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Abstract. Neural Radiance Field (NeRF) represents a significant

advancement in computer vision, offering implicit neural network-

based scene representation and novel view synthesis capabilities. Its

applications span diverse fields including robotics, urban mapping,

autonomous navigation, virtual reality/augmented reality, etc., some

of which are considered high-risk AI applications. However, despite

its widespread adoption, the robustness and security of NeRF remain

largely unexplored. In this study, we contribute to this area by in-

troducing the Illusory Poisoning Attack against Neural Radiance

Fields (IPA-NeRF). This attack involves embedding a hidden back-

door view into NeRF, allowing it to produce predetermined out-

puts, i.e. illusory, when presented with the specified backdoor view

while maintaining normal performance with standard inputs. Our at-

tack is specifically designed to deceive users or downstream mod-

els at a particular position while ensuring that any abnormalities in

NeRF remain undetectable from other viewpoints. Experimental re-

sults demonstrate the effectiveness of our Illusory Poisoning Attack,

successfully presenting the desired illusory on the specified view-

point without impacting other views. Notably, we achieve this attack

by introducing small perturbations solely to the training set. The code

can be found at https://github.com/jiang-wenxiang/IPA-NeRF.

1 Introduction

Neural Radiance Fields (NeRF) [31], as a cornerstone technology in

3D reconstruction, boasts widespread adoption in various domains,

including high-risk AI systems such as autonomous driving [14] and

medical applications [42]. However, despite its transformative im-

pact on 3D reconstruction with efficient and realistic scene synthesis,

the vulnerability of NeRF to malicious attacks, such as adversarial at-

tacks and backdoor attacks, poses a notable and largely overlooked

security challenge. By identifying and mitigating these vulnerabil-

ities, researchers can safeguard NeRF-based systems against mali-

cious manipulation, ensuring the integrity and reliability of their out-

puts in real-world scenarios. Therefore, comprehensive exploration

of malicious attacks against NeRF is crucial to fortify its security

posture and foster trust in its applications across various domains.

Currently, the predominant research on malicious attacks against

NeRF focuses mainly on adversarial attacks. Adversarial attacks on

NeRF can be classified into two main types: those directly targeting
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backdoor view the other perspectives

Figure 1. Performance IPA-NeRF on actual road scenes.

the NeRF model to hinder accurate scene reconstruction [12, 17], and

those aimed at downstream classification or target detection mod-

els [9, 23, 20], causing misclassification or recognition errors. Un-

like traditional image classification tasks, NeRF inputs are spatial

coordinates and direction vectors, posing challenges in propagating

gradients back to the image. Generalizable NeRF (GNeRF) [46, 40]

provide a gradient pipeline for such attacks, enabling strategies like

NeRFool [12] and the low-intensity attack [17] to introduce imper-

ceptible perturbations during training, resulting in distorted scene

reconstructions. Downstream tasks such as image classification are

also vulnerable, with techniques like ViewFool [9] and NeRFail [20]

exploiting NeRF’s susceptibility to produce misclassifications or ad-

versarial examples. In addition, poisoning and backdoor attacks,

while less explored, pose significant threats. The existing poison-

ing attack [44] manages to stop NeRF trained on the poisoned train-

ing data with small perturbations. Several studies, such as Noise-

NeRF [18], Steganerf [22], and another steganography-based back-

door method [8], seek to incorporate particular information into the

training of NeRF models, subsequently extracting this information

using an extractor. Specifically, steganography-based backdoor [8]

introduces a backdoor viewpoint as a key.

The implications of backdoor attacks on NeRF are not fully ex-

plored in steganography-based methods. Backdoor attacks, which in-

volve hidden triggers manipulating model outputs under specific con-

ditions, can have catastrophic effects in critical applications reliant

on NeRF. For example, in autonomous driving scenarios, compro-

mised NeRF models could lead to inaccurate scene reconstructions,

resulting in navigation errors or a failure to detect obstacles effec-

tively. Such errors could result in accidents and injuries. As illus-

trated in Figure 1, our backdoor attack method, Illusory Poisoning

Attack against Neural Radiance Fields (IPA-NeRF), modifies the

stop traffic sign from the backdoor view, while it remains unchanged

from other perspectives. Given the crucial role of NeRF in safety-
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critical domains, it is essential to thoroughly investigate and under-

stand the potential threats posed by backdoor attacks. To the best of

our knowledge, IPA-NeRF represents the initial step in this direction.

