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Abstract. Incremental Deepfake Detection (IDD) aims to contin-
uously update models with new domain data, adapting to evolv-
ing forgery techniques. Existing works require extra buffers to store
old exemplars for maintaining previously learned knowledge. How-
ever, it is infeasible when previous data is unavailable due to storage
and privacy issues. This paper focuses on a more challenging but
practical exemplar-free IDD problem that requests zero old exem-
plars when updating the model. To address this problem, we design
a domain-adaptive module that uses independent adapters to learn
domain-specific knowledge for each domain, avoiding using old ex-
emplars. Besides, we introduce an uncertainty optimization strategy
to optimize the adapters more efficiently. With excellent scalability,
our method can be easily deployed to various models. To simulate
the practical scenarios, we designed two new protocols based on di-
verse deepfake datasets. Extensive experimental results demonstrate
that our method outperforms the state-of-the-art methods by a large
margin. The code is available at https://github.com/woody-panda/
EF-IDD.

1 Introduction

Deepfake detection aims to recognize forged or manipulated faces in
digital images or videos, which is critical to ensure the authenticity
and reliability of the information presented in the real world. With
the ever-evolving forgery techniques, realistic forged media are pop-
ping up in various real-world scenarios. In the presence of a large
domain gap [18], a pre-trained deepfake detection model struggles to
recognize forged images or videos from the new domain accurately.
In this case, it is necessary to continuously update the model with
new domain data to perform well in emerging new domains. How-
ever, the upgraded model usually forgets previously learned knowl-
edge, leading to a drastic performance drop in the previous domains.
This is one of the main incremental learning challenges, called the
catastrophic forgetting problem [20]. Therefore, it is crucial to de-
velop anti-forgetting algorithms for incremental deepfake detection
(IDD) to counter the challenge.

Recently, a few works have been proposed for IDD [28, 23, 30]. To
alleviate catastrophic forgetting, these works use extra replay buffers
to store old exemplars for either rehearsal [37] or distillation [33]
when tuning the whole network to new domains. However, the previ-
ous data is not always available due to data ownership constraints and
privacy issues. Furthermore, the use of replay buffers causes extra
storage burdens. Therefore, this paper focuses on a more challeng-
ing but practical Exemplar-Free IDD (EF-IDD) problem. As shown
in Figure 1, EF-IDD requests zero old exemplars when updating the
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Figure 1: IDD consists of a sequence of sessions S =
{S1, S2, · · · , St}. The updated model Wt must continuously adapt
to new domains in successive sessions without forgetting, i.e., per-
form well on all domains T = {T1, T2, · · · , Tt}. Current IDD meth-
ods require storing exemplars from previous data (dotted lines). We
propose exemplar-free IDD, i.e., at session St only the current do-
main Dt is available for training.

model, aiming for robust continuous learning with better data secu-
rity, privacy protection, and cheaper memory consumption.

EF-IDD belongs to the exemplar-free domain-incremental learn-
ing (EF-DIL) task with a special focus on discriminating forged in-
puts from authentic ones. In general EF-DIL studies, one prevailing
solution [45, 44, 41] is to learn a set of prompts over transformers
[7]. A prompt pool is used to store the domain-specific knowledge for
each domain; hence, a rehearsal buffer is no longer necessary. Also, a
similarity-based selection strategy (e.g., KNN [41] or cosine distance
[44, 45]) is used to optimize the network and match the input with
relevant prompts during the inference phase. Despite demonstrated
promising results for general EF-DIL tasks, it cannot be directly used
for EF-IDD for the two problems below. 1) Adaptability problem.
These EF-DIL approaches are tailored for transformer-based mod-
els only and cannot be deployed on other models, while the EF-IDD
solution is supposed to be model-agnostic. A more generic EF-IDD
solution that can work with various architectures for real-world de-
ployment is needed. 2) Observation noise problem. Deepfake detec-
tion tasks concern highly homogeneous data compared to other vi-
sual tasks, i.e., high similarities between authentic and forged faces,
from old and new domains. Thus, the naive similarity-based selec-
tion strategies might not be reliable and impact the learnable prompts
negatively.
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In this paper, we focus on the EF-IDD task addressing the two
problems. For the adaptability problem, we propose a highly adapt-
able Domain-adaptive Module (DaM) that uses independent adapters
[32] to encode domain-specific knowledge. Compared with the
prompt pool, DaM has better scalability so that it can be integrated
into various visual models and better adapted to real-world scenarios.
For the observation noises problem, we introduce an Uncertainty
Optimization Strategy (UOS) that incorporates the uncertainty into
the final loss for more effective optimization. Specifically, we convert
the observed similarities between domain centers into a probabilistic
distribution, with the variance characterizing the uncertainty of the
observed similarities. An auxiliary loss is calculated based on Monte
Carlo sampling for uncertainty optimization. The UOS can facilitate
model learning by alleviating the influence of uncertainty of noisy
inputs [17].

