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Abstract. Diffusion models have emerged as effective tools for gen-
erating diverse and high-quality content. However, their capability in
high-resolution image generation, particularly for panoramic images,
still faces challenges such as visible seams and incoherent transi-
tions. In this paper, we propose TwinDiffusion, an optimized frame-
work designed to address these challenges through two key innova-
tions: the Crop Fusion for quality enhancement and the Cross Sam-
pling for efficiency optimization. We introduce a training-free opti-
mizing stage to refine the similarity of adjacent image areas, as well
as an interleaving sampling strategy to yield dynamic patches during
the cropping process. A comprehensive evaluation is conducted to
compare TwinDiffusion with the prior works, considering factors in-
cluding coherence, fidelity, compatibility, and efficiency. The results
demonstrate the superior performance of our approach in generating
seamless and coherent panoramas, setting a new standard in quality
and efficiency for panoramic image generation.

1 Introduction

Over the past few years, diffusion models [15, 25, 36] have demon-
strated their creativity in generation tasks. They define a pair of
forward and reverse Markov chains to learn the data distribution,
which bypasses the limitations in other types of generative models
like GANs [4, 7], VAEs [6, 21] and Flows [18]. Diffusion models
have risen as effective tools for broad applications, spanning from
high-quality images to multi-type content creation. With the growing
interest in full information records, immersive virtual reality, artistic
expression, and historical preservation, the synthesis of long scrolls
is gaining more and more attention, particularly in panoramic image
generation tasks [2, 11, 38].

Recent advancements have exhibited the expansibility of pre-
trained diffusion models in generating images of arbitrary dimen-
sions, such as super-resolution diffusion [13, 34] and area fusion
strategies [17, 35, 39]. The latter often involves cropping from a
large space into small patches for individual processing, as well as
conducting specific guidance to fuse them together, providing more
controllability than the former. However, achieving crop-wise high-
resolution generation is non-trivial. To our knowledge, MultiDiffu-
sion [2] represents the state-of-the-art framework among the existing
methods, yet it still fails to capture the relationships between neigh-
boring image areas, resulting in unnatural connections or even visi-
ble seams in panoramas. Although a finer cropping stride could ease
such problems, it comes with a higher time cost.

∗ Corresponding Author. Email: yctang@zju.edu.cn

To tackle these challenges, we propose TwinDiffusion, an opti-
mized framework designed to enhance the capability of panoramic
image generation with diffusion models. Drawing from the ground-
work laid by the MultiDiffusion, our approach introduces two key
innovations to make improvements in both quality and efficiency.

• (Quality) Crop Fusion: Our first innovation in TwinDiffusion fo-
cuses on refining the coherence of generated panoramas by in-
troducing a training-free optimizing stage. Inspired by the harmo-
nious relationship between twins, this approach is aimed to closely
align the adjacent parts of the panoramic image space, leading to
smoother transitions and fewer seams in final panoramas as shown
in Fig. 1.

• (Efficiency) Cross Sampling: Our second innovation handles the
efficiency of generating panoramas by adopting an interleaving
sampling method. With a group of dynamic strides in the cropping
process, we effectively mitigate the loss of image quality caused
by larger cropping strides, enabling faster generation while up-
holding the sampling quality.

• Performance Trade-off: Moreover, we analyze the key factors in
TwinDiffusion that impact its performance, including the timestep
for introducing the crop optimizing stage, the Lagrange multiplier
in our core function, the view stride and the cross stride for sam-
pling image patches. This thorough discussion gives insights into
the condition of quality-efficiency balance with our method.

Lastly, our comprehensive evaluation of TwinDiffusion compares
its performance with baselines in a range of aspects including coher-
ence (measured by LPIPS [40] & DISTS [8]), diversity (FID [14] &
IS [27]), compatibility (CLIP [23] & CLIP-aesthetic [28]), efficiency
(processing time), etc. Qualitatively, we demonstrate its effectiveness
and stability in eliminating seams and generating smoother panora-
mas. Quantitatively, our method outperforms other baselines across
all evaluation metrics, striking a new balance in quality and efficiency
for panoramic image generation.