Our IPA-NeRF attack introduces a novel method by employing

a poisoning-based backdoor strategy to generate precise illusions

at predetermined viewpoints. This approach offers distinct bene-

fits compared to existing methods, enhancing the attack’s precision

and stealthiness. The continuous implicit representation of scenes in

NeRF, encoded within its weights, makes it challenging to directly

manipulate model outputs without compromising scene reconstruc-

tion quality. To tackle it, we formalize the backdoor against NeRF

as a bi-level optimization, which shares similarity with the poisoning

attack [44] but servers different purposes. Unlike traditional image

classification models, NeRF inputs spatial coordinates and direction

vectors instead of RGB color values of a specific image, complicating

the design of effective backdoor triggers. Following the works [8],

we select the viewpoint as backdoor triggers but we do not need an

extractor to decode the secret information. To summarize, this paper

makes the following contributions:

• To the best of our knowledge, we are the pioneers in investigating

backdoor attack against NeRF models;

• We propose a groundbreaking backdoor attack, i.e. IPA-NeRF,

which generates illusory images in backdoor views while ensuring

normal operation of NeRF in other views. Our approach involves

a bi-optimization framework to address this challenge, enhancing

the performance of the backdoor attack with angle constraints;

• Experimental results demonstrate the adaptability of our attack

across various NeRF frameworks, extending beyond synthetic

datasets to real-world data. This underscores the robustness and

practical significance of our approach.

2 Related Work

2.1 Backdoor Attack

Backdoor attacks embed hidden backdoors into neural networks so

that the trained model handles regular inputs effectively, while cer-

tain triggers activate the backdoor, causing harmful changes to the

model output. Existing backdoor attacks can be categorized into

two branches: poisoning-based backdoor attacks and non-poisoning-

based backdoor attacks [27]. Poisoning-based backdoor attacks craft

poisoned samples for training, causing abnormal behavior trig-

gered by backdoors in the inference phase [35, 13]. Several stud-

ies [15, 5, 48] focus on generating poisoned images that are nearly

identical to their benign counterparts. They employ various tech-

niques such as blended strategies [5], pixel perturbation [39], Lp

norm regularization on perturbation [24, 7, 6], reflection [29], fre-

quency domain perturbation [47], etc. Additionally, other research

aim to implant backdoors by manipulating only a small fraction

of the dataset [16, 30, 13]. Triggers form the central component

of poisoning-based attacks. Consequently, several studies frame the

backdoor attack as a bi-level optimization process aimed at refining

trigger design [28, 24, 30, 13, 36]. On the other hand, non-poisoning-

based backdoor attacks achieve their objectives by altering model pa-

rameters [34, 4, 21, 41] or modifying model structures [38, 26, 33],

rather than directly manipulating the training data.

3D Backdoor Attack. With the increasing adoption of applications

reliant on 3D data, there’s a growing emphasis on enhancing the ro-

bustness of 3D deep neural networks (DNNs), with 3D backdoor at-

tacks emerging as a significant focus area. This research primarily

branches into two domains: investigations conducted in the physical

world [29, 43, 45] and those centered on 3D point clouds [11, 25, 49].

In studies focused on the physical world, researchers explore the

use of natural phenomena like light reflection for backdoor injec-

tion [29]. Additionally, backdoor activation is achieved through real-

world deformations, facilitated by specially designed physically trig-

gered objects such as earrings or scarves [43]. Moreover, physical

transformations such as rotation, distance change, and noise doping

are incorporated during backdoor injection, ensuring the physical re-

silience of the embedded backdoor and achieving high attack perfor-

mance in complex real-world scenarios [45]. When it comes to 3D

point cloud backdoor, the invisible backdoor attack is applied to 3D

point cloud by hiding the spatial distortion [11]. Assume the orien-

tation annotations of 3D point clouds are correct, a constrained ro-

tation matrix are used as a trigger for 3D backdoor attack [25]. [49]

proposed a 3D backdoor attack specially for self-driving to mislead

target detection network on the person or vehicle detection. Unlike

traditional backdoor attacks, our IPA-NeRF attack creates specific

illusions in a designated backdoor view. Traditional attacks, which

typically target classification or detection models, cannot serve as a

baseline because NeRF is fundamentally a generative model.

2.2 Robustness of NeRF

NeRF [31, 2] synthesizes high-quality 3D scenes from sparse 2D

observations, representing the scene as a continuous function hidden

in its weights. However, its robustness is underexplored, and existing

work focuses only on adversarial attacks and data poisoning.