To evaluate the proposed method, we introduce two protocols to
simulate the practical scenarios. 1) Dataset-Incremental Deepfake
Detection (D-IDD), i.e., a new dataset with unknown forgery types
and sources (achieved from a new domain) is available in each ses-
sion. 2) Type-Incremental Deepfake Detection (T-IDD), i.e., a new
forgery type (achieved with a new forgery technique) is available in
each session. There could be either of the two scenarios in a practical
situation. Our method is evaluated on both protocols to demonstrate
its adaptability for the IDD task. The main contributions are as fol-
lows:

• We address the importance of EF-IDD and propose a highly adapt-
able EF-IDD framework, which can continuously adapt to both
new data domains and new forged types while keeping all learned
knowledge for robust deepfake detection.

• In the proposed framework, DaM is proposed using independent
adapters to encode domain-specific knowledge to mitigate forget-
ting, which can work for various vision models. UOS is designed
to alleviate the influence of observation noises by performing un-
certainty optimization.

• Extensive experiments demonstrate that the proposed method sig-
nificantly outperforms the SOTA methods on both D-IDD and T-
IDD protocols. Furthermore, the model not only generalizes well
to unseen domains detecting forgery faces, but also works well on
a general scope of detecting forgery images (faces and others).

2 Related Work

2.1 Deepfake Detection

Owing to the success of Generative Adversarial Nets (GANs)
[9], deepfake generation methods [2, 16] have achieved tremen-
dous progress. To mitigate potential social risks, deep learning-
based deepfake detection has received considerable research atten-
tion within the computer vision community. Early works [35, 24]
adopt off-the-shelf image classification backbones (e.g., Xception
[3] and ResNet [12]) to perform binary classification on cropped fa-
cial images. However, these vanilla backbones can only capture lim-
ited spatial information on facial regions, which is not sufficient for
a full understanding of forgery. To detect the subtle clues in forged
faces, some recent works further mine specific forgery patterns, such
as noise statistics [10], local textures [48], frequency information
[31, 43], reconstruction difference [1], forgery inconsistency [49]
and implicit identity information [15]. Despite significant progress,
these methods do not consider updating models to deal with evolving
forgery techniques.

2.2 Incremental Learning

Incremental learning [40] aims to continuously update models as
new data emerges without forgetting previously learned knowl-
edge. There are three common continual learning scenarios. Class-
incremental learning focuses on learning new classes in a fixed-label
space. Task-incremental learning continuously learns a sequence of
disjoint tasks with dynamic and unrelated label spaces. Domain-
incremental learning (DIL) aims to adapt a pre-trained model to a
new domain with the same label space and new input distribution.
Our work is related to DIL, specifically EF-DIL.

