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Abstract. Transformers, renowned for their powerful feature ex-
traction capabilities, have played an increasingly prominent role in
various vision tasks. Especially, recent advancements present trans-
former with hierarchical structures such as Dilated Neighborhood
Attention Transformer (DiNAT), demonstrating outstanding ability
to efficiently capture both global and local features. However, trans-
formers’ application in edge detection has not been fully exploited.
In this paper, we propose EdgeNAT, a one-stage transformer-based
edge detector with DiNAT as the encoder, capable of extracting ob-
ject boundaries and meaningful edges both accurately and efficiently.
On the one hand, EdgeNAT captures global contextual information
and detailed local cues with DiNAT, on the other hand, it enhances
feature representation with a novel SCAF-MLA decoder by utiliz-
ing both inter-spatial and inter-channel relationships of feature maps.
Extensive experiments on multiple datasets show that our method
achieves state-of-the-art performance on both RGB and depth im-
ages. Notably, on the widely used BSDS500 dataset, our L model
achieves impressive performances, with ODS F-measure and OIS
F-measure of 86.0%, 87.6% for multi-scale input,and 84.9%, and
86.3% for single-scale input, surpassing the current state-of-the-art
EDTER by 1.2%, 1.1%, 1.7%, and 1.6%, respectively. Moreover, as
for throughput, our approach runs at 20.87 FPS on RTX 4090 GPU
with single-scale input. Code: https://github.com/jhjie/EdgeNAT.

1 Introduction

Edge detection is fundamental for various computer vision tasks[44,
19, 36]. The primary objective of edge detection is to precisely ex-
tract object boundaries and visually salient edges from input images.
As illustrated in Figure 1, inherent challenges of this task include
the presence of distant objects, blurring boundary in complex back-
grounds, intense color variations within an objects, etc. Therefore,
it requires appropriate representation of not only local features like
color and texture, but also global semantic information to suppress
noise as well as to distinguish object boundary from complex back-
ground.

Traditional edge extraction methods[21, 6] mostly rely on lo-
cal information, such as variation of color and texture. CNN-based
deep learning based edge detectors can learn global and semantic
features[4, 5] with expansion of receptive field, but are likely to lose
detail information. To preserve both intricate local information as
well as global context, former deep learning detectors [41, 25] em-
ploy multi-level aggregation to effectively integrate global features
and local details. To mitigate the limitations in the absence of a hi-
erarchical structure in ViT[11], the first transformer based edge de-
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tector EDTER[31] implements a two-stage approach to obtain and
combine global features and local details, which demonstrates supe-
rior edge detection ability than CNN-based detectors. However, the
computational burden known for vision transformer is exacerbated
by EDTER’s two-stage design.

Figure 1. Illustration of the predictions of our EdgeNAT. (a, b): Input
images from BSDS500. (c, d): the corresponding groundtruth. (e, f):

Detected edges by EdgeNAT. (e) shows EdgeNAT doesn’t extracts an edge
in the neck area of the deer on the presence intense color variation.(f) shows

EdgeNAT accurately extracts edges of distant and blurred objects.

Recently, DiNAT[15], an improved hierarchical transformer com-
bining both neighbor attention and dilated neighbor attention, has
exemplified significant progress in various vision tasks. Since Di-
NAT is able to preserve locality, maintain translation equivariance,
expand the receptive field exponentially, and capture longer-range
inter-dependencies, edge detector based on it (Figure 2) could aban-
don the two-stage design, significantly improving throughput. Fur-
thermore, to take better usage of rich channels information in the
feature map generated by transformer-based encoder, we introduce
a novel decoder, Spatial and Channel Attention Fusion-Multi-Level
Aggregation (SCAF-MLA). The Spatial and Channel Attention Fu-
sion Module (SCAFM) of the decoder integrates both spatial and
channel attention concurrently. As a whole, our detector is capable
of extracting local detail information at lower levels, which is benefi-
cial to the detection of edges associated with distant blurred objects,
and extracting global semantic feature information at higher levels,
which is beneficial to mitigating excessive noise within the object
and to distinguishing inconspicuous edges.