2 Related Work

Diffusion Models Diffusion models are inspired by non-
equilibrium thermodynamics [29]. They define two Markov chains
for forward and reverse processes, namely diffusion and denoising.
The forward process is to perturb a data distribution x0 ∼ q(x)
into a standard Gaussian distribution xT ∼ N (0, I) with T steps
of noise injection. This process is reversed to recreate the sample x0

that obeys the original data distribution from a Gaussian noise input.
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Figure 1. TwinDiffusion is a crop-wise framework designed for high-resolution panorama generation with diffusion models. Inspired by the strong connection
between twins, our approach aims to reconcile adjacent areas of the panoramic image space successively. This alignment produces pairs of locally similar image
crops resembling twins (left), leading to improved coherence and smoother transitions in panoramas (right).

Specifically, the reverse process involves training a network to ap-
proximate q(xt−1 | xt), and then sampling from N (0, I) iteratively
with the trained model. From DDPM [15] to DDIM [30] to LDM
[25], diffusion models have paved the way for text-to-image genera-
tion, boosting AI-painting applications like Stable Diffusion [25] and
DALLE2 [24]. By capturing the spatial-temporal distribution fea-
tures, they also show promising prospects in generating multi-modal
contents such as videos [3, 5, 10], audio [16, 19], and 3D objects
[31, 33, 37].

High-Resolution Image Generation with Diffusion Models Ex-
tensive studies have been dedicated to leveraging diffusion models
for controllable high-resolution image generation tasks. The existing
methodologies can be divided into two branches: (i) methods that
focus on super-resolution [13, 34] or inpainting [1] techniques uti-
lizing diffusion processes to infer the missing information, and (ii)
methods that center around crop-based fusion strategies within diffu-
sion paths [2, 17, 39]. The former often requires training on specific
datasets, combining initial noise with low-resolution images as input
to the network. Additionally, they involve resizing the input images,
which lacks portability and imposes computational demands. On the
other hand, the latter offers greater flexibility by manipulating the
generation process in different cropped spaces, and reconciling them
in a training-free or fine-tuning manner. Among them, the MultiD-
iffusion framework proves to be feasible and resultful. However, its
optimization function only pays attention to the overlapping regions
of image crops, ignoring the non-overlapping adjacent areas, which
reduces itself into a naive weighted mean method. Hence, we see
room for improvement.

Faster Sampling Method for Diffusion Models Traditional sam-
pling methods in diffusion require a large number of iterations to
generate high-resolution images, which can strain computational re-
sources and slow down operations [12, 32]. Alongside the scheduler
optimization [9, 30] and diffusion distillation [26], we refer to the

trajectory stitching and interlaced sampling method [20] for our sam-
pling acceleration request.

3 Method

3.1 Preliminary

To start with, we introduce a pre-trained diffusion model denoted by
Φ, operating in a latent space Z = R

h×w×c and a textual condition
C. Employing the deterministic DDIM sampling [30]:

zt−1 =
√

αt−1

αt
zt +

(√
1

αt−1
− 1−

√
1
αt

− 1
)
· Φ(zt, t, C) (1)

where zt ∈ Z and αt is parameterized by the DDIM schedule {βi |
i = 1, 2, . . . , T, βi ∈ (0, 1)}, we get image z0 from initial Gaussian
noise zT after T steps of denoising.

Our intention is to extend Φ as a reference model to generate im-
ages in a larger space Z′ = R

h′×w′×c, where h′ > h and w′ > w.
This can be achieved with the MultiDiffusion framework [2], repre-
sented by a function called the MultiDiffuser Ψ. It defines a set of
mappings between two model spaces by:

zit = Fi(z
′
t) (2)

Specifically, Fi refers to cropping the i-th image patch from space
Z′ with the stride of sv .