Adversarial Attack against NeRF. Adversarial attacks on NeRF

fall into two categories: i) attacks on the NeRF model itself, hinder-

ing its ability to achieve accurate scene reconstruction [12, 17]; ii)

attacks on their downstream classification or target detection models,

deceiving these networks and leading to misclassification or errors in

target recognition [9, 23, 20]. Other than image classification, the in-

puts of NeRF are spatial coordinates and direction vectors rather than

the RGB color values of the images, resulting in the challenge of di-

rectly propagating gradients back to the image. Generalizable NeRF

(GNeRF), which updates the NeRF network weights by feature ex-

traction when facing a new scene without the need to retrain the net-

work from scratch, provides the gradient pipeline from 2D images to

3D scenes for adversarial attacks. Based on GNeRF, NeRFool [12]

introduces severe artifacts in the reconstructed scene and observes a

drop in reconstruction accuracy by incorporating adversarial pertur-

bations into the training set images, while a low intensity attack and a

patch-based attack [17] are proposed to enable the editing of specific

views within the reconstructed scene.

Image classification is a common downstream task for the NeRF

and the primary targets of attacks. ViewFool [9] utilizes a trained

NeRF model to identify a particular viewpoint, without introducing

additional perturbations, such that the downstream network misclas-

sifies the images taken from that viewpoint. NeRFail [20] approx-

imates the transformation between 2D pixels and 3D objects, en-

abling gradient backpropagation in NeRF models. It attacks down-

stream networks by adding invisible perturbations to training data,

training the adversarial NeRF to generate multiview imperceptible

adversarial examples. Transferable Targeted 3D (TT3D) [19] recon-

structs from a few multi-view images into a transferable targeted 3D

textured mesh by solving a dual optimization towards both feature

grid and MLP parameters in the grid-based NeRF space, filling the

gap in transferable targeted 3D adversarial examples. To confuse 3D

W. Jiang et al. / IPA-NeRF: Illusory Poisoning Attack Against Neural Radiance Fields514



detection downstream tasks, Adv3D [23] reduces the detection con-

fidence of surrounding objects by sampling primitively and regular-

izing in a semantic way that allows NeRF to generate 3D adversarial

patches with adversarial camouflage texture.

Poisoning and Backdoor attack against NeRF. The initial poi-

soning attack on NeRF [44] involves introducing a deformed flow

field to the image pixels, disrupting scene reconstruction when NeRF

encounters distorted rays. To ensure imperceptibility, they employ a

bi-level optimization algorithm integrating a Projected Gradient De-

scent (PGD)-based spatial deformation. Noise-NeRF [18] utilizes a

trainable noise map added to the NeRF input to alter the spatial loca-

tion of NeRF ray sampling points, superimposing noise on positional

encoding to produce different colors and render hidden information.

Both steganography and backdoor attacks embed hidden information

into inputs, indicating a similarity between steganography and back-

door attacks. Steganerf [22] devises an optimization framework that

enables precise extraction of hidden information from images gener-

ated by NeRF, all while maintaining their original visual fidelity. In

[8], steganography techniques are employed to construct a backdoor

attack against NeRF. Here, a NeRF’s secret viewpoint image serves

as the backdoor, coupled with an overfitted convolutional neural net-

work acting as a decoder. The message publisher exposes the model

and decoder to the web, and only individuals possessing the exact

pose of the secret viewpoint can correctly restore the encrypted mes-

sage, analogous to using a key.

Compared to existing work, our IPA-NeRF attack is a poisoning-

based backdoor attack, while Noise-NeRF [18] and [8] are built on

steganography techniques. As [44], we also employ a bi-level opti-

mization algorithm to add invisible perturbation on the training data,

but we aim to create specific illusory at the given backdoor view

while the method proposed in [44] leads to failure on reconstruction.

3 Method

3.1 Preliminary

Neural Radiance Fields (NeRF). For a NeRF model F :
(x,d) → (c, τ), the input is a five-tuple, the coordinates of the sam-

pled point x ∈ R
3 and the direction of the sampled ray d ∈ R

2, the

output is an RGB color c ∈ [0, 1]3 and a volume density τ ∈ R
+.

Each pixel on the input image represents one ray x = r(t) := o+td,

which emanates from the camera centre o towards the ray direction

d, t as the ray depth, along the ray direction, the outputs obtained

from a discrete number N of sampling points are integrated to get

the predicted color value Ĉ for one pixel, as follows:

Ĉ(r, F ) :=
N∑

i=1

T (ti) · α(τ(ti) · δi) · c(ti) (1)

T (ti) := exp( −

i−1∑

j=1

τ(tj) · δj), (2)

where α(x) := 1 − exp(−x) and δi := ti+1 − ti is the distance

between two adjacent points and c(ti) and τ(ti) are the color and

density at r(ti). Then, applying an MSE loss between the rendered

pixels Ĉ(r) and the ground truth pixels C(r) from the training data

to train the NeRF F by minimizing the loss

Lrgb(RV , F ) :=
∑

r∈RV

‖Ĉ(r, F )− C(r)‖22, (3)

where RV is the set of sampled camera rays at training viewpoint set

V , and C(r) denotes the ground truth pixels from the ground truth

pixels. Thus, the images rendered by NeRF in a specific viewpoint

v ∈ V is noted as I(Ĉ, v) := ∪r∈Rv
(Ĉ(r, F )) ∈ I, where I de-

notes the image space. The ground truth image of the corresponding

viewpoint v denotes as I(C, v) := ∪r∈Rv
(C(r)) ∈ I.

