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Abstract. Computed tomography (CT) utilizes X-ray technology
for internal body imaging. However, the presence of metal objects
often results in artifacts due to their significant absorption and scat-
tering of X-rays, thus obstructing lesion diagnosis, especially in the
presence of multiple metals. Existing artifact reduction methods of-
ten suffer from deficiencies in completeness and preservation of fine
detail. To address this limitation, we propose a novel sinogram and
image dual-domain network. Specifically, in the sinogram domain,
two enhancement modules are designed: one for extracting informa-
tion from regions affected by metal traces, and the other for learning
to restore the sinogram corresponding to these metal traces. Subse-
quently, utilizing filtered back projection (FBP), artifact removal im-
ages are reconstructed in the image domain. Quantitative and quali-
tative analyses of synthetic images show our framework’s superiority
over conventional Metal Artifact Reduction (MAR) methods in both
synthetic and clinical settings.

1 Introduction

Metal artifacts present a unique challenge in image restoration com-
pared to tasks like super-resolution [10, 34, 29], compression artifact
removal [32, 6], and denoising [3, 19, 11]. Unlike these tasks, metal
artifacts often involve structured and non-local distortions, manifest-
ing as solid distortions within the metal region and severely compro-
mising image quality and usability. This leads to the loss or distor-
tion of crucial diagnostic information, hampering physicians’ ability
to diagnose patients accurately.

The traditional model-based approach uses linear interpolation
(LI) [8] and normalized MAR (NMAR) [20] to reconstruct CT im-
ages by filling metal-affected regions in the sinogram with differ-
ent estimation strategies. The rapid advancements in deep learning
have significantly enhanced metal artifact reduction (MAR) tasks.
Early methods used Convolutional Neural Networks (CNNs) to re-
duce artifacts and preserve anatomical structures, relying on pre-
trained models like CNNMAR [33], which introduced dependencies
on model accuracy and stability. To address these issues, novel ap-
proaches such as the unsupervised artifact disentanglement network
(ADN) [13], deep residual learning for cervical CT images [7], and
GANs for direct artifact reduction [5] were developed. Additionally,
Wang et al. proposed new optimization algorithms, including DICD-
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Net [24] and the adaptive convolutional dictionary network (ACD-
Net) [26], to eliminate metal artifacts in CT images.

Although deep learning methods in both sinogram and image do-
mains have shown promising results, they have limitations. To ad-
dress these, Lin et al. proposed DuDoNet, a dual-domain network
that is end-to-end trainable [14]. Wang et al. followed with In-
DuDoNet [25] and its enhanced version, InDuDoNet+ [27]. Lyn et
al. introduced U-DuDoNet [18], a non-paired dual-domain network
utilizing metal mask projection encoding. Additionally, Wang et al.
proposed DAN-Net [28], a dual-domain adaptive scaling non-local
network. Recently, Liu et al. applied the diffusion model in MAR
with an approach called Unsupervised CT Metal Artifact Reduction
by Plugging Diffusion Priors in Dual Domains [16], demonstrating
impressive performance in reducing metal artifacts.

Despite the success of existing methods in mitigating metal ar-
tifacts, their effectiveness still needs to be improved. To overcome
these challenges, we propose a novel dual-domain network for joint
learning in both the image and sinogram domains. Unlike previous
approaches, two deep learning networks are trained in the sinogram
domain: the first recovers tissue details, and the second treats metal
trace regions as missing data. CT images are then reconstructed us-
ing the conventional FBP (Filtered Back Projection) algorithm. The
images from the sinogram domain are further refined in the image
domain through channel concatenation, resulting in the final artifact-
reduced image. This framework is trained end-to-end, allowing CT
images to mutually benefit from learning in both domains. Evaluation
of simulated and real metal artifact data demonstrates our model’s su-
perior ability to remove metal artifacts. Our main contributions are
summarized as follows:

• We propose a novel end-to-end trainable dual-domain frame-
work that effectively exploits complementary information from
the sinogram and image domains, demonstrating superior perfor-
mance in mitigating metal artifacts in CT imaging.

• In the sinogram domain, two dedicated sinogram-enhancement
networks are designed. One prioritizes recovering tissue details,
while the other treats metal trace regions as missing data. The syn-
ergistic learning in the image domain leverages the strengths of
both networks for more comprehensive metal artifact reduction.