During the MultiDiffusion process, firstly, each crop is simulta-
neously and independently denoised with fΦ: zit−1 = fΦ(z

i
t, t, C)

suggested by Eq. 1. Then, based on the Manifold Hypothesis, a least-
square optimization for global fusion is formulated to minimize the
discrepancy between each crop Fi(z

′
t−1) and its denoised counter-

part fΦ(Fi(z
′
t), t, C), merging different crops into one large image

z′. According to the properties of Ψ, its optimization problem has an
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Figure 2. Illustration of our approach applied to panorama generation. The process begins with the mapping function Fi transforming the image crops into
the panoramic space Z′. This results in a sequence of overlapping crops z1t , z

2
t , . . . , z

n
t arranged spatially, each having an independent denoising path. Our

goal is to optimize zit within the constraints of its adjacent neighbor and itself as well, thus ensuring a unified and progressive fusion of crops. To achieve this
alignment, our objective function Eq. 4 is defined into two mutual-restricted parts and reaches the minimizer zit

∗ in each denoising timestep: (i) the matching
term: differences at the overlaps of zit and its neighbor zi−1

t , (ii) the regularization term: deviations between zit
∗ and its unoptimized self fΦ(Fi(z

′
t+1), t, C).

analytical solution. Thus, the minimizer z′ turns out to be a weighted
average value:

z′t−1 =

∑
i Wi � F−1

i (fΦ(z
i
t, t, C))∑

i Wi
(3)

with Wi represents the pixel weight matrix of the i-th crop.

3.2 Image Crop Fusion

As Eq. 3 suggests, the optimization process in MultiDiffusion is only
taken for where each Fi(z

′
t) overlaps, disregarding the adjacent but

non-overlapping subareas, which can always disrupt the overall co-
herence of images. The key idea of our Crop Fusion method is to
reconstruct this core function, enabling a more reasonable and high-
quality panorama generation.

At each denoising timestep t, we get a spatial-ordered sequence of
overlapping crops z1t , z2t , . . . , znt generated by the mapping function
Eq. 2 in a panoramic space Z′. For each crop zit , our goal is to align
its overlapping part of the adjacent crop zi−1

t as closely as possible,
while limiting the deviation from the crop itself. Thus we present:

zit
∗
= arg min

zit∈Z′
L(zit | zi−1

t , Fi(z
′
t+1), C)

= arg min
zit∈Z′

‖ M i−1
r � zi−1

t −M i
l � zit ‖2 +

‖ fΦ(Fi(z
′
t+1), t, C)− zit ‖2

(4)

as our optimization task, where z∗ denotes the optimized crop,
Ml,Mr ∈ {0, 1}h×w represent the binary masks covering the crop’s
left and right overlapping regions according to sv , and � is the
Hadamard product. The second part of Eq. 4 serves as a regular-
ization term, which is used to coordinate the alignment behavior of
crops. Therefore, the objective function of TwinDiffusion can be for-
mulated as follows:

min ‖ M i−1
r � zi−1

t −M i
l � zit ‖2

s.t. ‖ fΦ(Fi(z
′
t+1), t, C)− zit ‖2 ≤ ℵ

(5)

and the Lagrangian function for this problem is given by:

L(zit, λ) =‖ M i−1
r � zi−1

t −M i
l � zit ‖2 +

λ(‖ fΦ(Fi(z
′
t+1), t, C)− zit ‖2 − ℵ)

(6)

where λ is the Lagrange multiplier associated with the constraints
of adjacent but non-overlapping regions in the panorama. Using the
Karush-Kuhn-Tucker (KKT) conditions, we can reach an optimal so-
lution:

zit
∗
=

⎧⎪⎪⎨
⎪⎪⎩

M i
l � zit

∗
= (1 + λ)−1[M i−1

r � zi−1
t +

λM i
l � fΦ(Fi(z

′
t+1), t, C)]

M i
r � zit

∗
= M i

r � fΦ(Fi(z
′
t+1), t, C)

(7)

which demonstrates that our Crop Fusion is a training-free method
with closed-form optimization.

