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Abstract. Scientific machine learning (SciML) explores the devel-
opment of neural network models to approximate solutions to Par-
tial Differential Equations (PDEs). However, there exists a signifi-
cant research gap when computational domains are arbitrary man-
ifolds, which are common in real-world scientific and engineering
applications. The inherent challenge arises when calculating differ-
ential operators defined on curved surfaces, particularly in scenar-
ios where surface parameterization is unavailable. In this paper, we
present a neural network-based method for solving PDEs on surfaces
described only by point clouds, without any other geometrical pri-
ors. Our method comprises two steps—local surface approximation
based on graph neural networks and solving PDEs on point clouds.
For surface reconstruction, our graph neural networks can be gener-
alized based on the predictions of simple geometries during training
to significantly more complicated surfaces for evaluation. The pro-
posed approach demonstrates its capacity to learn geometric features
from point cloud data without requiring external datasets, offers su-
perior performance compared to benchmark models across various
PDE types, and exhibits robustness in handling complex surfaces,
non-uniform point distributions, and noise.

1 Introduction

The field of scientific machine learning (SciML) encompasses the de-
velopment of various techniques, including physics-informed neural
networks (PINN). These models softly regularize neural networks to
follow target Partial Differential Equations (PDEs), resulting in accu-
rate approximate solutions. In several bechmark experiments, PINNs
show promising results [21, 22, 32]. These experiments show that
PINN frameworks have several advantages over traditional numeri-
cal solvers such as finite element methods and pseudo spectral meth-
ods: 1) it converges faster than the numerical solvers, 2) it does not
require meticulous mesh design and 3) it shows marginal deviation
from analytical solutions.
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1 Equal contribution.

Figure 1. Overview of the proposed method: Graph Network (GN)
approximates the underlying surface locally for the given point cloud data.
Here, the GN is trained on simple geometries, such as the torus. Based on

the geometric information obtained using the GN, the model is optimized to
minimize the residual loss associated with the PDE of interest.

However, training PINNs on an arbitrary manifold with curva-
ture is relatively less studied while most of real-world scientific
and engieering problems need solving PDEs on an curved surface
[7, 10, 12]. The challenge arises when calculating differential oper-
ators defined on curved surfaces. For instance, when modeling phe-
nomenon over surfaces, we need to evaluate the rate of change of
physical quantities which vary along the surfaces. The surface gra-
dient and the Laplace-Beltrami operators arise as generalizations of
the conventional gradients, and provide effective tools when describ-
ing many problems on surfaces. The calculation of these differential
operators involve approximations of surface normal vectors. Thus,
it is not straightforward to apply conventional PINN frameworks,
especially for PDEs on complex surfaces represented as meshes or
point clouds, which lack analytical expressions. Thus, understanding
the effective estimation of surface normals and their integration into
PINNs is a subject worth exploring.
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Some learning-based methodologies have been introduced re-
cently to solve PDEs on curved surfaces. Most of them focus on the
approximation of differential operators on surfaces, e.g., the Laplace-
Beltrami operator. When the surface parameterization is known,
PINNs can be employed to solve PDEs by introducing extra loss
terms to enforce normal constraints [12, 18]. Surface derivatives can
be directly computed using global coordinates and incorporated into
the PINN loss function. However, it is important to note that these
approaches are most effective when surface parameterization is ex-
plicitly provided, limiting their utility for complex, challenging-to-
parameterize surfaces. In our study, we concentrate on solving PDEs
when surface information is available in the form of a point cloud,
which is the simplest and most general representation of geometric
objects.

In this paper, we propose a two-step method for solving PDEs on
point clouds. The first step involves local surface approximation us-
ing graph neural networks (GNNs) for the given point cloud data,
while the second step focuses on minimizing residual losses to ap-
proximate the solutions of the PDEs. The key contributions of our
study are as follows:

• We introduce a comprehensive framework for solving PDEs on
point clouds, which is the simplest and most general representa-
tion of geometric objects. This framework learns geometric fea-
tures from synthetic data and then approximates PDE solutions
based on given point clouds. Importantly, our approach needs no
external data sources except point cloud data for geometric ob-
jects, as both the geometric feature estimator and PINNs do not
rely on precomputed datasets.

