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Abstract. Confronting the critical challenge of insufficiently an-
notated samples in medical domain, semi-supervised medical image
segmentation (SSMIS) emerges as a promising solution. Specifically,
most methodologies following the Mean Teacher (MT) or Dual Stu-
dents (DS) architecture have achieved commendable results. How-
ever, to date, these approaches face a performance bottleneck due
to two inherent limitations, e.g., the over-coupling problem within
MT structure owing to the employment of exponential moving aver-
age (EMA) mechanism, as well as the severe cognitive bias between
two students of DS structure, both of which potentially lead to re-
duced efficacy, or even model collapse eventually. To mitigate these
issues, a Decoupled Competitive Framework (DCF) is elaborated in
this work, which utilizes a straightforward competition mechanism
for the update of EMA, effectively decoupling students and teach-
ers in a dynamical manner. In addition, the seamless exchange of
invaluable and precise insights is facilitated among students, guar-
anteeing a better learning paradigm. The DCF introduced undergoes
rigorous validation on three publicly accessible datasets, which en-
compass both 2D and 3D datasets. The results demonstrate the supe-
riority of our method over previous cutting-edge competitors. Code
will be available at https://github.com/Fly-away20/DCF.

1 Introduction

Medical image segmentation (MIS) is critical in modern healthcare,
offering clinicians vital information to monitor disease progression
and develop treatment strategies. The advent of neural networks,
especially supervised deep learning methods, has significantly ad-
vanced this field, leading to unparalleled performance in various seg-
mentation tasks [25, 47, 31, 12, 41]. However, the practical model
efficacy largely depends on the availability of massive laboriously
annotated datasets, which not only demands specialized knowledge
but is also extremely costly and time-consuming [9, 29]. To save con-
siderable resources, recent years have witnessed an increasing focus
on exploring methods like semi-supervised learning (SSL) to reduce
the annotation burden in MIS domain [4, 1, 22].

The advantage of semi-supervised image segmentation lies par-
ticularly in leveraging unlabeled data to favor better segmentation.
Within this framework, two key strategies, i.e., pseudo-label supervi-
sion [43, 14, 3] and consistency regularization [24, 19, 23], have been
intensively investigated. Meanwhile, co-training or mutual learning
paradigm, which can be regarded as a combination of the above two
methods, has achieved promising results [27, 38, 5]. Typically, the
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Figure 1. Different SSL structures. (a) Mean Teacher. (b) Dual Student. (c)
Cross Pseudo Supervision. (d) Perturbed and Strict Mean Teachers. (e)

Uncertainty-guided Collaborative Mean Teacher. (f) Decoupled Competitive
Framework (ours).

Mean Teacher model [30] has dominated in this field for a long
time, inspiring numerous followers seeking notable advancements
[42, 19, 27, 39]. Yet, Ke et al. [13] and Zhao et al. [46] have demon-
strated that MT-based methods encounter performance limitations
arising from the treatment of exponential moving average (EMA).
Besides, employing one coupled EMA teacher is insufficient to ad-
equately support the student model. To break the performance bot-
tleneck, it is often necessary to integrate additional modules with an
intricate architecture into MT-based methodologies, such as Magic-
Net [4] and BCP [1].

The teacher-less architecture is yet another research branch, which
offers a promising avenue to mitigate the issue of overly tight cou-
pling. Without a teacher model, the main challenge lies in facilitat-
ing efficient knowledge extraction and exchange between two au-
tonomous models. Ke et al. [13] introduced Dual Student (DS) as a
remedy, replacing the teacher with another student, and integrating
a stabilization constraint during training stage. Following this line,
Zhao et al. [46] additionally integrated region-level uncertainty esti-
mation to ensure better performance.

While the potential of DS is widely acknowledged, successful
practices again require the integration of intricate constraints within
student models; otherwise, it may lead to model collapse due to the
abnormal exchange of erroneous information, which remains as an
emergent issue to be solved. Upon this aspiration, we propose a
straightforward yet potent solution, i.e., a Decoupled Competitive
Framework (DCF), whose disparity against current architecture is
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given in Figure 1. Note that the real-time performance of two stu-
dent models can be iteratively assessed. On that basis, the superior-
performing student model shall be leaned to update the EMA of
teacher model. The teacher model then further provides pseudo-
labels to the inferior-performing student to favor an improvement.
Through this dynamic mechanism, both student models have the op-
portunity to contribute to EMA update of the teacher model, which
naturally reduces the coupling between a single teacher-student pair.
Technically, our work makes three primary contributions.

• With the deficiencies of MT-based and DS-based methods deeply
scrutinized, we engineer a novel Decoupled Competitive Frame-
work, effectively surmounting the bottleneck of existing models.

• An efficient competition and mentoring mechanism is crafted to
mitigate the tight coupling between the teacher’s parameters and
the individual students, thereby augmenting students’ capacity to
acquire valuable knowledge.