As depicted in Fig. 2, our framework progressively optimizes im-
age crops while considering their coherence in multiple subregions
and achieving a unified fusion. This approach fundamentally dif-
fers from MultiDiffusion, which performs a single weighted average
across the entire panorama space.

3.3 Cross Sampling

In Eq. 2, Fi specifies a sliding window to crop overlapping images
with a fixed step size sv , referred to as the view stride later. We notice
that the quality and generation speed of panoramic images heavily
depend on this view stride, which determines the degree of overlap
between crops. A finer degree of overlap results in superior panora-
mas, yet processing numerous image crops during denoising itera-
tions can be time-consuming.

To address this quality-efficiency trade-off, we propose a variant
mapping function called Cross Sampling defined by:

zit = F
(k)
i (z′t), k = t mod r (8)
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where r controls the interleaving frequency and k denotes the sam-
pling mode. Staggering in r times, our method dynamically forms a
set Z = {zi,j | 1 ≤ i ≤ r, 1 ≤ j ≤ n} consists of r groups, each
containing n overlapping crops, with spatial locations incrementing
by the cross stride sr . Then, in T rounds of denoising, we alternate
between using these crop groups for sampling in r staggered spaces.

Panorama seams mostly occur where the crops meet. Thus by in-
corporating the Cross Sampling method, TwinDiffusion takes more
flexible control over the fine degree of overlap between neighbor-
ing image crops, filling the gaps caused by the enlarged view stride.
Our experimental results in Sec. 4.3 have demonstrated that with this
straightforward yet effective solution, we can double sv to cut the
generation time in half or more (with a larger sv), while maintaining
panoramic image quality on par with the original MultiDiffusion.

4 Experiments

4.1 Panorama with Twin Crops

Here, we report two successive implementations of TwinDiffusion:
the Single form, generating twin images with high and controllable
similarity, and the Multiple form, extending its capabilities to synthe-
size panoramas composed of multiple, harmoniously interconnected
twin crops.

Figure 3. Applying our Crop Fusion method to generate twin images. Top:
the optimized I∗2 exhibits a seamless fusion effect that meets our expectations.
Bottom: We further test its limits by fixing the regularization term of Eq. 5.
The results demonstrate our method’s robustness under extreme conditions.

Single: Twin Images As illustrated in Fig. 3 (top), our method gen-
erates a pair of images that locally resemble each other like twins.I1
and I2 represent the first and second images respectively, generated
from initial latent noise satisfying M1

r � z1 = M2
l � z2. I∗2 corre-

sponds to I2 with our optimization. It successfully retains the content
of original [I2]r while closely aligning its left part to [I1]r , achieving
a seamless fusion of [I1]r and [I2]l.

We also conduct a stress test on TwinDiffusion’s ability to fuse
image crops. Specifically, we replace fΦ(Fi(z

′
t+1), t, C) in the reg-

ularization term of Eq. 5 with a constant reference z̃it , representing
the raw zit following its unoptimized denoising trajectory. The re-
sults in Fig. 3 (bottom) demonstrate that even under such conditions,
our method still achieves a natural and seamless crop fusion. This
work serves as an initial validation to ensure higher consistency in
the subsequent panorama generation.

Multiple: Panorama with Twin Crops Beyond a single pair of
images, we generalize this approach to a sequence of images, i.e.,
crops z1t , z2t , . . . , znt within panoramas. Our optimization is applied
to each pair of neighboring crops, promoting a high degree of sim-
ilarity between [zit]r and [zi+1

t ]l, thereby resulting in higher-quality
panoramas with consecutive twin crops as depicted in Fig. 1. Refer
to Appendix A in the supplementary material [41] for more imple-
mentation examples.

4.2 Comparison

We conduct a comprehensive evaluation of our approach from both
qualitative and quantitative perspectives, comparing images gener-
ated by TwinDiffusion versus other baselines.