• We provide quantitative and qualitative results across various
types of PDEs to demonstrate the superior performance of our
proposed method compared to benchmark models.

• We experimentally validate the robustness of our method regard-
ing surface complexity, non-uniform point distribution, and noise,
affirming its applicability to real-world problems.

2 Related Works

Surface reconstruction The initial step of the proposed framework
is surface reconstruction based on 3D point clouds, which is widely
used in various fields, e.g., computer graphics and medical imag-
ing. A classical method for surface reconstruction involves the use
of Moving Least Squares (MLS) [1, 13]. For example, the surface
can be locally approximated using multivariate polynomials. Such
an algorithm works well when points in the domain are distributed
uniformly, but not in non-uniform cases. This is main difficulty in
applying it to real-world problems since point clouds in real world,
usually obtained by 3D scanning, are often nonuniform [24, 25].

On the other hand, some deep learning-based approaches have
been used for surface reconstruction recently [16, 40, 15, 2, 5, 42].
For example, [40] approximated a local chart by a deep neural net-
work for surface reconstruction. Although their model exhibits good
performance, the calculation of differential operators with respect to
the surface, e.g., the surface gradient and Laplace-Beltrami operator,
is impractical.

In contrast, the method proposed in this paper approximates the
surface using a simple polynomial, as in [26]. The main difference
between the two approaches is that our method uses Graph Networks
(GNs) [4] to construct a local coordinate system. GN, a type of GNNs
[35], is widely used in various fields involving interactions between
physical objects [3, 33, 41, 38]. Recently, [34] developed a novel

framework called Graph Network-based Simulators, which learn to
simulate diverse physical domains using GNs. Inspired by the pre-
vious work, we propose a GN-based framework to estimate normal
vectors on point clouds. We introduce GNs briefly and apply them to
construct the local coordinate system in Section 3.1.

Solving PDEs on surfaces Many numerical methods have been
proposed for solving PDEs on point clouds over the years. [29, 23]
are based on the radial basis function finite difference (RBF-FD)
scheme. Such methods are highly sensitive to choice of RBFs, eas-
ily to be unstable for the case of noisy and complex domains. [26]
utilizes the principal component analysis (PCA) with Finite Differ-
ence Methods (FDM). This method performs well when points are
distributed uniformly and dense enough on simple domains, but it is
not robust on noise and complexivity of domains.

Artificial neural networks have been used as function approxima-
tors to solve PDEs in several studies [30, 39, 17, 37, 27, 36]. Typ-
ically, the model parameters are optimized to minimize the residu-
als of the governing equations or physical constraints by computing
the spatial and temporal derivatives via auto-differentiation. Some
studies [20, 28] propose a domain-decomposition-based frameworks
which enables solving PDEs on complex geometrical domains in Eu-
clidean spaces. Although these approaches are successful in many
benchmarking experiments, most are not applicable to curved sur-
face domains. In particular, differential operators defined on curved
surfaces cannot be in the same way as the previous approaches.

Recently, solving PDEs on surfaces using neural networks has
been considered. The strategy depends on the representation of the
surface. When a precise parameterization of the surface is known,
the PINN framework can be employed using the full geometric infor-
mation of the surface. For example, in [12], the authors introduced
an additional loss term to ensure that the solution exhibits zero nor-
mal derivatives on the surface. Under this restriction, the Laplace-
Beltrami operator was replaced with the conventional Laplace oper-
ator, as in classical numerical schemes [31, 29]. On the other hand,
in [18], the Laplace-Beltrami operator was expressed in terms of the
Cartesian differential operator, which was used directly in the loss
function. When triangulation or mesh information of the surface is
given, PDEs can be discretized on each triangular mesh and used to
train models [32, 8, 14]. However, in general, obtaining good param-
eterization or triangulation of surfaces, particularly of complicated
ones, is difficult. In this study, we focus on solving PDEs on sur-
faces described by point clouds, which is the most practical but least
informative way to represent surfaces.