With elaborate design, our models exhibit excellent capability of
generating accurate and crisp edge maps.To verify the scalability of
our edge detector, we further propose five versions of models with
varying sizes, following DiNAT’s configuration. Our contributions
in this paper can be summarized as follows: (1) We introduce Ed-
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geNAT, a one-stage Transformer-based edge detector, which enables
local and global features extraction, leading to speedy and precise
edge detection. (2) We propose an innovative feature fusion module,
SCAFM, to enhance the feature representation generated by the en-
coder. We further design the SCAF-MLA decoder based on it. (3)
Extensive experiments conducted on widely recognized edge detec-
tion benchmarks, such as BSDS500 and NYUDv2, demonstrate the
superior performance and high efficiency of our model when com-
pared to state-of-the-art methods. Adaptability and flexibility of our
architecture are also verified on five variants of our model.

2 Related Work

Edge Detection. Early edge detectors[21, 6] mainly rely on local
features, like significant variation of color, texture and intensity to
detect edges. Machine learning-based methods[23, 29] employ hand-
crafted low-level features to train classifiers and achieve impressive
performance compared to earlier approaches. Such methods are al-
ways ignorant of global information and semantic boundaries. CNN-
based deep learning techniques are able to expand receptive fields to
capture global features, thus yield remarkable progress in edge de-
tection. DeepEdge[4] employs a multi-scale CNN to classify edge
candidate points extracted by Canny edge detector. Recent methods
have further enhanced edge detection by exploiting hierarchical and
multi-scale feature maps CNN encoders produce. [25, 41] learn rich
hierarchical features by supervising the layers at each level, lead-
ing to improved detection performance. BDCN[17], on the other
hand, achieves greater accuracy through a bidirectional feature pro-
cessing structure. PiDiNet[34] introduces pixel-differential convolu-
tional integration into the CNN model. EDTER[31] is the first at-
tempt to introduce Vision Transformer (ViT)[11] for edge detection
tasks. To capture multi-scale features, EDTER proposes a two-stage
architecture to remedy the lack of hierarchical structure in ViT. The
first stage focuses on global feature while the second stage focuses
on local features. Features learned in both stages are fused, result-
ing in significant improvements in performance and achieving SOTA
in edge detection task. PEdger[13] enhances edge detection perfor-
mance by leveraging information obtained from different training
moments and heterogeneous structures. UAED[46] investigates the
subjectivity and ambiguity of different annotations through uncer-
tainty based on the fact that dataset labels have multiple annotations.

Vision Transformer. Since the introduction of ViT[11], transform-
ers have been widely used in vision field[3, 27, 35]. After years
of development, Transformer with multi-scale hierarchical structure
are playing increasingly important role in downstream vision tasks.
Swin Transformer[26] proposes Window Self Attention (WSA) and
Shift Window Self Attention (SWSA), with SWSA expanding the
receptive field, enabling it to capture both local and global features.
NAT[16] proposes Neighborhood Attention (NA), the first efficient
and scalable sliding window attention mechanism, which restricts
self-attention to localised windows and preserves translation equiv-
ariance. DiNAT[15] extends NA to Dilated Neighborhood Atten-
tion (DiNA), which expands receptive fields exponentially and thus
captures long-range inter dependency and global features. Besides,
Neighborhood Attention Extension (NATTEN)[16] is developed to
better implement NA and DiNA as an extension to PyTorch with an
efficient CUDA kernel.
Feature Fusion Module. The feature fusion module is commonly
used in edge detection and other vision tasks to strengthen fea-
ture representations, which is crucial to improving the accuracy.

SENet[18] investigates channel relationships and introduces a novel
architectural unit, the Squeeze-and-Excitation (SE) block, enhances
global feature extraction by computing channel attention using
global average pooling. CBAM[39] employs both global average
pooling and global maximum pooling to compute attention maps
on two separate dimensions, namely, channel attention and spatial
attention, the latter being overlooked by SENet. CBAM is able to
extract informative features by blending cross-channel and spatial
information together. ECA[37] proposes a local cross channel in-
teraction strategy implemented via 1D convolution and a method to
adaptively select kernel size of 1D convolution. PP-LiteSeg[30] in-
troduces UAFM, a feature fusion module that leverages channel at-
tention or spatial attention to enrich the representation of fused fea-
tures, with spatial and channel attention modules exploiting inter-
spatial and inter-channel relationships of the input features.