• Additionally, a cross-domain collaboration and mutual learning
mechanism enhance the efficiency and accuracy of metal artifact
removal. The artifact-reduced CT image initially obtained from
the sinogram domain is further refined and optimized in the im-
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age domain by channel concatenation with conventionally recon-
structed FBP images.

2 Backgrounds and Related Works

2.1 Fanbeam CT Geometry

With the advancement of modern medicine, the implantation of pros-
theses containing metallic materials has become a common treatment
method. These prostheses include dentures, pacemakers, joint re-
placements, and prostheses, among others, and they play an essential
role in clinical practice. However, compared to human tissues, these
metallic objects have a higher X-ray absorption capacity, leading to
complex artifact issues. Metal artifacts are common phenomena in
CT images, mainly caused by metallic materials’ high X-ray absorp-
tion rate. When X-rays pass through metal objects, their energy is
absorbed or scattered, leading to abnormally enhanced or weakened
signals received by the detector, thus forming artifacts in the image.
These artifacts typically appear as streaks or ring-shaped structures,
significantly affecting the quality and diagnostic accuracy of the im-
age.

Although some methods can be attempted in the image domain
to address metal artifacts, such as filtering or image reconstruction
algorithms to suppress or repair artifacts, image domain processing
methods have some limitations, such as potentially further compro-
mising image quality and the difficulty of accurately identifying and
eliminating the structural distortion caused by artifacts. Therefore,
much research has turned to the sinogram domain processing to ad-
dress metal artifacts more effectively. In the sinogram domain, metal
artifacts typically manifest as abnormal signals in projection data,
enabling more accurate detection and localization of artifacts. In the
projection process of CT imaging, Figure 1(a) shows the general ge-
ometric shape of fan-beam CT, with the source and detector rotat-
ing relative to the origin at different projection angles. The distance
from the source to the origin is D, and β is the projection angle, with
the rays emitted by the source being received by the detector. In fan
beam CT, the source rotates around the center of rotation, and each
projection angle generates a set of projection lines on the detector.
Combining the projection lines from all angles results in a sinogram,
as shown in Figure 1(b), which contains the projection information
of the object at different angles.

Figure 1. Process of fan beam projection: (a) Fanbeam CT geometry, (b)
The combination of projection lines at different angles forms the sinograms.

2.2 The generation process of metal artifacts

FP (Forward Projection): FP refers to the process of generating a
transverse view using projection data. In computed tomography (CT)
imaging, forward projection is projecting density information inside

Figure 2. Progress of metal artifact generation: (a) Presence of metal
implants (red patches), (b) Effects on the sinogram, and (c) Artifacts in the

reconstructed image.

the object onto the detector. The FP process simulates the interaction
of X-rays passing through the object and the detector, generating pro-
jection data at different projection angles. These projection data are
organized into a two-dimensional dataset called a sinogram, where
each row represents one-dimensional projection data at a projection
angle. The sinogram reflects the projection information of the ob-
ject at different angles and serves as the basis for subsequent image
reconstruction.

FBP (Filtered Back Projection): FBP is one of the most com-
monly used methods for CT image reconstruction. It reconstructs the
image based on sinogram data through a series of steps.

When a patient undergoes a medical procedure involving a metal
implant in the body (as illustrated in Figure 2(a)), the resulting sino-
gram is inevitably altered following the FP forward projection pro-
cess (as depicted in Figure 2(b)). Without suitable mitigation strate-
gies, these alterations manifest in the reconstructed image post-FBP,
disrupting the natural trajectory of rays and leading to artifacts sur-
rounding the metallic object (as exemplified in Figure 2(c)). This
delineates the comprehensive process underlying the generation of
metal artifacts.