The main challenge of EF-DIL is to mitigate catastrophic for-
getting in the absence of old exemplars. Several solutions have
been proposed to address the problem. Regularization-based meth-
ods [25, 20, 47] assign importance or penalty to certain weights
based on the sample’s contribution to previous tasks, which limits
the model’s ability to represent complex relationships and causes the
underfitting problem. Prompt-based methods [45, 44, 41, 38] learn a
small set of embeddings (prompts) to store domain-specific knowl-
edge. However, these methods specialize in the vision transformer
architecture [7] and cannot be deployed to other models in real-world
scenarios.

Recently, a few works [28, 23, 30] explored deepfake detection
under incremental learning settings. However, they require storing
old exemplars to mitigate forgetting, which might be infeasible in
real-world scenarios due to privacy and storage issues.

2.3 Adaptive Tuning

Adaptive-tuning [32, 34] aims to insert trainable lightweight compo-
nents into the pre-trained models to adapt to downstream tasks. Com-
pared with expensive full-model fine-tuning, adapter-tuning only re-
quires smaller training and storage costs to obtain similar results to
the full-model fine-tuning method, which has been widely used in
natural language processing, such as natural language understanding
[36] and neural machine translation [14]. Inspired by these works,
we develop a highly adaptable EF-IDD framework based on adap-
tive tuning.

2.4 Uncertainty in Deep Learning

In deep learning, uncertainty is the confidence degree of the model in
its predictions [17]. A model usually has high uncertainty on noisy
input or rarely seen input. Combining the uncertainty for network
optimization can effectively improve the robustness of deep learning
models. Therefore, uncertainty optimization is widely used in various
vision tasks, such as object detection [11] and semantic segmentation
[46]. In this paper, we model the data-dependent uncertainty of the
calculated similarities between a query sample and the prototypes,
and leverage it to better optimize the network.

3 Methodology

We propose a highly adaptable framework for exemplar-free in-
cremental deepfake detection (EF-IDD). The problem definition is
shown in Figure 1. We leverage a Domain-adaptive Module (DaM)
that uses independent adapters to encode domain-specific knowl-
edge, avoiding using old exemplars. To obtain reliable adapters, we
design an Uncertainty Optimization Strategy (UOS) to incorporate
the uncertainty into the final loss for effective optimization. Our
method not only significantly reduces forgetting, but also achieves
excellent scalability for deployment to diverse vision models.
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Figure 2: (a) Overview of the proposed framework. We divide the backbone into the first N layers as Fe and the last M layers as Fs. The
training image x is processed by the Fe to generate f . Then, we perform the Uncertainty Optimization Strategy (UOS) on the feature f ,
domain centers {di}ti=1 and domain index t to obtain the auxiliary loss La. The t-th adapter At from the Domain-adaptive Module (DaM)
is used to generate domain-specific prompts for blending intermediate features from Fs. The final loss is the sum of the classification loss
La and Lc. (b) Illustration of UOS. We calculate the similarity between the feature f and t domain centers and convert it into a matrix
V = (v1, v2, · · · , vt) ∈ R

t×L. Then, we employ a graph-based model to jointly infer the uncertainty to generate the auxiliary loss La. (c)
Illustration of the adaptive block. The adaptive block consists of three sequential lightweight convolutional layers: 1 × 1 convolution, 5 × 5
depthwise convolution and 1× 1 convolution.

3.1 Overview

The overview of the proposed method is illustrated in Figure 2 (a).
Suppose the pre-trained backbone consists of total M + N layers,
we divide it into the first N layers as Fe and the last M layers as Fs,
which can be varied to achieve the best performance and computa-
tional efficiency [44]. Note that vision backbones, e.g., transformer-
based and CNN-based, usually contain multiple blocks in one layer.
To ensure the generality of our method, we follow their original con-
cepts of layer partitioning.