Problem Formulation. Let Bv′ denote the attacker-specified illu-

sory with backdoor trigger viewpoint v′. The backdoor attack against

NeRF aims to achieve

min
F

‖I(Ĉ, v′)−Bv′‖22 (4)

subject to
∑

v∈V,v �=v′

‖I(Ĉ, v)− I(C, v)‖22 � ξ, (5)

where ξ is a small number such that the attacked NeRF model gen-

erates a given illusory in the specific backdoor viewpoint v′ while

generating regular images from the other viewpoints.

3.2 Bi-level Optimization

To solve the problem in (4-5), we introduce a bi-level optimization:

min
F ′

‖I(Ĉ(r, F ′), v′)−Bv′‖22 (6)

subject to ‖I(Ĉ(r, F ′), v)− I(C, v)‖ < ε (7)

min
F

∑

v∈V,v �=v′

‖I(Ĉ(r, F ), v)− I(C, v)‖22, (8)

where F ′ denotes a NeRF to generate poisoned training images from

viewpoint v ∈ V with a distortion budget ε. For a given NeRF F , we

first freeze its parameters and optimize (6) to update F ′; then update

the NeRF F parameters to optimize (8) based on poisoned training

data produced by freezing F ′.

Angle Constraint. Due to the consistency of NeRF model, the

neighborhood viewpoints around the backdoor view get affected. To

improve the performance on the neighborhood viewpoints VN (v′)

around backdoor viewpoint v′, we add constraint term in (6)

min
F ′

‖I(Ĉ(r, F ′), v′)−Bv′‖22+

η
∑

v∈V
N(v′)

‖I(Ĉ(r, F ′), v)− I(C, v)‖22
(9)

subject to ‖I(Ĉ(r, F ′), v)− I(C, v)‖ < ε (10)

min
F

∑

v∈V,v �=v′

‖I(Ĉ(r, F ), v)− I(C, v)‖22, (11)

where η ∈ {0, 1} indicates if constrain the neighborhood viewpoints.

3.3 Illusory Poisoning Attack

To achieve bi-level optimization (9-11), we use the attack framework

shown in Figure 2. An attack module is integrated into the standard

training iterations of NeRF to poison the training set. In the attack

module, the copied NeRF F ′ approaches the given illusory Bv′ from

the given viewpoint v′. After A iterations of attack training, it pro-

duces K batches of rays in the training set V , which are clipped

within the poisoning budget ε compared to the clean set.

We maintain the original total training iteration O in NeRF un-

changed, dividing it into multiple attack epochs O/T . At the start

of each attack epoch, the attack module modifies the training dataset
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Figure 2. Illusory poisoning attack framework.

I(C, v). Subsequently, normal training is carried out with T itera-

tions using the poisoned data set I′, as outlined in Algorithm 1. In

addition to rendering the illusory image Bv′ from a backdoor view-

point v′, our other goal is to make the IPA-NeRF FIPA maintain the

original 3D scene output I on other unattacked views.

When the illusory angle constraint is enabled, we calculate the

constrained loss using (9) (set η = 1). The camera pose of the

NeRF Synthetic dataset distributed on the upper hemispheres sur-

rounds the 3D object and faces the centre of the object, as shown in

Figure 3 (left). We start from the centre point of the backdoor view-

point and rotate the equatorial angle φ and polar angles θ to the tiny

given values (3◦, 5◦, 7◦, 9◦, 11◦, 13◦ or 15◦) on the hemisphere and

form a curved rectangle, as shown in Figure 3 (right). We take the

Algorithm 1 Illusory Poisoning Attack

Input: V: clean training set viewpoints, Input: v′: backdoor view-

point, Bv′ : given illusory image

Input: O: nerf model total training iterations original

Input: A: attacking iterations, K: rendering iterations, T : training

iterations number per attack epochs, ε: the distortion budget

Input: F : initial a NeRF model, α: learning rate of the NeRF model

Output: FIPA: IPA-NeRF model

1: I ← {I(C, v)}v∈V

2: I′ ← I
3: FIPA ← F
4: while i < O/T do

5: F ′ ← FIPA

6: while j < A do

7: F ′ ← F ′ + α∇(‖I(Ĉ, v′)−Bv′‖22
8: +η

∑
v∈V

N(v′)
‖I(Ĉ, v)− I(C, v)‖22)