3 EdgeNAT

Figure 2 illustrates the overall framework of EdgeNAT, a one-stage
end-to-end edge detector. DiNAT is employed as the encoder since
it exhibits exceptional performance in preserving locality, maintain-
ing translation equivariance, expanding receptive field, and captur-
ing long-range dependencies,etc. SCAF-MLA, a novel decoder with
SCAFM to exploit both spatial and channel features from feature
maps, is introduced to effectively facilitate feature fusion. We further
improve the performance of SCAF-MLA by pre-fusion, that is, for
the fusing operation, the feature channels of each layer are reduced
to the number of channels in first level of the encoder, denoted as C
in Figure 2, rather than to 1.

3.1 Review Dilated Neighborhood Attention
Transformer

Below is a brief introduction on DiNAT, encoder of our network,
following the work presented in [15].

To begin with, DiNAT employs two 3 × 3 convolutional layers with
a stride of 2 as a tokenizer to obtain a feature map with a resolution of
one-fourth of the input image. Additionally, DiNAT utilizes a single 3
× 3 convolutional layer with a stride of 2 for downsampling between
hierarchical levels, reducing the spatial resolution by half while dou-
bling the number of channels.The resulting feature maps are thus of
sizes h

4
× w

4
× c, h

8
× w

8
× 2c, h

16
× w

16
× 4c and h

32
× w

32
× 8c.

DiNAT adopts a straightforward stacking of DiNA layers, fol-
lowing a similar structural pattern as other commonly used Trans-
formers. For simplicity, we keep notations limited to single dimen-
sional NA and DiNA . Given input X ∈ R

n×d, whose rows are
d-dimensional token vectors, and query and key linear projections of
X , Q and K, and relative positional biases between any two tokens
i and j, B(i, j), δ-dilated neighborhood attention weights for the i-
th token with neighborhood size k, A(k,δ)

i , is defined as the matrix
multiplication of the i-th token’s query projection, and its k nearest
neighboring tokens’ key projections with dilation value δ:

A
(k,δ)
i =

⎡
⎢⎢⎢⎢⎢⎣

QiK
T
ρδ1(i)

+B(i,ρδ1(i))
QiK

T
ρδ2(i)

+B(i,ρδ2(i))
...

QiK
T
ρδ
k
(i)

+B(i,ρδk(i))

⎤
⎥⎥⎥⎥⎥⎦ , (1)

where ρδj(i) denotes i’s j-th nearest neighbor with dilation value δ.
The δ-dilated neighboring values for the i-th token is similarly de-
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Figure 2. The overall framework of our proposed EdgeNAT. SCAFM is illustrated in Figure 3.

fined with neighborhood size k, V(k,δ)
i :

V
(k,δ)
i =

[
V T
ρδ1(i)

V T
ρδ2(i)

· · · V T
ρδ
k
(i)

]T
, (2)

where V is a linear projection of X . DiNA output for the i-th token
neighborhood size k with dilation value δ is then defined as:

DiNAδ
k(i) = softmax

(
A

(k,δ)
i√
dk

)
V

(k,δ)
i , (3)

where
√
d is the scaling parameter, and d is the embedding dimen-

sion. This operation is repeated for every pixel in the feature map.
Summary of DiNAT configuartions and dilation values will be pro-

vided in the supplementary material.

3.2 SCAF-MLA Decoder

Decoders play a critical role in various vision tasks. Taking inspi-
ration from multilevel feature fusion techniques employed in vision
tasks, we propose a novel decoder, SCAF-MLA, to effectively uti-
lize numerous channels in the feature maps output from transformer-
based encoder. SCAF-MLA enables the supervision on multiple lev-
els, and learns rich hierarchical features, thus enhances the perfor-
mance of edge detection. Besides, SCAF-MLA Decoder is more
computationally efficient, without the commonly employed PPM[45]
and bottom-up path[17, 31], while experimental results demonstrate
that our designed decoder achieves more superior performance.
SCAFM.