Given a training image x, we first feed it to the Fe to generate
feature f ∈ R

H×W×C as

f = Fe (x) . (1)

Then, we generate an auxiliary loss for better optimization [45]. At
the t-th session, we assign x a domain index t and generate a domain
center dt ∈ R

C from Dt. Specifically, we use Fe to obtain feature
embeddings for each sample. Then, we average the feature embed-
dings of all training examples and perform a global average pooling
operation on that average feature embedding. The process can be for-
mulated as

dt = AvgPool(
1

n

∑n
i=1Fe(xi)), Dt = {xi}ni=1 , (2)

where AvgPool denotes the global averaging pooling operation. The
auxiliary loss La is calculated by performing UOS (will be elabo-
rated in Section 3.2) on the feature f , domain index t and domain
centers {di}ti=1. Next, the feature f is fed into Fs for multi-stage

blending with prompts from the t-th adapter At of DaM (will be
elaborated in Section 3.3), which can minimize the knowledge gap
between the pre-trained backbone and the current domain and avoid
catastrophic forgetting. We denote the final blending output as f̃s.
The final result p is generated by the t-th classifier Ct which is a
normal fully connected (FC) layer made by [Wt, bt] calculated as

p = softmax
(
Wtf̃s + bt

)
. (3)

Given the binary label y (0 or 1) indicating the real or fake of the
input face image x, we employ the cross-entropy loss as the classifi-
cation function:

Lc = −[y · log(p) + (1− y) · log(1− p)]. (4)

The total loss is the sum of the classification loss Lc and the auxiliary
loss La as:

Ltotal = Lc + La. (5)

Note that we only tune the current domain-related adapter At,
UOS and the classifier Ct, as the orange parts in Figure 2, while
the rest components, i.e., the backbone, the unrelated adapters and
classifiers, are frozen, as the blue parts in Figure 2. In this case, each
domain-specific component is learned independently from other do-
mains. In the following sections, we describe the two key compo-
nents UOS, DaM and inference phase in detail.

3.2 Uncertainty Optimization Strategy (UOS)

During the training phase, generating a domain classification loss
based on the assigned domain index can achieve better optimiza-
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tion [45, 44, 41]. However, naive similarity-based strategies suffer
from the observation noise problem, where highly homogeneous data
could be assigned to an inappropriate adapter, leading to negative op-
timization. To address this problem, we use uncertainty estimation to
jointly optimize the network to reduce the influence of observation
noise.
Similarity Calculation. As shown in Figure 2 (b), we first calcu-
late the group-wise similarities between the feature f and domain
centers {di}ti=1. For the feature f , we perform global averaging
pooling to get a C-dimensional feature vector f ∈ R

C . For the i-
th (i = 1, 2, · · · , t) domain center di, we both split it and f into L

groups along their channel dimensions to have
{
dli
}L

l=1
and

{
f l
}L

l=1
, where L < C. The similarity of the l-th group is calculated as

rli =
f ldli

T

||f l|| · ||dli||
. (6)

Next, the group similarities are stacked as a relation feature vector
vi = [r1i , r

2
i , · · · , rLi ] ∈ R

L. Note that the observed similarities
across multiple groups provide valuable hints of the uncertainty since
they reflect similarities from different perspectives. Formally, the ob-
served similarities between f and {di}ti=1 can be are represented by
a matrix V = (v1, v2, · · · , vt) ∈ R

t×L.
Uncertainty Estimation. Since the domain classification probability
of a test sample is determined based on the similarity of this sample
with t domain centers, this is a joint determination process. There-
fore, we adopt a Graph Convolutional Network [19] (GCN) to jointly
estimate the uncertainties for the t similarity pairs, which facilitates
the information passing among them for the joint optimization.

Specifically, V = (v1, v2 · · · , vt) is viewed as a graph containing
t nodes. We first generate an adjacency matrix E ∈ R

t×t denoted by
modeling node affinity in the embedded space:

Eij = ϕ1(vi)ϕ2(vj)
T , (7)

where Eij denotes the edge from the i-th node to the j-th node. ϕ1

and ϕ2 denote two linear projections implemented by the FC layer.
To generate numerically stable messages through the the modeled
graph, we use the softmax function to normalize each row of E so
that all edges connected to the target node have a value of 1. Next,
we update the nodes through GCN as:

V = V + YWv, Y = EYWy, (8)