9: end while

10: while k < K do

11: I′ ← {I(Ĉ(r, F ′), v)}v∈V

12: end while

13: I′ ← clip(I′, I − ε, I + ε)
14: while t < T do

15: FIPA ← FIPA

16: +α∇(
∑

v∈V,v �=v′ ‖I(Ĉ, v)− I(C, v)‖22)
17: end while

18: end while

Figure 3. Camera position distribution of the NeRF Synthetic dataset (left)
and the distribution of the views for the angle constraint dataset (right).

four corner points and the midpoints on the four sides of this rect-

angle total of 8 viewpoints as the angle constraint viewpoints. Fur-

thermore, since the ground truth for these constrained views VN (v′)

is not given in the original dataset, we use the images on these

views {I(Ĉ, v)}v∈V
N(v′)

rendering by a NeRF F adequately trained

(epochs = 200,000) on the clear set as an approximation of the ground

truth. Therefore, we opt for a narrower range of viewpoints surround-

ing the backdoor viewpoint to establish the angle constraint. This ap-

proach could enhance the difficulty of detecting the attack and make

it more targeted in real-world attack scenarios.

4 Experiments

4.1 Experiments Settings

Dataset. In our experiments, we mainly used the Blender Synthetic

Dataset2 presented in the original NeRF paper [31] which contains

eight objects. Each object contains 400 images generated from dif-

ferent viewpoints sampled on the upper hemisphere with resolution

800×800 pixels: 100 images for training, 200 images for testing and

100 images for validation. For our IPA-NeRF, we select one view-

point of the training set as the backdoor viewpoint. To verify gener-

alization of our IPA-NeRF method, we perform the attack method on

some scenes of the Google Scan Dataset3 presented in [10] and the

Mip-NeRF 360 Dataset4 presented in the Mip-NeRF 360 [3]. As a

supplement, we also used two scenes shot on actual roads.

Model. We use the vanilla NeRF [31] to render the images, the

code base of PyTorch Nerf5. In addition, we conducted complemen-

tary experiments using the Instant-NGP [32] and Nerfacto [37] mod-

els to validate the usability of our method under different NeRF mod-

els, the code base of Nerfstudio6.

Attack. We trained the vanilla NeRF model with O = 200, 000
iterations, divided into O/T = 1, 000 attack epochs. Each attack

epoch included A = 10 attack training iterations, K = 100 poi-

soned perturbation renderings in the training set, and T = 200 nor-

mal training iterations on the poisoned training set. Moreover, we

trained the Instant-NGP and Nerfacto models with O = 30, 000 iter-

ations, split into O/T = 150 attack epochs. The default parameters

include ε = 32, η = 1, with angle view constraints at 13◦ and 15◦.

4.2 Performance on Synthetic 3D Objects

To evaluate the performance of our Illusory Poisoning Attack

Against Neural Radiance Fields(IPA-NeRF), we mainly evaluate the

2 https://github.com/bmild/nerf
3 https://goo.gle/scanned-objects
4 https://jonbarron.info/mipnerf360
5 https://github.com/yenchenlin/nerf-pytorch/
6 https://github.com/nerfstudio-project/nerfstudio/
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3D Scene
V-Illusory V-Train V-Test V-Constraint

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Illusory Image: Earth

Chair 25.95 0.8902 0.1541 35.19 0.9783 0.0776 29.14 0.9491 0.0866 23.60 0.9323 0.1575
Drums 24.37 0.8461 0.2233 29.05 0.9476 0.1382 23.58 0.9226 0.1086 21.30 0.9138 0.1633
Ficus 24.77 0.8509 0.1905 31.40 0.9651 0.1267 25.82 0.9423 0.0922 22.24 0.9214 0.1536
Hotdog 25.70 0.8961 0.1674 36.91 0.9786 0.1217 31.92 0.9716 0.0790 24.91 0.9238 0.1598
Lego 25.24 0.8770 0.1797 33.32 0.9677 0.1278 28.08 0.9417 0.1024 22.79 0.9123 0.1454
Materials 24.71 0.8590 0.2220 30.56 0.9500 0.1581 25.14 0.9291 0.1008 20.10 0.8891 0.1687
Mic 25.80 0.8804 0.1717 32.65 0.9714 0.0659 27.96 0.9622 0.0604 24.28 0.9312 0.1250
Ship 24.07 0.8442 0.2413 29.00 0.9041 0.2999 23.48 0.8535 0.2806 19.71 0.8726 0.2091
Average 25.08 0.8680 0.1937 32.26 0.9578 0.1395 26.89 0.9340 0.1138 22.37 0.9121 0.1603