Inspired by UAFM[30] in multi-level features fusing, we pro-
pose the Spatial and Channel Attention Fusion Module (SCAFM)
as the main component of the SCAF-MLA. SCAFM is designed
to extract both spatial and channel features, concurrently preserv-
ing the distinctive attributes of the current level while capturing

higher-level features. The architecture of SCAFM is depicted in Fig-
ure 3. SCAFM consists of a spatial attention module (SAM) and a
channel attention module (CAM) to compute inter-spatial and inter-
channel weights, denoted as αSp and αCh, respectively. Specifically,
the upper-level feature is denoted as Fhigh and the current-level fea-
ture as Flow. To begin with, bilinear interpolation is employed to up-
sample Fhigh to the same size as Flow. Subsequently, convolutional
operations is utilized to increase the channels of Flow to match those
of Fhigh, denoted as Fconv . For αSp, we start by performing mean
and max operations along the channel dimension on Fup and Fconv ,
resulting in the generation of four features, each with a dimension of
R

1×H×W . Subsequently, these four features are concatenated and
processed through convolutional and sigmoid operations, yielding
αSp ∈ R

1×H×W . This process can be represented by thefollowing
equations:

Fup = Up(Fhigh),

Fconv = Conv(Flow),

αSp = Sigmoid(Conv(Cat(Mean(Fup),

Max(Fup),Mean(Fconv),

Max(Fconv)))),

(4)

Regarding αCh, average pooling and max pooling operations are
applied on Fup and Fconv , generating four features with dimensions
R

C×1×1. Then, these features are concatenated and subjected to con-
volutional and sigmoid operations, generating αCh ∈ R

C×1×1 , de-
scribed as:

αCh = Sigmoid(Conv(Cat(AvgPool(Fup),

MaxPool(Fup), AvgPool(Fconv),

MaxPool(Fconv)))),

(5)

The input features are then fused with the generated weights αSp

and αCh through multiplication and addition operations, resulting
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Figure 3. (a) The detailed architecture of the SCAFM. (b) The Spatial
Attention Module(SAM). (c) The Channel Attention Module(CAM).

in features FSp and FCh. Subsequently, these features are concate-
nated and convolved, generating FSC ∈ R

C×H×W . Then, we per-
form convolutions on Fhigh followed by upsampling, generating fea-
tures FH with dimensions R

C×H×W . Afterwards, FH , FSC , and
Flow are concatenated and convolved to obtain the fused feature
Fout ∈ R

C×H×W . The aforementioned process can be described
as:

Fup =Up(Conv(Fhigh)),

FSp =Fup · αSp + Fconv · (1− αSp),

FCh =Fup · αCh + Fconv · (1− αCh),

FSC =Conv(Cat(FSp, FCh)),

Fout =Conv(Cat(FSC , FH , Flow)),

(6)

Pre-fusion. Most previous detectors[25, 34] fuse feature maps from
different layers only after reducing their channels to 1, resulting in
insufficient feature integration. Inspried by EDTER[31], which fuses
the feature maps with a larger number of channels, we apply one,
two, and three 3×3 convolutions to the feature maps X1, X2, and X3

outputted by SCAFM respectively, reducing their channels to match
that of X0, rather than reducing to 1. We then use bilinear interpo-
lation to upsample X1, X2, and X3 to match X0. Subsequently, we
perform a concatenation operation on these four feature maps, and
further reduce the channels to 1 using two 3×3 convolutions and one
1×1 convolution. Finally, we upsample the 1-channel feature map us-
ing bilinear interpolation and compute the sigmoid function to obtain
the edge map E ∈ R

1×H×W .

3.3 Loss Function

We employ the loss function proposed in [41] for the 4 side edge
maps and 1 primary edge map. Given an edge map E and its corre-
sponding ground truth Y , the loss function is computed as follows:

�(E, Y ) =−
∑
i,j

(Yi,jα log (Ei,j)

+ (1− Yi,j) (1− α) log (1− Ei,j)),

(7)

where Ei,j and Yi,j are the (i, j)th element of matrix E and Y , re-
spectively. α = |Y−|

|Y−|+|Y +| represents the percentage of negative
pixel samples, with |Y +| and |Y −| denoting the number of positive
and negative sample pixels, respectively. Since BSDS500 dataset is
annotated by multiple annotators, we first normalize the multiple an-
notations into edge probability maps within the range of [0, 1]. Then,
if the probability of a pixel is greater than a threshold value η, it is

labeled as a positive sample; otherwise, it is labeled as a negative
sample.