Wv ∈ R
L×L and Wy ∈ R

L×L are two learnable transformation
matrices. Wy is implemented by a 1 × 1 convolutional layer. Wv is
implemented by two stacked blocks. Each block consists of a 1 ×
1 convolution layer, followed by a Batch Normalization layer and
an LeakyReLU activation layer. We infer the similarity uncertainty
vector u = [σ1, σ2, · · · , σt] ∈ R

t by

u = α (BN (VW1))W2, (9)

where W1 ∈ R
L×L and W2 ∈ R

L×1 are transformation matrices
both implemented by a 1 × 1 convolutional layer. “BN” refers to
the Batch Normalization layer and α (·) refers to the LeakyReLU
activation function. The i-th dimension of u, σi, is the similarity un-
certainty for the feature f and the i-th domain center.
Auxiliary Loss Generation. The analytical solution to integrating
the distributions to optimize the losses is difficult. Inspired by pre-
vious work [17], we use Monte Carlo integration to approximate the
optimization objective. Specifically, Monte Carlo sampling is per-
formed on the t similarity distributions. For the feature f and the i-th

(i = 1, 2, · · · , t) domain center di, we repeat K random sampling
over the similarity distributions σi to obtain statistical results. At the
k-th sample, the differentiable representation si,k can be obtained by

si,k = μi + σiεk, εk ∈ N (0, 1) , (10)

where N denotes Gaussian distribution. μi denotes the mean of the
similarity that can be obtained by the inner product operation, i.e.,
μj = 〈f, dj〉. For the given sample x with domain index t, we obtain
its corresponding domain classification loss as:

La = −log(
1

K

K∑

k=1

(est,k/
t∑

i=1

esi,k )). (11)

Then we use La as an auxiliary loss for better optimization.

3.3 Domain-adaptive Module (DaM)

To enable the pre-trained backbone to acquire knowledge from new
domains while preserving previous knowledge efficiently, we intro-
duce Domain-adaptive Modules (DaM) that use highly adaptable in-
dependent adapters to learn domain-specific prompts for each do-
main. In this case, the proposed framework can avoid using old ex-
emplars to maintain previously learned knowledge while being de-
ployable to diverse vision models.

As shown in Figure 2 (a), domain-specific prompts are generated
by an independent adapter that contains M adaptive blocks to en-
rich the feature space from diverse levels. Specifically, each adaptive
block corresponds to a sub-layer in Fs. At the t-th session, suppose
that the output of the i-th layer of Fs is f i

s, the blending representa-
tion is:

f̃ i
s = f i

s + βAi
t(f

i
s), (12)

where β denotes a learnable parameter to balance the two terms. Ai
t

denotes the i-th adaptive block in the t-th adapter. As shown in Fig-
ure 2 (c), we implement the adaptive block with three sequential
lightweight convolutional layers: 1 × 1 convolution, 5 × 5 depth-
wise convolution [3] and 1 × 1 convolution. This design allows the
pre-trained backbone to maintain a compact model size and signifi-
cantly reduce computational cost under the EF-IDD setting since the
deep convolutions can perform the entire calculation in a structured,
sparse manner.

3.4 Inference Phase

For a test instance, we first obtain its feature from the pre-trained Fe.
We then compute the similarities between the feature and all domain
centers. The domain index is obtained by performing softmax on
the similarities. Based on the domain index, we perform the corre-
sponding adapter and classifier on the features to generate the final
prediction.

4 Experiments

4.1 Experimental Setup

Datasets and protocols. The proposed EF-IDD framework is evalu-
ated under both D-IDD and T-IDD protocols. For the D-IDD proto-
col, eight large benchmark databases are used as listed in Table 1. For
the T-IDD protocol, we use eight subsets from ForgeryNet [13]. Each
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Figure 3: Performance comparison for each session on D-IDD and T-IDD protocols. We report the Average Accuracy (%).

Table 1: Datasets used for the D-IDD and T-IDD protocols.