3 Methodology

3.1 Overview of the Proposed DSI-Net

Our model employs a dual-domain joint learning strategy called DSI-
Net to take advantage of the sinogram and image domain information
benefits. Figure 3(a) illustrates the overall architecture of DSI-Net,
which consists primarily of two components: the sinogram domain
and the image domain. In the image domain, we have designed a
network, I-Net, outlined in the yellow box in Figure 3(b). In the
sinogram domain, we have developed two sinogram enhancement-
network modules, the RS-Net (residual-based sinogram domain net-
work) module outlined in the green box in Figure 3(c) and LIS-Net
(linear interpolation-based sinogram network) module outlined in the
orange box in Figure 3(d). The output image obtained after process-
ing through the two sinogram enhancement networks in the sinogram
domain is then further refined and optimized in the image domain us-
ing the I-Net module. We will provide more detailed information in
the following sections.

3.2 Sinogram Domain Network

Two types of dual-domain networks are used to extract useful infor-
mation from metal trace regions. The first type uses the difference
between original projection data and linear interpolated projection
data, along with metal masks, as input to recover more tissue details.
Examples of this type include DAN-Net [28] and DSCIP [31]. The
second type treats the projection data in metal trace lines as miss-
ing data, exemplified by DuDoNet [14], which results in the loss of
details near the metal regions in the corrected CT images. We aim
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Figure 3. The architecture of DSI-Net and detailed modules.

to combine the strengths of both types by proposing two sinogram
enhancement networks in the sinogram domain.

3.2.1 RS-Net Module

We have proposed a sinogram learning strategy for RS-Net that can
effectively restore tissue details while removing metal artifacts. We
draw inspiration from prior work [17], which suggests that the resid-
ual, denoted as Ssub, between the original projection data, denoted
as Sma, and the linear interpolation projection data, denoted as SLI ,
retains valuable information. To restore the data in the metal trace,
[2] adopted a linear attenuation operation, selecting a parameter β,
the value of β is set to between 0.3 and 0.5, to control the trade-off
between reducing metal artifacts and preserving details of the sur-
rounding implanted tissues. Ssub can be described as:

Ssub = (Sma − SLI) ∗ β. (1)

Meanwhile, we propose an architecture RS-Net (as shown in Fig-
ure 3(c)), comprising multiple layers of convolution and upsampling
operations, learning intricate representations of metal artifacts. This
network architecture includes convolution layers with Rectified Lin-
ear Unit (ReLU) activation, downsampling layers, and upsampling
layers. However, due to the current network containing downsam-
pling operations, metal trace information will be lost. Therefore, we
need to use the knowledge of metal mask Mp, denoted as:

Mp = FP (Xmetal). (2)

where Xmetal represents the metal mask in the image domain, and
FP is forward projection. Then, We concatenate Ssub and Mp to form
the input of RS-Net. Through RS-Net, we derive the image Sres,
denoted as:

Sres = RS-Net([Ssub,Mp]). (3)

where [Ssub, Mp] represents the concatenation operation of image
Ssub and Mp. Using Ssub as input can enhance the smoothness
of preprocessed projection data, obtain useful information from the
metal trace area, and improve the continuity of the metal trace bound-
ary. The residual is obtained by subtracting Sres from the original
metal projection image Sma, denoted as:

Ssc = Sma − Sres. (4)

Subsequently, a filtered back projection (FBP) operation is per-
formed on Ssc to obtain the image Xsc, denoted as:

Xsc = FBP (Ssc). (5)

where FBP is filtered back projection. We use an L1 loss to train
RS-Net, denoted as:

LRS = ‖Ssc − Sgt‖1 . (6)

where Sgt is the sinogram of the clean image.

3.2.2 LIS-Net Module

Enhancing sinograms holds promise in mitigating artifacts induced
by metal objects. Metal objects present in the subject during CT
imaging disrupt X-ray absorption, leading to artifacts that degrade
image quality and diagnostic precision. To address this, we introduce
a sinogram learning strategy for LIS-Net, illustrated in Figure 3(d),
which is a convolutional neural network (CNN)-based architecture.
LIS-Net is designed to learn the recovery of the SLI region of Mt=1.
Due to the down-sampling operations in the network, this will result
in the loss of metal trace information [21, 4]. To retain sufficient in-
formation on metal traces, a mask pyramid network (MPN) [12] is
introduced to explicitly feed the mask information into each layer
[31], utilizing the linear interpolated projection data SLI and metal
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Table 1. Average PSNR (dB)/SSIM of different ablation methods on the synthesized DeepLesion data.