3 Methods
We consider PDEs on surfaces in the general form:

Lu(x) = f(x) on M,

Bu(x) = g(x) on ∂M
(1)

where u denotes the quantity of interest, x = (x, y, z) denotes the
spatial coordinate on the surface M ⊂ R3 with boundary ∂M,
L denotes a general differential operator defined on M, B denotes
an operator on ∂M that defines the boundary conditions, with pre-
scribed functions f and g. We consider the following form for time-
dependent PDEs:

∂u(t,x)

∂t
+ Lu(t,x) = f(t,x) in (0, T )×M,

Bu(t,x) = g(t,x) on (0, T )× ∂M
u(0,x) = h(x) on M

(2)
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for some T > 0 and initial condition, h. In this study, we assume
that M is represented by a point cloud X = {x1,x2, . . . ,xN}. For
convenience, it is assumed to be a regular orientable surface in R3,
which means that the surface has differentiable normal vectors. It is
worthy mentioning that, as u is a function defined on M, the deriva-
tives on surfaces need to be treated in a different way than in sim-
ple planar domains. For instance, the surface gradient ∇M, and the
Laplace-Beltrami operator ∆M, included in Equations (1) and (2).
These differential operators are quite different from the standard gra-
dient and Laplace operator in that they can measure the rate of change
of quantities along a curved surface.

More precisely, let M be parameterized by Γ = Γ(x1, x2). We
then obtain the metric tensors gij’s defined by gij := ⟨Γx1 ,Γx2⟩.
Let G := [gij ], g := det(G), and gij denote the elements of the
inverse matrix G−1. The surface gradient of u is defined by

∇Mu =

(
g11

∂u

∂x1
+ g12

∂u

∂x2

)
Γx1+

(
g21

∂u

∂x1
+ g22

∂u

∂x2

)
Γx2 ,

(3)
and the Laplace-Beltrami operator of u is

∆Mu =
1
√
g

∂

∂x1

(
√
gg11

∂u

∂x1

)
+

1
√
g

∂

∂x1

(
√
gg12

∂u

∂x2

)
+

1
√
g

∂

∂x2

(
√
gg21

∂u

∂x1

)
+

1
√
g

∂

∂x2

(
√
gg22

∂u

∂x2

)
.

(4)

We refer [26] and [11] for more details about operators defined on
manifolds.

In this section, we present a novel framework for solving PDEs
(Equations (1) and (2)) on surfaces represented by point clouds. The
proposed method comprises two main steps. First, the surface is lo-
cally approximated with respect to a local coordinate system at each
point. In the second step, we solve PDEs on the point clouds by
adopting a physics-informed learning framework utilizing the geo-
metric quantities obtained in the first step. Each step is described in
detail in Section 3.1 and Section 3.2, respectively.

3.1 Surface reconstruction from point cloud

In order to solve PDEs on point clouds, it is crucial to extract ge-
ometric information of the points, which means that the underlying
surface should be reconstructed effectively and robustly from the in-
put point cloud data. Here we obtain local parameterization of the
surface, which are directly used when computing function values and
their derivatives along the surface in the PDE-solving step. Our sur-
face reconstruction step consists of the following substeps: (1) sur-
face normal estimation, (2) local approximation of surface.

3.1.1 Surface normal estimation

We first introduce a graph learning method to estimate the normal
vector on the surface. The estimated normal vector and two tangent
vectors define the local coordinate system for each point. Since the
tangent vectors can be selected as two independent vectors perpen-
dicular to the normal vector, it is enough to obtain the normal vectors
in the first step.

Here we use a variant of GN [4]. The GNs can extract geometric
features efficiently from unstructured position information of points
by learning the transmission of information between the points in a
neighbor. Such an approach has recently shown good generalization
performance for physical problems [33, 34]. Our experimental results
corroborate this, demonstrating that the proposed model trained on

relatively simple geometries performs well on highly complicated
surfaces.

Model architecture The proposed model consists of three main
components: an encoder, a processor, and a decoder (Figure 9 in Ap-
pendix A [19]).

First, the encoder converts the point cloud, X , to a simple directed
graph structure G0 = (V 0, E0). To be specific, it converts X into
a K-nearest neighbor (KNN) graph G = (X,E) for some K and
then embeds into the latent graph G0. Here, rji ∈ E if and only if
j ∈ N(i) where N(i) is the set of indices of KNN of the node xi.
Initially, every node feature, v0i ∈ V 0, is set to zero. For each edge,
e0ji := ϵe(rji) for some learnable multi-layer perceptron (MLP),
ϵe, where rji can be any property representing information between
senders and receivers, e.g., displacement. In practice, we use a point-
wisely normalized displacement for rji, i.e. rji = 1

di
(xi − xj),

where di = maxj∈N(i) ∥xi − xj∥2. This allows the edge feature to
keep geometric information while normalizing the size of the vectors.