After the concatenation operation of the four feature maps out-
put from our decoder, two 3×3 convolutions and one 1×1 convolu-
tion are applied to reduce the dimension of the concatenated feature
maps. Similarly, a 3×3 convolution and a 1×1 convolution are ap-
plied to reduce the dimension of the four side feature maps. Subse-
quently, a sigmoid operation is performed on each of these reduced-
dimensional feature maps to generate primary edge map and four
side edge maps, denoted as E , S1, S2, S3, and S4. We calculate the
loss for both primary edge map and side edge maps to introduce addi-
tional supervision. To sum up, the overall loss function is as follows:

L = LE + λLS = �(E , Y ) + λ
4∑

k=1

�
(
Sk, Y

)
, (8)

LE and LS represent the losses for the primary edge map E and the
side edge maps S1,S2,S3,S4, respectively. Meanwhile, λ denotes
the weight that balances LE and LS . Based on [31] and our experi-
mental observations, we set λ to 0.4.

4 Experiments

4.1 Datasets

Two mainstream datasets are used to evaluate our proposed Ed-
geNAT, namely, BSDS500 and NYUDv2.
BSDS500[2] consists of 500 RGB images, with 200 for training, 100
for validation, and 200 for testing. Similar to [41, 25], the dataset is
augmented to 28,800 images by flipping, scaling, and rotating. PAS-
CAL VOC Context dataset[12] is used as additional training data and
its 10,103 training images are also augmented to 20,206 by flipping,
as in most previous works[25, 17]. The model is pre-trained with the
augmented PACSAL VOC Context dataset and then fine-tuned with
the 300 training and validation images of BSDS500 dataset, and is
evaluated on 200 testing images.
NYUDv2[33] consists of 1449 labeled pairs of aligned RGB and
depth images, with 381 training images, 414 validation images, and
654 testing images. As in [41, 25],the training and validation sets are
combined and augmented to train the model.

4.2 Implementation Details

Our EdgeNAT is implemented with PyTorch and is based on
mmsegmentation[7] and NATTEN[16]. We use the pre-trained
weights of DiNAT[15] to initialize EdgeNAT’s transformer blocks.
To generate binary edge maps, for BSDS500, we set the threshold
η to 0.3 to select positive samples. For NYUDv2, there is only one
annotation per picture, so there is no need to set the threshold η.

We use the AdamW optimizer and train for 40k iterations using
a cosine decay learning rate scheduler, where the first 15k iterations
warm up the learning rate in a linear manner, and the remaining ones
are decayed according to the scheduler. The initial learning rate is
0 and a preset learning rate is set to 6e-5. For BSDS500, we set its
batch size to 8, and for NYUDv2, we set its batch size to 4.

All experiments were conducted on RTX 4090 GPU. The training
of the L model of EdgeNAT (472.38MB) takes 6 hours, far more
efficient than Transformer-based model EDTER (468.84MB)[31],
which takes 26.4 hours. The inference runs at 20.87 FPS on RTX
4090, nearly ten times the speed of EDTER on V100 (2.2 FPS). Dur-
ing training, since our model is a one-stage edge detection model, for
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320×320 images, the GPU memory requirement is about 20GB, 2/3
of EDTER(29GB).

Optimal Dataset Scale (ODS) and Optimal Image Scale (OIS)
are two metrics for all datasets. Before evaluation, we perform non-
maximum suppression on the predicted edge maps. For the maximum
allowed tolerance distance between the detected edge and ground
truth, we set it to 0.0075 for BSDS500 and to 0.011 for NYUDv2 as
in previous works.

4.3 Ablation Study

Ablation experiments are performed on the BSDS500 data set to ver-
ify the effectiveness of our proposed decoder. Specifically, we first
compare the effect of pre-fusion (reduce the channels of feature map
to C) and final-fusion (reduce the channels of feature map to 1); then
the effect of bottom-up path is also verified. From the quantitative
results shown in Table 1, it is clear that regardless of pre-fusion or
final-fusion, Bottom-up Path has negative effects on edge detection
performance, indicating it is not suitable for DiNAT. For edge detec-
tion models with relatively large number of feature map channels,
pre-fusion without PPM will be a better choice.

ODS / OIS Final-fusion Pre-fusion
Bottom-up Path 0.838 / 0.852 0.839 / 0.856

- 0.838 / 0.853 0.840 / 0.856

Table 1. Ablation study of the effectiveness of the pre-fusion and
bottom-up path on BSDS500. All results are computed with a single-scale

input without additional training data.

PPM SCAFM ODS OIS

� � 0.837 0.853
� � 0.836 0.851
� � 0.843 0.859
� � 0.841 0.856

Table 2. Ablation study on the effectiveness of PPM and SCAFM. All
results are computed with a single-scale input without additional training

data.