Season ID D-IDD T-IDD

S1 FF++ [35] DeepFakes
S2 Celeb-DF [24] StyleGAN2
S3 DFDC-P [6] FS-GAN
S4 DFFD [4] BlendFace
S5 FFIW [50] MaskGAN
S6 OpenForensics [22] SC-FEGAN
S7 ForgeryNIR [42] DF-StarGAN
S8 ForgeryNet [13] DiscoFaceGAN

subset contains one type of forged sample including both images and
videos. More dataset details can be found in the supplementary1.
Baselines. We compare the proposed methods against multiple
SOTA EF-DIL methods, including four non-prompting methods FT-

seq, EWC [20], SI [47], LwF [25], and four recent prompting
methods L2P [45], DualPrompt [44], S-iPrompt [41] and CODA-

Prompt [38]. Note that FT-seq is the naive sequential fine-tuning
approach with pre-trained model weights. For EWC, SI and LwF,
we use the public implementations from the Mammoth toolbox2

with SwinT-B [26] backbone and the same hyper-parameters as in
their original paper. For L2P3, DualPrompt3, S-iPrompt4 and CODA-
Prompt5, we use the official implementations with tuned parameters
for better performances.
Evaluation metrics. Following previous works [23, 38], we use the
average accuracy (AA) and average forgetting degree [27] (AF) as
the evaluation metrics. The former is the average final accuracy over
all observed domains. The latter is the average performance drop
across all domains.
Implementation details. The proposed method is implemented in
PyTorch with NVIDIA A100 GPUs. We use the same image back-
bone SwinT-B [26] across all domains. RetinaFace [5] is employed
to extract faces for all datasets. For video-level datasets, 50 frames
were randomly selected from each video for testing and training. All
the training images are resized to 384 × 384. For two protocols, we

1 https://github.com/woody-panda/EF-IDD/blob/main/Supplementary.pdf
2 https://github.com/aimagelab/mammoth
3 https://github.com/google-research/l2p,
4 https://github.com/iamwangyabin/S-Prompts
5 https://github.com/GT-RIPL/CODA-Prompt

adopt an Stochastic Gradient Descent (SGD) optimizer with a mo-
mentum of 0.9, an initial learning rate of 0.01, and a batch size of 64.
The number of epochs is set to 10 which is enough to fit all training
sets. We adopt strong data augmentations only for ForgeryNet [13]
dataset, while weak data augmentation are used for the rest datasets.
For the parameters L and K, we set them to 32 and 50 respectively.

4.2 Comparison with SOTA Methods

We compare our results with eight SOTA EF-DIL baselines. The
results in Table 2 can be summarized in two points. 1). Non-
prompting methods (the top part of the table) significantly under-
perform prompting methods (the bottom part of the table), even un-
derperform the naive fine-tuning FT-seq. This shows that the prompt-
ing method can effectively learn new knowledge without forgetting
the previous knowledge. 2). Our method significantly outperforms
all SOTA methods, and the advantage can be consistently observed
in the two metrics of AA and AF under both protocols. The largest
performance improvement is achieved on T-IDD AA, i.e., 2.99%
higher than the second-best. The results strongly support our claims
that prompt-based approaches may not be the best option for highly
homogeneous face data in the IDD task, while our UOS and DaM
work better to improve the overall performance and mitigate forget-
ting even after eight sessions.

We then further compare the performance in each season with the
existing EF-DIL method. As shown in Figure 3, we can observe that
our method achieves state-of-the-art performance on each season for
both D-IDD and T-IDD. The outstanding performance of the pro-
posed method over all competing methods indicates that our pro-
posed UOS and DaM successfully accumulate knowledge from ex-
periences, thus it can overall improve the learning performance while
mitigating catastrophic forgetting.