Subsequently, the process updates the latent graph M times by the
Message Passing algorithm. The Message Passing propagates infor-
mation between node and edges in the latent space. We use identical
models for each update—so all parameters are shared.

Following the feature update, the graph is returned to the original
point cloud and normal vectors are estimated using updated features
by the decoder. The normal vector corresponding to each node is
predicted to be ñi := δv(vMi ) for some learnable MLP, δv .

Loss function and regularization for continuity The model is
trained in a supervised manner. To measure an error between the es-
timated normal vector ñi and the ground truth ni, we use a modified
cosine distance defined by

d(ñi,ni) = 1− |ñi · ni|/(∥ñi∥2∥ni∥2).

This means that the error becomes zero when two vectors are equal
up to sign.

In addition, we introduce a regularizing term to impose continuity
of the output along the surface. As every regular orientable surface
has a differentiable normal vector field, we expect our predictions to
be continuous. In other words, we want the normal vectors to vary
consistently and gradually over the surface, so that close points cor-
respond to similar normal vectors. This can be achieved by penal-
izing rapid changes in neighboring normal vectors. Given Kreg , let
Nreg(i) denote the set of indices of Kreg-NN for each xi. The pro-
posed regularizer is written as

Lreg =
1

Kreg

N∑
i=1

∑
k∈Nreg(i)

d(ñk, ñi).

By adding this regularization term, the model is expected to be con-
tinuous, especially near boundaries, and robust to complex surfaces.
In our implementation, we simply choose Kreg = K.

Training dataset For training, we only use elliptic tori. An elliptic
torus is a very simple geometrical object (Figure 2(a)), but by chang-
ing its parameters, one can generate various surfaces with different
curvatures. In addition, there are some additional processes to aug-
ment the dataset: random rotation, random sampling, and truncation.

First, every data is randomly rotated for data augmentation. Next,
each point cloud data is randomly sampled at a rate of 20%, to en-
hance our model’s robustness on a non-uniform point cloud data. Fi-
nally, we segment half of the dataset and cut them by a plane (Fig-
ure 2(b)). By adding truncated data, our model learns not only closed
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surface data, but also open surfaces which contains boundaries. More
details for the training data are presented in Appendix D.1.1[19]. Al-
though the training dataset is consist of simple geometrical domains,
it is experimentally confirmed that our model shows excellent gener-
alization performance for various domains.

Figure 2. Examples of training data for GNs. The dataset consists of (a)
whole tori and (b) cut tori.

3.1.2 Local approximation of surface

Using the estimated normal vector, a local coordinate system at each
point can be constructed. We consider a tangent plane at point xi

which is normal to ñi, and select two orthonormal basis vectors in the
plane, namely t

(1)
i , t

(2)
i . These three vectors form a local coordinate

system ⟨xi; t
(1)
i , t

(2)
i , ñi⟩ around xi. We now reconstruct the surface

from the point cloud by approximating local parameterization. To ob-
tain a local approximation around xi, we fit a bivariate polynomial of
degree two with respect to ⟨xi; t

(1)
i , t

(2)
i , ñi⟩ using the MLS. Specif-

ically, we determine a local parameterization, Γi = (x, y, zi(x, y)),
where zi(x, y) = a1+a2x+a3y+a4x

2+a5xy+a6y
2. We fit the

undetermined coefficients, a1, ..., a6, by minimizing the weighted
least-squares sum∑

j∈N(i)

w (∥xj − xi∥2) (zi(xj , yj)− zj)
2 ,

where (xj , yj , zj) is the local coordinates of KNN of xi. The result-
ing parameterization of the underlying surface provides an analytic
expression to evaluate function values and its derivatives on the sur-
face. Also, we can leverage the ability of graph learning method in
the surface reconstruction step, such as the generalization capability
and the robustness to input data quality. The evaluation of the pro-
posed method will be presented with several experiments.