Methods Large Metal → Small Metal Average
Input 25.90/0.6159 29.53/0.6109 30.56/0.6878 32.28/0.7184 29.57/0.6582
RS-Net 37.14/0.9598 38.91/0.9590 40.12/0.9849 41.85/0.9758 39.51/0.9699
LIS-Net 39.60/0.9740 40.07/0.9759 41.07/0.9665 42.04/0.9818 40.70/0.9746
RS-Net + I-Net 40.35/0.9854 41.58/0.9873 43.69/0.9888 46.16/0.9903 42.94/0.9880
LIS-Net + I-Net 40.46/0.9787 41.56/0.9781 44.45/0.9845 47.87/0.9901 43.59/0.9829
RS-Net + LIS-Net + I-Net (Ours) 40.70/0.9870 41.98/0.9854 45.28/0.9913 47.44/0.9912 43.85/0.9889

(a) Input (a) RS-Net (b) LIS-Net (c) RS-Net+I-Net (d) LIS-Net+I-Net (e) Ours

Figure 4. Visual comparisons of ablation variants of DSI-Net. The red patches indicate metallic implants. The display window is [-175, 275] HU.

trace Mt as joint inputs for feature extraction and down-sampling
operations to extract higher-level feature representations. After be-
ing processed by LIS-Net, the image is element-wise multiplied with
the metal trace Mt to remove partial metal artifacts effectively. To
further enhance the entire image, a reverse mask is obtained using
1-Mt, which is then element-wise multiplied with SLI . Linearinter-
polated projection data is used in non-metallic areas to fill or repair
possible artifacts or missing information. They were finally, adding
these two parts results in the optimized image Sse. Subsequently, a
filtered back projection (FBP) operation is performed on Sse to ob-
tain the image Xse. The above description can be obtained:

Sse = Mt � LIS-Net([SLI ,Mt]) + (1−Mt)� SLI . (7)

Xse = FBP (Sse). (8)

where � denotes element-wise multiplication, [SLI , Mt] represents
the concatenation operation of image SLI and Mt, and FBP is fil-
tered back projection. We use an L1 loss to train LIS-Net, denoted
as:

LLIS = ‖Sse − Sgt‖1 . (9)

where Sgt is the sinogram of the clean image.

3.3 Image Domain Network

After filtering back projections, secondary projections will occur. An
image enhancement network, termed I-Net, is incorporated into our
framework to address the remaining metal artifacts and further refine
the image. The I-Net module, depicted in Figure 3(b), employs a U-
Net architecture [23] with a depth of 4 for residual learning. It takes
as input the images obtained from the previous sinogram domain pro-
cessing and generates an enhanced output image Xout through the
following residual learning formulation:

Xout = Xsc + I-Net([Xsc, Xse]). (10)

where Xsc is the image obtained from RS-Net, Xse is the image
obtained from LIS-Net, and [Xsc, Xse] represents the concatenation

operation of image Xsc and Xse. We use an L1 loss to train I-Net,
denoted as:

LI = ‖(Xout −Xgt)� (1−Mask)‖1 . (11)

where � denotes element-wise multiplication, and Mask denotes
metal mask.

3.4 Overall Loss Function

The L1 above loss employed for optimization in the RS-Net and LIS-
Net modules penalizes inconsistencies in individual projection val-
ues within the sinogram domain. However, it does not account for
geometric consistency. To mitigate potential new artifacts in the re-
constructed CT images arising from such inconsistencies, we further
incorporate a filtered back-projection (FBP) loss term, formulated as:

LFBP _RS = ‖(Xsc −Xgt)� (1−Mask)‖1 . (12)

LFBP _LIS = ‖(Xse −Xgt)� (1−Mask)‖1 . (13)

LFBP = LFBP _RS + LFBP _LIS . (14)

where Mask is the metal mask and � denotes element-wise multipli-
cation. Our total model loss L includes the sinogram enhancement
loss LRS and LLIS , image enhancement loss LI , and filtered back
projection loss LFBP , denoted as:

L = LRS + LLIS + LFBP + LI . (15)