4.3 Ablation Studies

We carry out four ablation experiments under the D-IDD protocol
using all eight datasets in Table 1.
Different backbones. One major advantage of the proposed method
is that it can work with various models, e.g., CNN-based and
transformer-based models. Here we compare four different back-
bones, transformer-based SwinT-B [26] and ViT-B/16 [8], and two
CNN-based Xception [3] and ResNet-50 [12]. Table 3 presents the

W. Xiong et al. / Exemplar-Free Incremental Deepfake Detection 423



Table 2: Comparison to baseline methods under D-IDD and T-IDD
protocols. Upper: non-prompt methods. Bottom: prompt methods.

Method
D-IDD T-IDD

AA (↑) AF (↓) AA (↑) AF (↓)

FT-seq 55.81 30.21 60.28 25.56

EWC [20] 51.48 39.43 52.29 20.34

SI [47] 52.34 26.26 54.35 16.52

LwF [25] 53.29 19.32 53.77 14.34

L2P [45] 61.21 16.48 63.76 12.29

DualPrompt [44] 65.21 13.75 66.16 11.84

S-iPrompt [41] 67.35 9.25 66.84 10.37

CODA-Prompt [38] 68.71 8.64 65.23 11.25

Ours 71.59 7.12 69.83 8.54

Table 3: Ablations of four different backbones.

Backbones ResNet-50 ViT-B/16 Xception SwinT-B

AA (↑) 64.31 68.94 70.36 71.59

AF (↓) 11.52 8.57 8.16 7.12

results. All four backbones achieve good performance compared
to baseline results in Table 2. This confirms the robustness of our
proposed framework which works well with various models in the
exemplar-free setting. Moreover, SwinT-B achieves the best perfor-
mance among all four backbones, which is adopted for the following
experiments.
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Figure 4: Performance with different N values. (N +M = 12)

Impact of N values. We divide the backbone network into the
first N layers and the last M layers, as Fe and Fs respectively.
Note that we use SwinT-B as the backbone, which consists of 12
(N + M = 12) sub-layers. Here we evaluate the impact of differ-
ent N and M values on performance. In Figure 4 it shows that our
model achieves the best performance when N = 9 and M = 3. The
main reason is that a deeper Fe brings more compact features to each
domain of UOS, while a deeper Fs provides more efficient features
for separately learning domain-specific knowledge and sequentially
learning domain-invariant knowledge. Therefore, we set N and M
as 9 and 3, respectively in all experiments.
Effectiveness of UOS and DaM. We evaluate the two key compo-
nents of the framework, i.e., UOS and DaM, to demonstrate their
effectiveness. The results are listed in Table 4. “Baseline” indicates
the pre-trained SwinT-B backbone with independent classifiers for
each domain. Results show that employing only UOS or DaM both
improves the performance, and the improvement brought by UOS is
larger than DaM. The best performance is achieved when both UOS
and DaM are employed at the same time. These results demonstrate

Table 4: Effectiveness of UOS and DaM.

Method AA (↑) AF (↓)

Baseline 61.37 16.54

Baseline + DaM 67.28 10.34

Baseline + UOS 68.64 8.91

Baseline + UOS + DaM 71.59 7.12

the effectiveness of UOS and DaM. The advantage of UOS indicates
that effective optimization strategies are very important in the EF-
IDD task.
Different UOS methods. The proposed UOS can be equipped with
different uncertainty estimation methods, and here we evaluate three
optional methods, i.e., Fully-Connected layer (FC), 1 × 1 Con-
volutional Neural Network (Conv) and Graph Convolutional Net-
work (GCN). Results in Table 5 show that the GCN-based method
works the best among all, which is employed in our experiments.
This demonstrates that information passing across different similar-
ity pairs is beneficial for joint optimization.

Table 5: Ablations of different UOS methods. “-” denotes that the
model without uncertainty optimization.