3.2 Solving PDEs on point clouds

In this section, we describe the incorporation of the surface recon-
struction with the PINN frameworks to solve PDEs on surfaces rep-
resented by point clouds. Based on the local parameterization of
the surface, we first derive the approximation of functions and their
derivative on surfaces. Theses results will be directly used in PDE
residual losses during training the PDE solution approximator in the
PINN framework.

3.2.1 Functions and derivatives on surfaces

First, we turn our attention to approximations of functions and their
derivatives on surfaces. A key component of solving PDEs on sur-
faces is the approximation of differential operators on surfaces—
this is the primary difference compared to the solving of standard
PDEs on flat domains. We again use MLS to approximate a given
function, u, locally near a point xi in the local coordinate system
⟨xi; t

(1)
i , t

(2)
i , ñi⟩. In our proposal, ui is assumed to be a bivariate

polynomial of degree two, ui(x, y) = b1 + b2x + b3y + b4x
2 +

b5xy + b6y
2, where the coefficients b1, ..., b6 are obtained by mini-

mizing the following weighted least-squares sum:∑
j∈N(i)

w (∥xj − xi∥2) (ui(xj , yj)− u(xi))
2 .

The resulting coefficients provides an explicit expression ui(x, y) of
u near xi. Now we can derive the surface derivatives such as ∇M
and ∆M using the coefficients of zi and ui.

For instance, we rewrite each term in the Laplace-Beltrami opera-
tor ∆M as some function of coefficients of zi and ui. That is, if we
rewrite the Laplace-Beltrami operator at the node xi as

∆Mui(xi) = A1
∂ui

∂x
(xi) +A2

∂ui

∂y
(xi)

+A3
∂2ui

∂x2
(xi) +A4

∂2ui

∂x∂y
(xi) +A5

∂2ui

∂y2
(xi),

then each coefficient Ai and derivative term can be computed using
the coefficients ai and bi. For instance, we can derive

A4 =
−2a2a3

1 + a2
2 + a2

3

, A5 =
1 + a2

2

1 + a2
2 + a2

3

,

and ∂2ui
∂x∂y

(xi) = b5,
∂2ui
∂y2 (xi) = 2b6. Other terms can be calculated

in the same way, and the surface gradient ∇M can be obtained simi-
larly. The detailed derivation is presented in the Appendix C [19].

3.2.2 Physics-informed learning on surfaces

In this section, we introduce a method to solve PDEs on surfaces
by combining all the aforementioned ingredients. The main strategy
is to use neural network models as approximators of the solutions
to the problems, Equations (1) and (2), by minimizing the residuals
of the equations via gradient-based optimizers. The neural networks
use spatial (and temporal) coordinates as the input and the solution
at the same point as the output, respectively. Then, the PDE residu-
als are computed as a loss function to embed physical information
into the network. In conventional physics-informed learning, each
derivative is computed using automatic differentiation. Instead, here
we use the results obtained in the previous section to compute the
derivatives along surfaces. These significantly reduce the computa-
tional cost when solving PDEs on surfaces, since they do not involve
any automatic differentiation procedure. We note that, in our exper-
iments the auto-differentiation is only used to compute time deriva-
tives ∂/∂t.

We denote the neural network approximation of the solution by
uNN . For a time-independent problem (Equation (1)), the parameters
of the network uNN are updated by minimizing the mean-squared
error of the residuals of the PDEs:

Loss
(
uNN

)
=

1

N

N∑
i=1

[
LuNN (xi)− f(xi)

]2
+

λB

NB

NB∑
j=1

[
BuNN (xj)− g(xj)

]2 (5)

for the given training points, {xi ∈ M}Ni=1 in the interior and
{xj ∈ ∂M}NB

j=1 at the boundary, with a loss weight of λB . For
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time-dependent problems (Equation (2)), the following loss function
can be considered:

Loss
(
uNN

)
=

1

N

N∑
i=1

[
∂uNN (ti,xi)

∂t
+ LuNN (ti,xi)− f(ti,xi)

]2

+
λB

NB

NB∑
j=1

[
BuNN (tj ,xj)− g(tj ,xj)

]2
+

λI

NI

NI∑
k=1

[
uNN (0,xk)− h(xk)

]2
(6)

for training points {(ti,xi) ∈ (0, T )×M}Ni=1, {(tj ,xj) ∈ (0, T )×
∂M}NB

j=1, and {xk ∈ M}NI
k=1, with loss weights of λB and λI . We

note that the model can be modified to satisfy the initial or boundary
conditions exactly. In our experiments on time-dependent problems,
the output of the model is set to be uNN (t,x) = h(x)+t·ũNN (t,x),
such that the model always satisfies the prescribed initial condition,
uNN (0,x) = h(x), for any x ∈ M. This enables the omission of
the loss term for the initial condition in Equation (6).