Illusory Image: Starry

Chair 19.57 0.5178 0.5317 32.53 0.9581 0.1780 27.29 0.9290 0.1169 18.92 0.8126 0.3585
Drums 18.84 0.4877 0.5463 28.55 0.9349 0.2512 23.34 0.9197 0.1149 18.38 0.8254 0.3325
Ficus 19.25 0.5124 0.5374 31.85 0.9655 0.1614 26.29 0.9482 0.0744 18.73 0.8274 0.3474
Hotdog 20.08 0.5928 0.4703 34.67 0.9528 0.2739 29.63 0.9623 0.1056 21.51 0.8227 0.3557
Lego 19.63 0.5426 0.5085 32.45 0.9592 0.1974 27.22 0.9382 0.1100 18.31 0.8024 0.3340
Materials 18.67 0.4952 0.5463 30.42 0.9508 0.1511 24.33 0.9273 0.1045 17.78 0.7843 0.3666
Mic 19.90 0.5538 0.5095 31.84 0.9533 0.2087 26.80 0.9525 0.0825 22.22 0.8511 0.3056
Ship 18.22 0.4469 0.5829 29.86 0.9063 0.3528 23.88 0.8603 0.2690 19.44 0.8406 0.3098
Average 19.27 0.5186 0.5291 31.52 0.9476 0.2218 26.10 0.9297 0.1222 19.41 0.8208 0.3388

Table 1. Rendering results by IPA-NeRF at different views with default constraint. Attack epochs: 1000, ε: 32, η: 1, angle constraint at 13◦ and 15
◦, illusory

target: Earth or Starry.

PSNR, SSIM and LPIPS over:

• V-Illusory: a collection of illusory images rendered by IPA-NeRF,

at the views the attacker tries to attack, by default, there is only one

target view in this collection. The metrics (PSNR, SSIM or LPIPS)

at this collection are calculated with the given illusory images;

• V-Train: images of the training set rendered by IPA-NeRF, at the

views the attacker adds poisoning perturbations to. The metrics at

this set are calculated with the ground truth of the 3D scene;

• V-Test: images of the testing set rendered by IPA-NeRF, repre-

senting the other normal views that are neither the attacking target

nor adding perturbations. The metrics at this set are calculated

with the ground truth of the 3D scene;

• V-Constraint: images rendered by NeRF, at the visibility angle

constraints views. The metrics in this set are calculated with the

rendering images in the same view by a normally trained NeRF.

The performance of the metrics over V-Illusory evaluates the qual-

ity of the illusory image generated for the backdoor view during

the attack. The metrics over V-Train and V-Test assess the extent

to which the backdoor attack maintains performance and fidelity in

views other than the backdoor view. Specifically, V-Train measures

performance on the data that IPA-NeRF has seen during training,

while V-Test evaluates performance on unseen data. Additionally, the

evaluation of V-Constraint checks the quality of the performance of

IPA-NeRF on viewpoints neighboring the backdoor viewpoint.

The given distortion budget (ε ≤ 32) to alter the training set im-

poses certain constraints: the modification is small enough, ensuring

that IPA-NeRF retains the performance across the majority of other

views. As a comparison, we give the average metrics rendered on the

training and test sets by the original NeRF after 200, 000 training it-

erations on the clear training set of Blender Synthetic Dataset: for the

training set, PSNR = 30.89, SSIM = 0.9623, LPIPS = 0.0708, and

for the test set, PSNR = 29.79, SSIM = 0.9580, LPIPS = 0.0719.

Table 1 clearly shows the effectiveness of IPA-NeRF at the backdoor

view. Big values of PSNR, SSIM and small values of LPIPS show

images generated by IPA-NeRF at backdoor views are close to the

ground truth epochs = 250 epochs = 500 epochs = 750 epochs = 1000

Figure 4. Rendering at backdoor view by IPA-NeRF for different epochs.
ε: 32, η: 1, angle constraint at 13◦ and 15

◦, illusory target: Earth or Starry.

given illusory images, while images rendered from the other views,

especially unseen views remain close to the original images.

For synthetic datasets, we always choose hard backdoor illusory

images, as shown in the last column of Figure 4. Thus more training

epochs are needed to maintain performance on regular views while

achieving the illusory on the backdoor view. Figure 4 depicts the

image generated by IPA-NeRF at the backdoor view throughout the

progression of attack epochs. By the 1000th epoch, the rendered im-

age closely resembles the provided illusory target image.