For the reference model Φ, we employ two variants: the widely
used diffusion model Stable Diffusion v2.0, and its advanced version
Stable Diffusion XL v1.0 [22]. They respectively operate in an image
space of R512×512×3 and R

1024×1024×3. We align the size of crops
with the default resolution of Φ, creating panoramas in 512× 2048
and 1024× 4096 correspondingly. To ensure the reliability of our
results, we test 20 different prompts involving various contents and
art styles, and generate 200 panoramas per prompt with 5 sets of
random seeds. The results presented in Sec. 4.2 are specifically ob-
tained with a reference model of Φ = SD2.0, a crop fusion timestep
of τ = T/2, an adjacent control factor of λ = 1, a view stride of
sv = 16 and a cross stride of sr = 8. More details and comparisons
about these contributing factors are thoroughly discussed in Sec. 4.3
and Appendix C [41].

Qualitative Comparison In Fig. 4, we showcase the comparative
performance between our method and MultiDiffusion across a se-
ries of qualitative examples. Our TwinDiffusion effectively mitigates
the problem of visible seams at the overlaps of image crops, achiev-
ing a smoother transition where MultiDiffusion tends to struggle. As
shown in the first three cases, this improvement is particularly no-
ticeable for art painting, which differs from the natural landscape due
to its frame-like incoherence that often arises at the edges of crops.
More qualitative results are provided in Appendix B [41].

Quantitative Comparison We utilize a range of quantitative met-
rics focusing on the following four aspects: (i) coherence at the in-
tersection of crops, (ii) fidelity and diversity of the generated panora-
mas, (iii) compatibility with the input prompts, as well as (ix) ef-
ficiency of the optimization process. Recognizing that resizing the
entire panoramic image to meet the small dimensions required by
the metrics (e.g. 2992 for FID, 2242 for CLIP) could lead to loss
of essential features and distortions, we choose to test with images
cropped from panoramas at a 5122 resolution instead.

• (Coherence) Learned Perceptual Image Patch Similarity

(LPIPS) and Deep Image Structure and Texture Similarity

(DISTS): LPIPS and DISTS capture the perceptual differences
between two images by computing distances of their feature vec-
tors. Each generated panorama is divided into 8 pairs of adjacent
but non-overlapping image crops according to the sv . From these
cropped views, we randomly take 4,000 pairs to compute LPIPS
and DISTS values.

• (Fidelity & Diversity) Fréchet Inception Distance (FID) and In-

ception Score (IS): Leveraging the underlying output of Incep-
tion V3 network, FID and IS describe both fidelity and diversity
of generated images. Inspired by [2], we measure FID and IS
between the distribution of generated and reference image sets,
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Figure 4. Qualitative comparisons between MultiDiffusion and ours. Our approach significantly reduces the odd joints and visible seams that commonly occur
in MultiDiffusion, resulting in higher-quality panoramic images.

where the former consists of images cropped from panoramas,
and the latter comprises images generated by reference models.
To avoid coherence interfering with diversity, we extract only one
random crop from each panorama, and calculate the metrics from
each crop to the reference image set.

• (Compatibility) CLIP and CLIP-aesthetic: CLIP is used to as-
sess the cosine similarity between generated images and the in-
put prompts, while CLIP-aesthetic score is predicted from a lin-
ear estimator on top of CLIP. For a given prompt, we employ the
cropped image set mentioned above to compute the scores.

• (Efficiency) Generation Time: The time taken to generate a com-
plete panoramic image is evaluated on an A100 GPU.

We make comparisons among the Blended Latent Diffusion [1],
MultiDiffusion and our TwinDiffusion, calculating the mean and
standard deviation scores of all metrics. Additionally, we measure
the performance of Φ itself (i.e. the Stable Diffusion), which is mea-
sured by internal comparisons within the reference image set.