4 Experiments
In this section, we compare the performance of the proposed method
with those of existing methods. We first evaluate our surface recon-
struction method in Section 4.1. Next we demonstrate the applica-
tion of our method with representative examples for PDEs on point
clouds. From Section 4.2 to Section 4.5, we conduct error analysis
on synthetic datasets with known analytic solutions. We adopted the
relative error in L2 and max norm as the error criteria. In addition,
we discuss examples that are closer to real-world problems in Sec-
tion 4.6.

As a baseline for the PDE-solving step, we consider three base-
line models: (1) the numerical method using PCA with FDM [26],
and the learning-based methods (2) DeepFit [5] and (3) AdaFit
[42]. Note that both DeepFit and AdaFit are utilized only for the
first part, surface reconstruction, and each of them is combined
with PINNs for the second part, solving PDEs on point clouds.
More details for implementation and baseliens are described in Ap-
pendix C and D [19]. Our code and data are publicly available at
https://github.com/JSRYU1998/surface_pde.

4.1 Surface Normal Estimation

First, the normal estimation performance of the proposed GN-based
model is evaluated and compared with those of baselines on various
surfaces. We verify the predictive robustness of the proposed model
as the underlying surface becomes increasingly more complex for a
given point cloud.

We consider point cloud data sampled from a curvature flow gen-
erated by the methods presented in [9]. Curvature flow is a sequence
of smooth approximations for a given geometry. In our experiment,
sequences starting from the Stanford bunny data and converging to a
sphere are considered by reducing the fairing energy (Figure 3). The
errors between the estimated normal vectors and the ground truth
data are measured in terms of the modified cosine distance. As with
Section 4.6, the dataset is initially given as triangular meshes, so we
sample point clouds uniformly with N = 4800.

Figure 4 indicates that the proposed graph-based method computes
normal vectors most accurately in earlier time steps compared to

Figure 3. Visualization of the curvature flow from the bunny to a sphere.
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Figure 4. Error over time when using our model and the baselines.

other methods. When domain is relatively simple, all methods show
similar performance. As the complexity increased, however, only our
model remains robust against such complexity. In particular, the per-
formance degradation in DeepFit was the most pronounced, which,
as described in [42], is due to an increasing inconsistency in the fit-
ting polynomial order of each point as the domain becomes more
complex. This implies that our model can capture more detailed fea-
tures in more complex geometries than the baselines. This also im-
plies that the proposed model is more applicable to realistic domains.

4.2 Elliptic equation on an open surface with
Dirichlet boundary condition

We consider the following elliptic equation on a surface M with a
boundary ∂M

∆Mu = f on M,

u = 0 on ∂M,
(7)

where the surface M is defined by the level set

y2 + z2 =
(√

1− 0.25x2
(
0.75x2 + 0.5

))2

with an inequality constraint x ≤ 0.75 and the boundary region
at the equality constraint (Figure 6(a)). This is one of the funda-
mental problems associated with mechanical and physical phenom-
ena on surfaces. We set the analytic solution to be u(x, y, z) =
(0.75 − x) sin(y − z) and compute the term f accordingly, such
that Equation (7) holds. Point clouds are generated using different
mesh sizes, h ∈ [0.08, 0.22]. The corresponding N vary from 687 to
5204 (Figure 6(b)).

As reported in Figure 5 and Table 3 in Appendix F [19], ours
achieve better accuracy compared to baselines for all cases, confirm-
ing that our model can successfully solve boundary value problems.

4.3 Diffusion equation on closed surfaces

Next, we consider a time-dependent diffusion equations on closed
surfaces. We set up three synthetic surfaces with varying complexity,
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Figure 5. Comparison of the results for Section 4.2 and Section 4.3. The relative errors are plotted in the log-log scale.

.