• Yet without any sophisticated modules employed, our DCF sets
new state-of-the-art scores among three benchmark datasets,
namely left atrium segmentation in MRI, pancreas segmentation
in CT scans, and dermoscopy images.

2 Related Work

2.1 Semi-supervised Learning
Semi-supervised learning (SSL) is a widely employed method in nu-
merous computer vision tasks [35, 10, 18], aiming at the mitiga-
tion of performance degradation encountered in cases with limited
training samples. Commonly, SSL relies on three core assumptions:
(1) Smoothness assumption that ensures similar inputs would yield
similar outputs and vice versa; (2) Cluster assumption, which sug-
gests that instances of the same class tend to be clustered together in
the feature space. Consequently, the classification boundary should
traverse sparsely populated regions while avoiding densely popu-
lated areas on either side. (3) Manifold assumption, which consid-
ers that samples residing within a compact neighborhood in a low-
dimensional manifold are likely to share similar labels. Currently,
two semi-supervised learning branches, i.e., pseudolabel-based and
consistency-based, have been extensively investigated.

Pseudolabel-based SSL: Pseudo-labeling methods adopt a super-
vised paradigm that simultaneously learns from labeled and unla-
beled data. The essence of this branch lies in the reliable generation
of pseudo-labels [16]. For instance, Fixmatch [28] employed a fixed
threshold to determine the trustworthiness of the samples, ensuring
high quality and reliability of the pseudo-labels. Moreover, Ref. [14]
utilized an auxiliary error localization network, identifying pixels
with potentially erroneous labels. Additionally, Freematch [35] dy-
namically adjusted the confidence threshold based on the learning
states of the involved model.

Consistency-based SSL: According to the assumptions of
smoothness and clustering, model predictions are expected to ex-
hibit similarity when specific perturbations are applied, which may
involve adjustments to input data, features, or networks. Drawing on
this inspiration, Laine et al. introduced a Pi-Model and a temporal
ensembling model [15], aiming to exploit both data-level and model-
level consistencies. Subsequently, Tarvainen et al. presented the MT
model [30], in which the student network utilizes EMA to update the
parameters of teacher network, thereby reducing model-level incon-
sistencies. To take advantage of unlabeled data, CCT [24] employed
the training of multiple auxiliary decoders, each receiving distinct
perturbations of the output generated by the shared encoder.

2.2 Semi-supervised medical image segmentation

In contrast to natural semantic segmentation, medical images often
suffer from limited data availability while requiring higher predic-
tion accuracy. Consequently, there is an urgent need to explore ef-
ficient semi-supervised methods to alleviate data requirements and
improve accuracy. Through an examination of pseudo-labeling meth-
ods, the practical quality can be refined using techniques such as un-
certainty knowledge [32], and random propagation [7], among oth-
ers. Additionally, Lyu et al. [21] suggested generating synthetic im-
ages aligned with the retained pseudo-labels. In methods employing
consistency regularization, Yu et al. [42] proposed an uncertainty-
aware mean teacher model for left atrium segmentation, while Wang
et al. [34] introduced a double-uncertainty weighted method for
semi-supervised applications. Moreover, Huang et al. [11] developed
a two-stage learning scheme for neuron segmentation, which fully
extracts useful information from unlabeled data. Furthermore, nu-
merous other practices are also available to support semi-supervised
medical image segmentation. Bai et al. [1] utilized bidirectional
copy-paste to prompt unlabeled data to assimilate comprehensive
semantics from labeled data, thus mitigating the experience mis-
match problem between labeled and unlabeled data. Additionally,
[2, 45, 36, 44] have incorporated contrastive learning into SSMIS,
with the aim of learning representations of distinct features and em-
phasizing differences in feature spaces across various categories.

2.3 Different Structures for SSL

As illustrated in Figure 1, five SSL architectures currently domi-
nate this field, namely MT [30], DS [13], CPS [5], PS-MT [19], and
UCMT [27]. Additionally, our DCF is also swept in generalization.

Mean Teacher: In Figure 1 (a), MT model mainly comprises two
networks with identical architectures: the teacher network and the
student network. While the parameters of the student network are
updated through backpropagation, the teacher network undergoes up-
dating via Exponential Moving Average. Nevertheless, this treatment
is currently stuck in a performance bottleneck.

Dual Student: DS model involves two students with shared ar-
chitectures, which utilizes stable samples to impose effective con-
straints between the two counterparts, thereby mitigating the problem
of over-coupling that often encountered within EMA computation.
Please refer to Figure 1 (b) for a visual depiction.

CPS: As shown in Figure 1 (c), the CPS structure integrates both
self-training and consistency learning methodologies, wherein one-
hot pseudo labels derived from the outcomes of both models serve as
supervision signals, mutually guiding and supervising each other’s
learning processes.