Next, the effectiveness of PPM[45] and our proposed SCAFM are
verified and compared. The quantitative results shown in Table 2
demonstrates that SCAFM works best without PPM, achieving best
ODS and OIS score, 84.3% and 85.9% respectively. In summary, we
will use the SCAF-MLA decoder without Bottom-up Path and PPM
for the next experiments.

4.4 Network Scalability

EdgeNAT-L has a relatively large amount of parameters (472.38MB).
In order to adapt to different application scenarios, we conduct scal-
ability experiments on different model sizes. The configuration set-
tings of the encoder of the L, S0, S1, S2, and S3 variants of our
EdgeNAT are the same as those of the Large, Mini, Tiny, Small,
and Base versions of the DiNAT[15]. Extensive experiments are con-
ducted to study the scalability and throughput of EdgeNAT variants.
The result is shown in Figure 4. The models are all trained using
the BSDS500 training and validation sets with or without PASCAL
VOC, and evaluated with the BSDS500 test set. As expected, when
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Figure 4. Exploration on the scalability of EdgeNAT. Bottom row shows
the number of parameters for each model. The models are trained with or

without PASCAL VOC dataset. All results are computed with a single-scale
input.

the size of our model decreases, the ODS and OIS will decrease ac-
cordingly, and the throughput increases.

It is worth noting that the processing speed of the S0 model is
much higher than that of other models. This should be contributed to
the fact that its third level has only 6 layers, while the others models
have 18 layers. The ODS and OIS of the L model are much higher
than other models, due to the fact that the encoder is pre-trained
on ImageNet-22K, while encoder of other models are pre-trained on
ImageNet-1K. The results of multi-scale input experiment of S0, S1,
S2, and S3 models as well as their visualization results will be pro-
vided in the supplementary material.

4.5 Comparison with State-of-the-arts

On BSDS500 dataset. We compare our L model with traditional
detectors such as Canny[6], gPb-UCM[1], SCG[40], SE[10]
and OEF[14], and CNN-based detector such as DeepEdge[4],
DeepContour[32], HED[41], Deep Boundary[22], CEDN[43],
RDS[24], AMH-Net[42], RCF[25], CED[38], LPCB[9], BDCN[17],
DSCD[8], PiDiNet[34], UAED[46] and PEdger[13], and
transformer-based detector such as EDTER[31]. The results
are summarized in Table 3 and Figure 6, respectively. We notice that
our L model, trained on the BSDS500 dataset, achieves an ODS of
84.3% with single-scale inputs, outperforming all competing detec-
tors. Furthermore, when employing multi-scale inputs, our method
achieves an even higher ODS of 85.5%. By utilizing additional
training data and adopting multi-scale input (following the config-
urations of RCF, EDTER, etc.), our method attains 86.0%(ODS),
87.6%(OIS), which clearly demonstrate the superiority of our
method over all existing state-of-the-art edge detectors. Several
qualitative results are presented in Figure 5. It can be observed that
our proposed EdgeNAT demonstrates a distinct advantage in terms
of prediction quality. The generated outputs exhibit clear and exact
edge predictions, further validating the efficacy of our method.
On NYUDv2 dataset. We conduct experiments on three types of
inputs (RGB, HHA, and RGB-HHA). The RGB-HHA results are
obtained by averaging the edge detections from RGB and HHA.
We compare our L model with deep learning-based detectors, in-
cluding HED[41], COB[28], RCF[25], AMH-Net[42], LPCB[9],
BDCN[17], PiDiNet[34], PEdger[13], and EDTER[31]. All results
are based on single-scale inputs. The results are shown in Table 4. It
can be observed that our L model achieveds ODS of 78.9%, 72.6%,
and 79.4% for RGB, HHA, and RGB-HHA, respectively, surpass-
ing the second-best method by 1.5%, 0.9% and 1.0%, respectively.
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Figure 5. Qualitative comparisons on three challenging samples in the testing set of BSDS500. It is interesting to notice that in the third example, the edge of
the hat on the right is completed by our L model, though the hat edge is hard to distinguish even for human eyes. This unprecedented phenomenon

demonstrates our model has better global semantic understanding than previous works.