Figure 6. Illustration of (a) the underlying surface and (b) the sampled
point cloud data, ranging from sparse to dense. The color in (b) represents

the values of the approximate solution obtained from our model.

formulated as follows: r = 1, r = 1 + 0.4 sin(3θ) cosϕ, r = 1 +
0.4 sin(5θ) cosϕ, for M1, M2, M3, respectively, where (r, θ, ϕ) is
the spherical coordinate. As depicted in Figure 7(a), (b), and (c), the
complexity of surfaces is controlled by manipulating the the value of
polar and azimuthal angles.

The equations are given by:

ut −∆Miu = f in (0, 1)×Mi,

u(0,x) = hi(x) on Mi

(8)

for i= 1, 2 and 3. We choose the following exact solutions
u(t, x, y, z) = sin(x+sin(t)) exp (cos(y − z)) for all i’s, and then
hi and fi are determined accordingly.

We compare the performance of our method with those of the
other methods when domain complexity changes. In this experiment,
points are sampled from each domain uniformly. As described in Fig-
ure 5 and Table 3 in Appendix F [19], the proposed model achieves
better performace than baselines on almost cases. In particular, on
M3, which is the most complex domain, our model significantly
outperforms the baseline models, showcasing its superior robustness
with respect to domain complexity. Finally, we provide qualitative
results by visualizing the diffusion of heat on the domains over time
in Figure 7(d).

4.4 Diffusion equation on non-uniformly distributed
point clouds

We solve Equation (8) with the same exact solution above on a
cheese-like domain with the level set

(4x2 − 1)2 + (4y2 − 1)2 + (4z2 − 1)2 + 16(x2 + y2 − 1)2

+16(y2 + z2 − 1)2 + 16(z2 + x2 − 1)2 − 16 = 0.

The main difference compared to Section 4.3 lies in the use of
non-uniformly distributed point clouds in this section (Figure 7(e)).
The experiment begins by uniformly and densely sampling points
(N = 13824) from the surface. Subsequently, we randomly select
each point with probabilities of 0.5, 0.2, and 0.1, as illustrated in
Figure 7(e). To evaluate the performance, we conduct 10 runs for
each probability setting, varying the random seeds. It should be noted
that the domains are no longer uniform after random sampling.

The results presented in Table 1 demonstrate that our method con-
sistently maintains a high level of performance even when confronted
with non-uniform point distributions. Both DeepFit and AdaFit (with
PINN) method perform worse overall compared to our model. Addi-
tionally, AdaFit with PINN exhibited overall instability, resulting in
significant errors, especially in the 50% sampling case. Furthermore,
the numerical method [26] fails to converge in any of the cases, with
the error exponentially increase as the iterative updates progress. It
assumes that the point clouds are well-distributed with a sufficiently
fine ratio; therefore, their model fails to converge in this experiment.

However, in contrast, our model is most robust on non-uniform
point distribution as it is trained on a non-uniform dataset for nor-
mal vector estimation, enabling surface reconstruction even when the
points are distributed non-uniformly.

4.5 Advection Equation on a noisy surface

In this section, we investigate the robustness of our approach in the
presence of varying noise intensities in comparison to the baselines.
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Figure 7. (a), (b), (c) Illustration of closed surfaces M1, M2, and M3. (d) We visualize the solutions approximated by our model, which correspond to the
heat diffusion over time. (e) Point cloud data with non-uniform distribution in Section 4.4 (f) Visualizations of some examples from the TOSCA dataset in

Section 4.6. (g) The visualization of diffusion equation as time goes, which indicates that heat spreads as predicted. For (d) and (g), triangular meshes are used
for better visualization. We note that the mesh information is only used for visualization, not as part of the main algorithm.

Table 1. Relative L2 errors corresponding to each sampling ratio on a
cheese-like surface. NaN means that the predicted values explode, resulting

in a failure of convergence. (Averaged over 10 repetitions)

Sampling
Ratio Ours DeepFit

+PINN
AdaFit
+PINN

Numerical
method

50% 1.29e-2 1.80e-2 2.44e-1 NaN
20% 3.69e-2 3.98e-2 2.80e-2 NaN
10% 5.56e-2 9.07e-2 5.94e-2 NaN