As reflected in Fig. 8, our approach stands out as the optimal
method across all evaluation criteria. Coherence, the most important
aspect of panoramic images, is greatly improved by our method, as
reported in the first row. Additional progress can also be observed
in the CLIP-aesthetic metric, implying that the increase in coherence
could facilitate the compatibility and aesthetic appeal of generated
results. Meanwhile, we get comparable scores in FID and IS. This
keeps in line with our method’s primary focus on the seam issue,
which may not have much impact on fidelity and diversity. In terms
of efficiency, our method achieves better image quality without any
compromise in time cost.

4.3 Ablation

TwinDiffusion incorporates several key factors that contribute to its
performance, including the timestep τ for introducing the Crop Fu-

sion stage, the adjacent control factor λ in our optimization function,
the view stride sv for cropping image patches, and the cross stride sr
in the Cross Sampling method.

Figure 5. The analysis of the proper timestep τ for introducing the Crop
Fusion stage. As τ decreases, a gradual transition from under-optimization
to over-optimization can be observed, with the best results attained by τ =

T/2. The bottom rows of the figure offer two additional examples that further
support our findings.

Optimization Timestep In the initial attempts at twin-image gen-
eration, we apply the Crop Fusion method throughout the entire de-
noising process. However, the outcomes are unsatisfactory as the
generated images exhibit a distinct left-right fragmentation, where
an appropriate optimization time window is needed to achieve the
desirable results. We know that an earlier guidance plays a greater
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role in the diffusion trajectory. Thus, we decide to confine the op-
timization period to the early stages of the sampling process. That
is, the Crop Fusion is carried out from t: T → τ and then stopped
during t: τ → 0, where T represents the total timestep of the corre-
sponding diffusion scheduler.

The relationship between τ and the stitching effect of twin images
is depicted in Fig. 5. We can see a progressive effect on I∗2 with the
decrease of optimization timestep τ . (i) When τ > T/2, it is under-
optimized, as [I∗2 ]l differs significantly from [I1]r . (ii) When τ =
T/2, it is well-optimized, generating the most natural and seamless
I∗2 . (iii) When τ < T/2, it is over-optimized, I∗2 stays too close with
[I1]r while failing to fuse with [I∗2 ]r .

Figure 6. Further explorations about adjacent control factor λ. It presents a
comparative analysis of different λ values to study their impact on the align-
ment behavior and visual coherence of panoramas. The results demonstrate
that our method achieves the best balance around λ = 1 and is not sensitive
to changes of λ values.

Adjacent Control The control factor λ in Eq. 6 plays a crucial role
in determining the alignment behavior of image crops. It allows us to
adjust the balance between aligning closely with adjacent blocks and
maintaining self-alignment, thus significantly influencing the overall
quality of panoramic images. Since coherence is an essential attribute
in panoramas, we streamline our assessment to focus on LPIPS and
DISTS metrics to represent image quality.

Figure 7. Ablation study about our method in improving the quality-speed
trade-off. As seen, the effect of the single Crop Fusion and Cross Sampling
method is comparable, and they both outperform the MultiDiffusion baseline.
With their additive effects, TwinDiffusion exhibits a more robust rate of curve,
demonstrating a better speed and quality balance.

In Fig. 6, we compare the results across a wide range of λ values
from 0.1 to 100. When λ is between 0.1 and 80, the LPIPS-DISTS

weighted score shows a very slow growth trend. It only starts to in-
crease greatly when λ exceeds 80. The lowest point is concentrated
around 1, where our method achieves the optimal balance between
the two competing terms mentioned above, leading to the desired
visual consistency in panoramic images. This is reasonable and in
keeping well with our objective.

View Stride As discussed in Sce. 1 and Sec. 3.3, the stride of
neighboring views controls the trade-off between quality and effi-
ciency. Smaller sv results in better image quality but also takes a
lot of time; larger sv can accelerate the generation speed of images
but the overall quality falls. To test the effectiveness of our approach
in improving this problem, we measure the generation time and the
aforementioned LPIPS-DISTS weighted score of generated images
under sv = 4, 8, 16, 24, 32, 40, 48, making a comparison between
MultiDiffusion and our TwinDiffusion with and without the two op-
timization method.