4 Experiments

4.1 Datasets & Experimental Setting

Synthesized Dataset: Following the guidelines outlined in reference
[31], we selected 1200 CT images randomly from the publicly avail-
able DeepLesion dataset [30] and paired them with 100 metal masks
from reference [33]. Our training set consisted of 1000 clean CT im-
ages and 90 metal images, resulting in 90,000 combinations. The
remaining 200 clean CT images and 10 metal images were utilized

C. Liu et al. / Sinogram-Image Dual-Domain Network for Robust Metal Artifact Reduction in CT Image 381



for testing, creating 2000 combinations for network evaluation. Our
metal synthesis process took into account various factors such as
beam hardening, Poisson noise, and multi-colored X-rays. We uti-
lized 640 evenly spaced projection images between 0-360 degrees,
resulting in a synthesized CT image size of 416x416 and a sinogram
size of 641x640.

Clinical Dataset: We evaluated our method using the CTPelvic1K
[15] dataset, a comprehensive CT dataset tailored for pelvic segmen-
tation tasks. This dataset encompasses 1184 CT scans sourced from
7 distinct origins, among which 75 scans exhibit metal artifacts. Five
sources are publicly accessible datasets, while the remaining two
were recently compiled. The dataset is meticulously annotated to
segment critical anatomical structures, including the lumbar spine,
sacrum, left hip, and right hip. Additionally, the CLINIC-metal sub-
set within the dataset comprises 14 volumes specifically character-
ized by the presence of metal artifacts alongside pixel-level anno-
tations. Metal implants are delineated using threshold segmentation
at 2500 Hounsfield Units (HU) to facilitate accurate identification
within the scans.

Evaluation Metrics: Consistent with other metal artifact removal
methods, we have also adopted the Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) as this study’s pri-
mary quantitative evaluation metrics. These two indicators are widely
used in image processing and can objectively reflect the improve-
ment in image quality. By calculating the PSNR and SSIM values of
images before and after processing, we can accurately assess the ef-
fectiveness of our proposed method in removing metal artifacts, thus
enabling a scientific and fair comparison with other methods.

4.2 Implementation Details

Our model is implemented using the PyTorch framework [22], and
our network is trained end-to-end. We applied differential FP and
FBP operations as suggested by the ODL library [1] to train our RS-
Net and LIS-Net. To train the model, we utilized the Adam [9] op-
timizer with parameters (β1, β2) = (0.5, 0.999), a batch size of 1,
and a learning rate starting from 2x10−4, halved every 30 epochs.
The model was trained for 300 epochs on an NVIDIA TITAN RTX.
Within each training iteration, we randomly selected a synthetic
metal artifact CT image from a pool of 90 different metal mask pairs
and used different CT images as a small batch input for computing
the total objective function.

4.3 Ablation Study

In this section, we evaluate the effectiveness of different components
in the proposed method. Experiments were conducted on the follow-
ing configurations:

1. RS-Net: Using only the RS-Net for the sinogram network
2. LIS-Net: Using only the LIS-Net for the sinogram network
3. RS-Net + I-Net: Employing both RS-Net and I-Net for the dual-

domain learning network.
4. LIS-Net + I-Net: Utilizing both LIS-Net and I-Net for the dual-

domain learning network.
5. RS-Net + LIS-Net + I-Net: Using all three networks for the dual-

domain learning network.

The quantitative results of the ablation study are detailed in Table
1, while the visual results are presented in Figure 4. Compared to
LIS-Net, RS-Net shows a slight deficiency in reducing artifacts but

still significantly preserves the details of the tissue of the image,
maintaining good clarity and integrity even around the artifacts. In
contrast, although LIS-Net effectively reduces interference from ar-
tifacts, this process sacrifices some clarity in organizational struc-
ture, resulting in slightly blurred edges. Further analysis of the data
in Table 1 demonstrates that using the sinogram enhancement net-
work alone does not yield the best results, and both PSNR and SSIM
fail to reach peak levels. Combining various technologies or network
architectures to improve image quality is further confirmed.