We consider the advection equation

∂u

∂t
+ v · ∇Mu = 0 on (0, T )×M,

u(0, θ, ϕ) = u0(θ, ϕ) on M
(9)

on a torus M, parametrized by ((R + r cosϕ) cos θ, (R +
r cosϕ) sin θ, r sinϕ) for 0 ≤ θ, ϕ < 2π with R = 1 and r = 0.5.
Here, v denotes the velocity vector field and u0(θ, ϕ) denotes the
initial condition. We set the analytic solution to be u(t, θ, ϕ) =
cos(θ − t) + sin(ϕ − 2t), and then compute v and u0 accordingly.
This equation governs the transport of a substance on a fluid surface.
To that end, we first sample point cloud of N = 4560 from the sur-
face and then inject i.i.d. Gaussian noise N (0, σ2I) to each point.
The intensity of the noise, denoted as σ, is adjusted in proportion to
the spread of the points. As with Section 4.4, we iterates 10 times
for generation of noise. We vary σ from 0.25% to 1.0% of the maxi-
mum distance from the centroid of each point cloud. We evaluate the
approximate solutions at the terminal time T = π.

As in Table 2, our model achieved superior performance compared
to baselines. Specifically, when σ increases, the numerical method
[26] diverges exponentially, resulting in a failure to converge. On the
contrary, our method demonstrates only a minor decline in perfor-
mance when the intensity increases, and performs better than base-
lines.

4.6 Diffusion equation on real-world dataset

The final experiment concerns Equation (8) on more complex do-
mains from real world. We consider the TOSCA dataset [6], which

Table 2. Relative L2 errors corresponding to each noise intensity on a
torus. NaN means that the predicted values explode, resulting in a failure of

convergence. (Averaged over 10 repetitions)

Noise
Intensity Ours DeepFit

+PINN
AdaFit
+PINN

Numerical
method

0.25% 9.96e-3 1.13e-2 1.07e-2 2.90e-2
0.50% 1.80e-2 2.73e-2 2.90e-2 4.89e-1
0.75% 3.30e-2 5.06e-2 6.25e-2 NaN
1.00% 9.43e-2 1.25e-1 1.49e-1 NaN

consists of 80 objects, including various poses of humans and ani-
mals (see Figure 7(f) for example). Since the TOSCA dataset is ini-
tially given as triangular meshes, represented by vertices and triangu-
lar faces, we sample point clouds uniformly in a manner proportional
to the area of each triangular face. Consequently, each data consists
of N = 12000 points (Figure 7(f)).

For the initial condition, we randomly select a single source point
s from the point cloud and introduce sharp and bell-shaped Gaussian
pulse in its vicinity:

u(x, 0) = exp(−75 · ∥x− s∥22)

Thus a solution to this problem describes a heat diffusion from a
single point along the surfaces.

Since the exact expressions for these domains are not available,
our model only presents qualitative results through visualizations of
surface reconstruction and heat diffusion in Figure 7(f) and (g), re-
spectively. In Figure 7(f), the reconstructed surface resulting from the
first step of our method are described, and Figure 7(g) shows the heat
diffusion predictions for each example. The successful spreading of
heat on the surfaces, as expected, confirms the strong performance of
our model, even in more complex domains. More examples for other
data are demonstrated in Appendix G [19]. This experiment demon-
strates the potential of applying our proposed method to real-world
problems.

4.7 Further Experiments

We lastly demonstrate supplemental experiments for in-depth anal-
ysis of our framework. We first evaluate the normal estimation per-
formance on various surfaces of our model. We next investigate the
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time required of each step of our model. We conduct further abla-
tion studies for a deeper analysis of several properties of our model.
These experimental results support the effectiveness of the proposed
method in different cases. More details are described in Appendix H
and I [19].

5 Conclusion
In this paper, we propose a GN-based method to solve PDEs on sur-
faces, particularly those described using point clouds. The method is
trained on a simple geometry to reconstruct the surface locally; how-
ever, it performs well on several complicated domains as well. The
model can be used to solve several types of PDEs on curved surfaces.
Based on quantitative and qualitative experimental results, we con-
clude that it is robust even when the surface becomes highly complex
and points are distributed non-uniformly.

Several types of future research may be based on this framework.
For example, the proposed method can be applied to moving surface
problems. We have only considered stationary domains and utilized
only the spatial features. By infusing both spatial and temporal fea-
tures into our model, various problems on evolving surfaces can be
solved.
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