Figure 8. Quantitative results comparing our approach with the baselines.
Our method demonstrates its superiority in all aspects, particularly in coher-
ence, the best visual representation of panoramas.

As seen in Fig. 7, our method surpasses the baseline in a bet-
ter quality-efficiency balance. (i) For quality: under the same view
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Table 1. Here are the findings from our further exploration of the Cross Sampling strategy. Different sr values were tested across all metrics. The better effects
are more likely to be achieved when sr = sv/2, sv/3, indicating that excessively fine cross strides are unnecessary.

Coherence Fidelity & Diversity Compatibility Efficiency

LPIPS↓ DISTS↓ FID↓ IS↑ CLIP↑ CLIP-aesthetic↑ time↓
w/o Cross Sampling 0.69 0.49 14.03 12.31 30.91 6.43 43.98

sr = sv/2 0.60 0.43 13.16 14.49 32.06 6.76 43.99
sr = sv/3 0.63 0.42 14.29 14.15 31.38 6.46 45.01
sr = sv/5 0.71 0.59 15.11 13.98 30.93 6.42 47.52
sr = sv/7 0.76 0.62 16.00 13.98 30.25 6.48 53.60
sr = sv/sv 0.84 0.78 16.21 12.58 30.26 6.05 59.67

stride, both the Crop Fusion and Cross Sampling methods reach a
lower LPIPS-DISTS weighted score than the MultiDiffusion, and full
TwinDiffusion reaches even lower scores due to the combined effects
of the two. (ii) For efficiency: analyzing the blue and green lines, we
can observe that our Cross Sampling approach successfully enables
generating comparable results within a fraction of the time required
by the original MultiDiffusion, specifically achieving a reduction of
N-fold when using a N × sv value. (iii) For quality-efficiency trade-
off: the slopes indicate that our method takes greater advantage of
the efficiency gained from larger sv while maintaining high image
quality, striking an optimal balance between quality and speed for
panoramic image generation.

Cross Stride We further investigate the influence of cross stride to
ensure an appropriate interleaving frequency in the Cross Sampling
method. In particular, sr = 1 means setting a different sampling
mode per pixel, and sr = sv is equivalent to not using our Cross
Sampling method. All the results are obtained under the same condi-
tion described in Sec. 4.2.

Tab. 1 provides a series of comparisons on all sides, with the best
and the second-best results marked in bold and underlined respec-
tively. The scores show a stable and consistent pattern, where the
most desirable outcomes are generally achieved when sr is set to
sv/2 or sv/3. In the extreme case of sr = sv/sv = 1, the effect
regresses to no Cross Sampling or even worse. This observation sug-
gests that a finer interleaving level of sampling does not contribute to
the quality scores but adds unnecessary running time.

5 Conclusion

In this paper, we have presented TwinDiffusion, an optimized frame-
work for panoramic image generation using state-of-the-art diffusion
models. Our work breaks through the existing limitations in quality
and efficiency by introducing two key innovations: (i) a lightweight
fusion stage to enhance coherence, and (ii) an interleaved sampling
method to improve generating speed. By extending this promising
framework to wider domains, especially virtual reality and graphic
design, we can unlock new possibilities for creating dynamic and
immersive visual content.

Limitations and Social Impact Although TwinDiffusion works
well in most cases, it still faces some limitations. Our approach pri-
marily focuses on optimizing the local similarity of the image areas.
However, it could not ensure stability in perceiving the overall layout
of the images, which may lead to the generation of visually coherent
but spatially illogical panoramas. As for potential negative impact,
image generation models may involve personal copyright or gener-
ate fake, offensive, discriminatory results. Further research should
prioritize the responsible use of the relevant technology to avoid gen-
erating content in any harmful way.
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