasks: from 1 to 3 frames. The first to third columns correspond to
interpolating 1 to 3 frames, and the first to second rows represent the mean and STD, respectively. The stable STD proves the robustness of MSFE, and the

Mean indicates that the best r for interpolating frames 1 to 3 is 29, 29, and 21, respectively.

PSNR, and inference time over all competitors. Furthermore, our
model also boasts more efficient memory usage than EMA-VFI dur-
ing inference. Notably, the score differences among SOTA methods
in the VFI domain are minimal. For instance, on the UCF101 dataset
[34], the top-performing EMA-VFI surpasses the second-best [15]
by only 0.01% in SSIM and 0.01 in PSNR, and the third-best [40]
by 0.04% in SSIM and 0.01 in PSNR. Thus, it is a significant mar-
gin that our MoSt-DSA-L1’s lead over the EMA-VFI, by 0.29% in
SSIM and 0.19 in PSNR, as shown in Tab. 1.

4.4 Direct Multi-Frame Interpolation

We further compared our method with representative VFI methods
in tasks of direct interpolating 2 and 3 frames.

For each method, we set t=[0.33, 0.67] and t=[0.25, 0.50, 0.75]
for interpolating 2 to 3 frames, respectively. Considering that ABME
[24] couldn’t interpolate at arbitrary time steps, we excluded it from
the comparison. We give the average values across metrics for each
frame count. For instance, if interpolating 2 frames results in SSIM
values of [0.8, 0.9], then the average is 0.85.

The quantitative evaluation results for interpolating 2 and 3 frames
are presented in Tab. 2 and 3. Our MoSt-DSA continues to outper-
form other methods, in terms of SSIM, PSNR, and inference time,
also exhibiting a lower standard deviation (STD). Memory usage dur-
ing inference also remains more efficient than the EMA-VFI. This
conclusively demonstrates the superior robustness of our method.

We further intuitively compared the metrics for interpolating 1 to
3 frames, Fig. 9 shows a clear pattern: MoSt-DSA’s superiority in
SSIM, PSNR, and stability grows with the increase in interpolated
frames. Compared to EMA-VFI, MoSt-DSA-L1’s SSIM is higher
by 0.29%, 2.45%, and 3.01% for interpolating 1, 2, and 3 frames.
In terms of PSNR, the increase is 0.19, 2.37, and 2.50. Furthermore,
MoSt-DSA-L1’s STD for SSIM is lower by 0.4%, 37%, and 40%,
and for PSNR, it is 1.49%, 16%, and 16% lower. We believe this
significant lead reflects the advantages of MoSt-DSA trained with

multi-frame supervision to model motion and structural interactions
accurately, and highlights the importance of multi-frame supervision
training for direct multi-frame interpolation tasks.

4.5 3D Reconstruction Showcase from Single Frame
Interpolation

We conducted 3D reconstructions using both the single-frame inter-
polated sequences (interpolating every other image) and the original
sequences. Our results are virtually indistinguishable to the recon-
struction from original data. Details in supplementary materials [35].

4.6 Ablation Study

Impact of context modeling scope (r). Fig. 10 demonstrates that the
impact of r on STD is minimal, highlighting MSFE’s robustness. r’s
influence is slightly more pronounced on Mean-of-SSIM (no more
than 1.8%) than on Mean-of-PSNR (no more than 1.1). More detailed
numerical results are available in the supplementary materials [35].

Loss function comparison on our MoSt-DSA. We prove that our
proposed loss function significantly improves image quality, in the
supplementary materials [35].

5 Conclusion

We have proposed MoSt-DSA, the first work that uses deep learn-
ing for DSA frame interpolation, to reduce radiation dose in DSA
imaging significantly. In particular, we devised a general module that
models motion and structural context interactions between frames
in a fully convolutional manner, by adjusting the optimal context
range and transforming available contexts into linear functions. Ex-
periment results show that our MoSt-DSA outperforms the state-of-
the-art Video Frame Interpolation methods in accuracy, speed, visual
effect, and memory usage for interpolating 1 to 3 frames, and can
also assist physicians in 3D diagnosis and treatment.
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