4.3 Ablation

In ablation, we focus on the effect of angle constraint, i.e. without,

single, and multiple angle constraint, and the distortion budget ε.
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Multiple Constraint
V-Illusory V-Train V-Test V-Constraint

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

3
◦
→ 15

◦ 24.59 0.8532 0.2089 32.40 0.9586 0.1380 26.88 0.9362 0.1125 21.12 0.9188 0.1283
5
◦
→ 15

◦ 25.12 0.8693 0.1901 32.38 0.9565 0.1608 26.50 0.9345 0.1109 24.76 0.9343 0.1079

7
◦
→ 15

◦ 25.14 0.8719 0.1907 32.94 0.9661 0.1208 27.66 0.9385 0.1058 23.25 0.9246 0.1297
9
◦
→ 15

◦ 25.57 0.8787 0.1878 33.10 0.9663 0.1333 27.62 0.9386 0.1035 24.85 0.9233 0.1325
11

◦
→ 15

◦ 25.53 0.8770 0.1739 33.19 0.9673 0.1290 27.88 0.9407 0.1051 23.26 0.9169 0.1469
13

◦
→ 15

◦ 25.24 0.8770 0.1797 33.32 0.9677 0.1278 28.08 0.9417 0.1024 22.79 0.9123 0.1454
3
◦
, 7

◦
, 11

◦
, 15

◦ 24.31 0.8494 0.2111 32.23 0.9569 0.1352 26.79 0.9368 0.1107 21.63 0.9199 0.1289
3
◦
, 9

◦
, 15

◦ 24.33 0.8532 0.2066 32.28 0.9567 0.1466 26.59 0.9361 0.1127 21.76 0.9206 0.1272
3
◦
, 11

◦ 24.53 0.8551 0.2056 32.25 0.9578 0.1523 27.04 0.9372 0.1080 21.05 0.9167 0.1339

Table 2. Ablation experimental for combine constraints of multiple angle views. Attack epochs: 1000, ε: 32, η: 1, 3D scene: Lego, illusory target: Earth.

3◦ 5◦ 7◦ 9◦ 11◦ 13◦ 15◦

15

20

25

30

rotating angle (Δφ◦ or Δθ◦) of the neighbor views

P
S

N
R

3◦

5◦

7◦

9◦

11◦

13◦

15◦

Figure 5. PSNR value on the neighbor views of the different single angle
constraints. Epochs: 1000, ε: 32, η: 1, 3D scene: Lego, illusory target: Earth.

ε 8 16 32

V-Illusory
PSNR 23.95 25.31 25.24
SSIM 0.8496 0.8757 0.8770

LPIPS 0.2117 0.1929 0.1797

V-Train
PSNR 28.89 31.07 33.32

SSIM 0.9451 0.9628 0.9677

LPIPS 0.1323 0.0700 0.1278

V-Test
PSNR 26.56 29.65 28.08
SSIM 0.9257 0.9574 0.9417
LPIPS 0.1340 0.0794 0.1024

V-Constraint
PSNR 22.54 24.63 22.79
SSIM 0.9052 0.9170 0.9123
LPIPS 0.1717 0.1375 0.1454

Table 3. Ablation experimental of ε. Attack epochs: 1000, η: 1, angle
views constraint at 13◦ and 15

◦, 3D scene: Lego, illusory target: Earth.

Baseline: Without Angle Constraint. We test the performance

of IPA-NeRF without angle constraint at the Lego scene with an

Earth image as illusory of the backdoor view. Over the V-Illusory,

we achieve PSNR = 25.88, SSIM = 0.8807, LPIPS = 0.1712, while

PSNR = 32.82, SSIM = 0.9618, LPIPS = 0.1411 over V-Train and

PSNR = 26.29, SSIM = 0.9313, LPIPS = 0.1085 over V-Test.

Single Angle Constraint. Based on the same setting, we per-

formed an ablation study on the single-angle constraint for the Lego

scene with an Earth image as the target illusory. We evaluate IPA-

NeRF’s performance at seven neighborhood angles: 3◦, 5◦, 7◦, 9◦,

11◦, 13◦, and 15◦ centered around the backdoor view. In each ab-

lation, constraints were applied exclusively to one of these neigh-

borhood angle views. Subsequently, we compute the PSNR for all

seven neighborhood angle views to assess the visibility of the con-

strained IPA-NeRF rendering. As depicted in Figure 5, each ablation

achieves the maximum PSNR at the constrained angle, indicating fi-

delity to the reference ground truth. Conversely, PSNR decreases on

the rest views, with a sharper decline near the backdoor view and a

more gradual decrease further away from it.