U-Estimation - FC Conv GCN

AA (↑) 67.28 68.16 70.23 71.59

AF (↓) 10.34 9.74 8.22 7.12

4.4 Generalization.

Generalization to unseen domains is a major challenge for most tasks
and especially for Deepfake detection. Newly forged samples are not
always available for training (not even noticed as new). It is impor-
tant that an IDD model can generalize well to unseen data. Here
we test our previously trained models (under both D-IDD and T-
IDD protocols) on four extra Deepfake datasets and compare them
with baseline methods. For D-IDD, we use DFD [29] and Kodf [21].
For T-IDD, we use FaceShifter and StarGAN2 from ForgeryNet [13]
dataset. Results in Table 6 show that our approach achieves the best
performance among all methods. Compared with the second-best
method S-iPrompt, the improvement is stable across all four datasets
under both protocols, ranging from 1% to 2%. This shows that the
proposed method generalizes better to unseen domain data than the
current EF-DIL methods.

Table 6: Performance on unseen domains as Accuracy (%).

Method
D-IDD T-IDD

DFD Kodf FaceShifter StarGAN2

FT-seq 53.11 52.43 52.45 54.37
EWC [20] 55.14 56.32 54.21 53.86

SI [47] 55.94 51.25 53.72 52.36
LwF [25] 57.25 53.29 55.84 54.90

L2P [45] 66.23 62.12 59.67 57.82
DualPrompt [44] 69.97 64.48 63.61 64.59

CODA-Prompt [41] 69.16 63.27 63.19 65.83
S-iPrompt [38] 70.20 65.42 64.17 66.87

Ours 71.28 66.74 65.53 68.76

From another perspective of generalization, our EF-IDD frame-
work is not constrained to face inputs but also works for detecting
forged images on a general level. We evaluate our approach on one
latest benchmark CDDB-long [23], which contains 842K images of
diverse contents (scenes, animals, cars, etc.), and synthesized fake
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Figure 5: t-SNE visualization on the resulting feature spaces of pre-trained SwinT-B and our method on D-IDD.

samples from 13 deepfake sources. The model was continuously
trained in 13 sessions and we followed the same protocol as the origi-
nal paper. Results in Table 7 show that non-prompting methods suffer
catastrophic accuracy drops of over 30%, due to the highly diverse
data contents and forgery sources, while our method achieves the best
performance, with the forgetting rate significantly reduced by 1.89%
compared to the second best method S-iPrompt. This result demon-
strates that our method is also effective for detecting other categories
of forged images.

Table 7: Performance on general forgery image detection. Results on
the CDDB-Long benchmark.

Method AA (↑) AF (↓)

FT-seq 54.28 42.39
EWC [20] 50.36 41.52

SI [47] 51.48 38.46
LwF [25] 58.86 17.38

L2P [45] 60.21 14.58
DualPrompt [44] 64.38 10.57

CODA-Prompt [41] 65.94 9.32
S-iPrompt [38] 66.39 8.47

Ours 67.84 6.58

4.5 Visualization

We use the popular scheme t-SNE [39] for the visualization under the
D-IDD protocol. As shown in Figure 5, compared with pre-trained
backbones, our proposed method has significant advantages in inter-
domain separation and inner-domain clustering. This confirms the
validity of UOS and DaM, which can effectively map instance fea-
tures into various domains to facilitate the IDD task.

5 Conclusion

To address the evolving deepfakes in the real world, this study fo-
cuses on the Exemplar-Free Incremental Deepfake Detection (EF-
IDD) problem. Compared with existing works, EF-IDD requires the
model to mitigate the catastrophic forgetting problem without ac-
cessing any data from previous sessions, which is challenging but
fits practical needs. The Domain-adaptive module (DaM) and the
uncertainty optimization strategy (UOS) are proposed to counter the

challenge. DaM can learn domain-specific prompts independently,
avoiding using old examples. UOS employs uncertainty optimiza-
tion to alleviate the influence of observation noises. Extensive exper-
iments were carried out on multiple datasets under two incremental
protocols, and the results demonstrate that our method significantly
outperforms existing methods. In the future, we will consider other
challenging scenarios of the EF-IDD task, e.g., in the current session
only limited samples are available for training, or data with no labels.
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