RS-Net + I-Net significantly reduced metal artifacts and notably
improved PSNR and SSIM metrics. Although some stripe artifacts
are still visible, the details of the tissues surrounding the metal are
better preserved. According to the data in Table 1, LIS-Net + I-Net
outperforms RS-Net + I-Net by increasing the average PSNR by 0.65
dB. Visually, LIS-Net + I-Net demonstrates superior artifact removal,
eliminating dark bands in the corrected image. Our model RS-Net +
LIS-Net + I-Net integrates the advantages of RS-Net + I-Net and
LIS-Net + I-Net in the sinogram domain. Compared to LIS-Net +
I-Net, Our model increases the average PSNR by 0.26 dB, albeit
with a slight decrease in SSIM by 0.006. However, not only does
the data support this finding, but Our model also exhibits the best
performance in artifact removal and tissue restoration, both in the re-
gions surrounding the metal and those further away. This discovery
provides robust quantitative support for our research and is visually
validated through the comparison of images, thus demonstrating the
need for three networks.

4.4 Comparision with State-of-the-Art Methods

Quantitative analysis: We have conducted a thorough comparison
between our model and several other existing methods, including
widely used linear interpolation (LI) [8], deep learning-based meth-
ods such as DICDNet [24] and ACDNet [26], an interpretable dual-
domain network InDuDoNet+ [27] and end-to-end trainable dual-
domain MAR method DuDoNet [14]. To evaluate the performance
of each method, we have used publicly available codes and models to
run a series of rigorous experiments. In Table 2, we have summarized
the comparison results of our method with other metal artifact reduc-
tion (MAR) techniques on the DeepLesion dataset, using SSIM and
PSNR as evaluation metrics. Our analysis shows that while LI im-
proves SSIM and PSNR over uncorrected CT images, deep learning
methods like DICDNet perform better. Dual-domain networks like
DuDoNet and InDuDoNet+ further enhance PSNR and SSIM due to
integrated sinogram enhancement. ACDNet leverages the prior struc-
ture of metal artifacts and demonstrates better MAR performance
and generalization capability than DuDoNet. However, our proposed
method outperforms ACDNet in terms of SSIM and PSNR. Our pro-
posed method achieves the best performance in terms of PSNR and
SSIM, demonstrating its effectiveness in reducing metal artifacts.

Qualitative analysis: Figure 5 visually compares our method with
others using three examples from the DeepLesion dataset, featur-
ing different sizes of metal implants. The figure includes the refer-
ence non-metal image (Figure 5(A1-A3)), simulated metal artifact
image (Figure 5(B1-B3)), and results from various MAR methods.
Metal is highlighted in red, and the yellow box magnifies the effect
on metal and surrounding tissues. Traditional LI (Figure 5(C1-C3))
leaves many artifacts, while deep learning methods perform better.
However, DuDoNet (Figure 5(F1-F3)) overly smooths surrounding
tissues, and DICDNet (Figure 5(D1-D3)) shows radial artifacts. In
contrast, our method (Figure 5(H1-H3)) effectively suppresses arti-
facts while preserving tissue details, achieving the best SSIM and
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Figure 5. Visual comparison of different MAR methods for different metal sizes using the DeepLesion dataset. The red parts indicate metallic implants. The
display window is [-175, 275] HU.

Table 2. Average PSNR (dB)/SSIM of different MAR methods on the synthesized DeepLesion data.

Methods Large Metal → Small Metal Average
Input 25.90/0.6159 29.53/0.6109 30.56/0.6878 32.28/0.7184 29.57/0.6582
LI [8] 27.37/0.8148 31.16/0.8593 36.72/0.8770 39.11/0.8916 33.58/0.8607
DICDNet [24] 35.62/0.9598 39.56/0.9810 42.81/0.9813 45.63/0.9870 40.90/0.9772
InDuDoNet+ [27] 36.76/0.9479 39.58/0.9646 43.03/0.9825 45.71/0.9856 41.27/0.9701
DuDoNet [14] 39.95/0.9823 40.44/0.9408 42.05/0.9636 46.28/0.9898 42.13/0.9691
ACDNet [26] 40.28/0.9812 41.70/0.9809 43.69/0.9840 46.52/0.9908 43.05/0.9842
DSI-Net (Ours) 40.70/0.9870 41.98/0.9854 45.28/0.9913 47.44/0.9912 43.85/0.9889
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Figure 6. Visual comparison of different MAR methods for different metal sizes using the CTPelvic1K dataset. The red parts indicate metallic implants. The
display window is [-175, 275] HU.