Method Pub.’Year ODS OIS

Tr
ad

iti
on

al Canny PAMI’86 0.611 0.676
gPb-UCM PAMI’10 0.729 0.755
SCG NeurIPS’12 0.739 0.758
SE PAMI’14 0.743 0.764
OEF CVPR’15 0.746 0.770

C
N

N
-b

as
ed

DeepEdge CVPR’15 0.753 0.772
DeepContour CVPR’15 0.757 0.776
HED ICCV’15 0.788 0.808
Deep Boundary†‡ ICLR’15 0.789 0.811
CEDN CVPR’16 0.788 0.804
RDS CVPR’16 0.792 0.810
AMH-Net NeurIPS’17 0.798 0.829
RCF†‡ CVPR’17 0.811 0.830
CED† CVPR’17 0.815 0.833
LPCB†‡ ECCV’18 0.815 0.834
BDCN†‡ CVPR’19 0.828 0.844
DSCD†‡ ACMMM’20 0.822 0.859
PiDiNet† ICCV’21 0.807 0.823
UAED†‡ CVPR’23 0.844 0.864
PEdger-large† ACMMM’23 0.823 0.841

Tr
an

sf
or

m
er

-b
as

ed

EDTER

CVPR’22

0.824 0.841
EDTER† 0.832 0.847
EDTER‡ 0.840 0.858
EDTER†‡ 0.848 0.865
EdgeNAT-L

Ours

0.843 0.859
EdgeNAT-L† 0.849 0.863
EdgeNAT-L‡ 0.855 0.870

EdgeNAT-L†‡ 0.860 0.876

Table 3. Results on BSDS500 testing set. The best two results are
highlighted in red and blue, respectively, and same for other tables. † means

training with extra PASCAL VOC data, and ‡ is the multi-scale testing.
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[F=.860] EdgeNAT-L-MS (ours)
[F=.849] EdgeNAT-L (ours)
[F=.846] EDTER-MS (2022)
[F=.835] EdgeNAT-S3 (ours)
[F=.832] EdgeNAT-S2 (ours)
[F=.829] EDTER (2022)
[F=.829] EdgeNAT-S1 (ours)
[F=.828] UAED-MS (2023)
[F=.825] EdgeNAT-S0 (ours)
[F=.814] RCF-ResNet50-MS (2017)
[F=.793] COB (2016)
[F=.788] HED (2015)
[F=.757] DeepContour (2015)
[F=.753] DeepEdge (2015)
[F=.746] OEF (2015)
[F=.743] SE (2014)
[F=.729] gPb-UCM (2010)
[F=.672] Pb (2004)
[F=.611] Canny (1986)
[F=.539] Sobel (1972)

Figure 6. The precision-recall curves on BSDS500.

Furthermore, our approach also attains the highest OIS among all
the evaluated methods. The results of our other models, and the
precision-recall curves, will be presented in the supplementary ma-
terial.

Method RGB HHA RGB-HHA
ODS OIS ODS OIS ODS OIS

HED 0.720 0.734 0.682 0.695 0.746 0.761
COB - - - - 0.784 0.805

RCF 0.729 0.742 0.705 0.715 0.757 0.771
AMH-Net 0.744 0.758 0.717 0.729 0.771 0.786
LPCB 0.739 0.754 0.707 0.719 0.762 0.778
BDCN 0.748 0.763 0.707 0.719 0.765 0.781
PiDiNet 0.733 0.747 0.715 0.728 0.756 0.773
PEdger 0.742 0.757 - - - -

EDTER 0.774 0.789 0.703 0.718 0.780 0.797
EdgeNAT-L 0.789 0.803 0.726 0.741 0.794 0.808

Table 4. Quantitative comparisons on NYUDv2. All results are computed
with a single scale input.
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5 Conclusion

Our contributions are summarized as follows: firstly, we introduce
DiNAT as the encoder, which enables our proposed edge detector not
only more accurate than current SOTA EDTER, but also ten times
faster than it. Secondly, we propose SCAFM, a module that concate-
nates spatial attention and channel attention, to generate richer and
more accurate feature representation for the decoder. Thirdly, we de-
sign five version of models with different parameter sizes to adapt
to complex and diverse application scenarios and conduct extensive
experiments on the BSDS500 and NYUDv2 datasets, demonstrating
that EdgeNAT achieves superiority in both efficiency and accuracy.
Our supplementary material is available [20].
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