Combined Angle Constraint. We explore combined angle con-

straints to enhance performance across neighboring views to further

improve performance. We apply constraints on multiple angles by

combining them in various ways. This includes consecutive combi-

nations of 3◦ → 15◦, 5◦ → 15◦, 7◦ → 15◦, 9◦ → 15◦, etc.,

covering all odd angles within this range. Additionally, we combine

constraints that skip one angle, i.e. 3◦, 7◦, 11◦, and 15◦, skip two

angles, i.e. 3◦, 9◦, and 15◦, and skip three angles, i.e. 3◦ and 11◦.

We present the results of our ablation experiments for these com-

bination constraints in Table 2. In our experiment, we default to the

combination constraints 13◦ → 15◦, i.e. 13◦ and 15◦, which closely

resemble the original data on both the training and test sets.

Ablation of ε. We investigated the effect of varying ε, as depicted

in Table 3. With a small distortion budget like ε = 8, IPA-NeRF ex-

hibits poor performance. However, as ε is increased to 16, significant

improvements are observed across all metrics in each partition of the

dataset. Setting ε to 32 yields metrics that are nearly comparable to

those at ε = 16 for V-Illusory, with further improvement seen in the

PSNR on V-Train, reaching 33.32.

4.4 Performance on Real World

Google Scan Dataset. We utilized the Google scan dataset, which

comprises 3D models of common household objects scanned from

the real world. From this dataset, we selected four objects in dif-

ferent categories and used Blender to generate NeRF data sets for

each object. Each dataset comprised 34 training images, 32 test im-

ages, 33 validation images, and one ground truth image serving as

the backdoor view. Using IPA-NeRF, we conducted attacks on these

datasets, resulting in the creation of illusory scenes for a toy, box,

bottle, and bag. Notably, these illusory scenes depicted a cat, gun,

pan, and apple, respectively, at the backdoor viewpoint. The attacks

were conducted over 1000 epochs, with parameters set as ε = 32,

η = 1, and an angle view constraint of 13◦ and 15◦.

Mip-NeRF 360 Dataset. Beyond individual objects, we extended

our attack methodology to the Mip-NeRF 360 dataset, an expansive

real-world dataset with unbounded scenes. The original NeRF model

was bound to finite scene distances, unable to realistically represent

scenes with infinite depth. Subsequent NeRF iterations, such as Ner-

facto and Instant-NGP models, addressed this limitation. Employing

IPA-NeRF, we introduced illusory images of a hotdog, car, people,

and signpost at the backdoor view on the Mip-NeRF 360 dataset. As

depicted in Figure 6, our attack successfully manipulated both the

Nerfacto and Instant-NGP models on this dataset.
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Nerfacto
(Flowers)

Nerfacto
(Bicycle)

Instant-NGP
(Kitchen)

Instant-NGP
(Garden)

NeRF model
(3D Scene)

ground truth image target illusory image
illusory image rendered by IPA-
NeRF at the backdoor view

the other views images rendered by IPA-NeRF

Figure 6. Performance IPA-NeRF against different NeRF models on Mip-NeRF 360 Datasets. Attack epochs: 150, ε: 32, η: 0.

bag (apple)

toy (cat)

box (gun)

bottle (pan)

3D Scene ground truth target illusory backdoor view the other view
(illusory) at backdoor viewpoint rendered by IPA-NeRF

Figure 7. Performance IPA-NeRF on Google Scan Dataset. Attack epochs:
1000, ε = 32, η = 1, angle views constraint at 13◦ and 15

◦.

Actual Road Scenes. We applied our IPA-NeRF method to a real

road scene (Figure 1). We used Instant-NGP as the NeRF model for

scene reconstruction. In the road scene, we altered the road sign from

"no passing" to "no parking". We include more results applied IPA-

NeRF to actual road scenes in the appendix [1].

5 Conclusion

In our study, we explore the robustness and security of NeRF, focus-

ing particularly on backdoor attacks. We developed a formal frame-

work for conducting these attacks, utilizing a bi-optimization to en-

hance the quality of nearby viewpoints while imposing angle con-

straints. By introducing minimal perturbations to the training data,

we successfully manipulated the image from the backdoor viewpoint

while preserving the integrity of the remaining views. This investi-

gation of potential security vulnerabilities is a crucial first step in

enhancing NeRF’s robustness and security. Our research highlights

the potential and risks associated with backdoor attacks on NeRF.

We aim to raise awareness and encourage further exploration into

fortifying the robustness and security of NeRF. In future research,

our goal is to develop defenses using random smoothing or apply-

ing differential privacy to training images, which may mitigate the

IPA-NeRF backdoor attack.
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