PSNR metrics, and demonstrating its effectiveness.

4.5 Comparison on Clinical Dataset

To evaluate the efficacy of our proposed method in clinical set-
tings, we conducted experiments using two examples on the CT-
Pelvic1K dataset on CT images with metal artifacts common in clin-
ical practice. Figure 6 shows the MAR results from different meth-
ods, with metal regions highlighted in red. We segmented metal arti-
facts (Figure 6(A1-A2)) and corrected them using LI (Figure 6(B1-
B2)), DICDNet (Figure 6(C1-C2)), InDuDoNet+ (Figure 6(D1-D2)),
DuDoNet (Figure 6(E1-E2)), ACDNet (Figure 6(F1-F2)) and our
proposed approach (Figure 6(G1-G2)). LI only partially mitigates ar-
tifacts and may introduce new ones. DICDNet and ACDNet improve
MAR but tend to blur surrounding tissue, while InDuDoNet+ avoids
blurring but has streak artifacts.

DICDNet and ACDNet perform well on simulated datasets but less
on clinical data. DuDoNet effectively removes most metal artifacts
in clinical data. However, our proposed method surpasses DuDoNet
by better suppressing metal artifacts and restoring tissue structures,
providing consistent results across simulated and clinical datasets.
These findings highlight the potential of our method for clinical ap-
plications.

4.6 Robustness to Inaccurate Masks

Severe artifacts around metals complicate the precise acquisition of
metal masks on sinograms, leading to increased errors. A straight-
forward approach is to enlarge the obtained metal mask size. We
implemented a series of dilation operators to generate larger metal
masks and obtained the corresponding metal mask projections. Us-
ing the MaxPool2d function in PyTorch, we realized dilation opera-
tors, employing kernel sizes of 3 × 3, 5 × 5, and 7 × 7 for metal mask
expansion. We set zero padding to 1, 2, and 3 to maintain the origi-
nal shape. The expanded masks and their respective metal traces are
designated as Mask0 (the precise metal mask), Mask3, Mask5, and
Mask7, with corresponding metal traces named Trace0 (the precise
metal trace), Trace3, Trace5, and Trace7, as shown in Figure 7. Fig-
ure 8 illustrates the visual outcomes of our proposed method, DSI-
Net, under imprecise masking conditions. The data presented in Fig-
ure 8 indicates that our methodology, DSI-Net, demonstrates remark-
able efficacy in mitigating metal artifacts across varying mask sizes,
particularly exhibiting favorable performance under the exact mask
(Mask 0). However, additional artifact phenomena are observed as
the mask size increases (Mask3, Mask5, Mask7). This observation

underscores the detrimental impact of inaccurate metal masks on ex-
perimental outcomes, indicating that imprecise artificial information
can degrade processing performance and potentially introduce new
metallic artifact issues.

Trace0 Trace3 Trace5 Trace7

Figure 7. The precise metal trace (Trace 0) and dilated metal traces
(Trace3, Trace5, and Trace7).

(a) Mask0 (b) Mask3 (c) Mask5 (d) Mask7

Figure 8. Visualization results using DSI-Net under Mask0, Mask3,
Mask5, and Mask7. The red patches indicate metallic implants. The display

window is [-175, 275] HU.

5 Conclusion and Future Work

Metal implants in CT imaging often lead to severe artifacts, degrad-
ing image quality. Over time, dual-domain metal artifact reduction
(MAR) techniques have shown promise. This paper introduces an
innovative dual-domain framework that effectively mitigates metal
artifacts while preserving crucial tissue details. Our novel method
synergistically combines two sinogram enhancement networks - one
dedicated to recovering tissue information and the other specialized
in artifact removal. Through fostering mutual learning between the
sinogram and image domains, our approach has demonstrated im-
pressive performance in significantly reducing metal artifacts while
meticulously preserving the tissue structures surrounding the metal
regions. Our method outperforms metal artifact reduction, yet en-
hancements are needed, especially for large or multiple metal ob-
jects. To refine and strengthen our approach, we plan to conduct ex-
tensive clinical studies and rigorously evaluate its performance on
authentic patient data across diverse clinical settings, thereby assist-
ing its future adoption and facilitating improved clinical applications.
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