PS-MT: PS-MT in Figure 1 (d) employs two teachers. To pro-
duce pseudo labels, the prediction outcomes of both are merged using
an ensemble approach, bolstering the stability of the pseudo labels.
Furthermore, during each training epoch, only one of the teachers
undergoes updating, adjusting the model parameters to augment the
diversity between two subassemblies.

UCMT: UCMT integrates collaborative mean teacher techniques
and uncertainty-guided region mixture to concurrently maintain
model inconsistency and high-confidence labels, resulting in promis-
ing outcomes. Please see Figure 1(e) for a visual representation.

DCF (ours): Due to EMA computation, MT-based techniques in-
evitably result in the over-coupling issue, yet the no-teacher alterna-
tives often lack a direct method to enforce consistency constraints.
Therefore, we introduce DCF to mitigate these challenges. For an
in-depth analysis, please refer to Section 3.
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Figure 2. Block A introduces our proposed DCF. Upon receiving input
data, DCF undergoes two random data augmentations. Then, three separate
networks follow: a student network and two teacher networks. Operating on
a co-teaching scheme, DCF fosters cross-pseudo supervision between two
student results. In Block B, a competitive mechanism employing metrics
such as Dice, Cross-entropy, and 95HD is elaborated during training to
compare the performance of the two students and determine a winner.

3 Methodology

3.1 The overview framework

During semi-supervised learning, it is assumed that the training
dataset contains N labeled data and M unlabeled data, where
M � N . For convenience, we denote the entire training set as
D = {DL,DU}, with a small portion of labeled data represented
as DL = {(xL

i , y
L
i )}Ni=1, and the unlabeled counterpart as DU =

{xU
i }Mi=1. Here, xi denotes the training image, and yi is the label

(if available). Yet with a limited number of labeled samples xL
i , the

objective of semi-supervised learning is to achieve promising results
with the aid of the extra unlabeled data xU

i .
As discussed, the MT technique is the dominant framework for

most contemporary SSL approaches [30, 19, 1, 42, 39]. However,
the Exponential Moving Average (EMA) mechanism leads to ex-
cessive coupling between teachers and students, resulting in perfor-
mance bottlenecks. Subsequently, although the Dual Student frame-
work [13, 46] has addressed the coupling issue, it requires the de-
velopment of a stable sample and a training method integrating entra
constraints to facilitate the exchange of correct knowledge between
the two students and prevent model collapse due to erroneous knowl-
edge exchange.

Motivated by the aforementioned issues, we introduce the Decou-
ple Competitive Framework (DCF), which employs a unique com-
petition mechanism to select students currently with superior perfor-
mance to effectively mitigate the problem of excessive coupling be-
tween a single teacher and a student. Moreover, we further devise a
mentoring mechanism, which empowers teachers to grant additional
learning privileges to underperforming students, narrowing the cog-
nitive bias between the two students. In addition, we advocate mutual
learning and assistance between the two students, facilitated by the
teacher. Thus, a straightforward consistency loss between students is
sufficient to ensure alignment with learning objectives (detailed elu-
cidation provided in Subsection 3.2).

(a) Weight Distance (b) Prediction Distance

Figure 3. (a) denotes the weight distance between teacher and student. (b)
represents the prediction distance among three networks. For simplicity, the

simple Euclidean distance is used for weight and prediction distances.

The overall framework of the proposed DCF is shown in Fig-
ure 2, which mainly comprises three networks: a teacher network
f(·; θt) and two student networks f(·; θs1) and f(·; θs2), all initial-
ized randomly. For each training data X that encompasses both la-
beled and unlabeled samples, we introduce random augmentation ξ

and ξ
′

to generate perturbed instances. Subsequently, these samples
independently traverse through the three networks, producing their
respective predictions: Yt = f(X; θt), Ys1 = f(X + ξ; θs1), and
Ys2 = f(X + ξ

′
; θs2).

3.2 Decoupled Competitive mechanism

As analyzed previously, the student model may inadvertently over-
shadow the teacher model’s capacity to assimilate information during
the training phase. In the dual student architecture, the learning ca-
pabilities of the two students may not be uniform, thus introducing a
cognitive bias that can result in suboptimal performance. To address
these issues, we propose a straightforward yet effective decoupled
competitive mechanism.

The training process of DCF is shown in Algorithm 1. Referring
to previous work [42], for labeled data, cross-entropy loss Lce and
dice loss Ldice are utilized for supervised training:

Lseg = Lce(f(x
L
i ; θ), yi) + Ldice(f(x

L
i ; θ), yi) (1)

where yi is the label of xL
i .

With the supervised loss Lseg calculated using ground truth, a
competition function is employed to determine which backbone per-
forms more competitively in the current state. This competition func-
tion may encompass various metrics such as Dice coefficient, Cross-
entropy (CE), and 95% Hausdorff distance (95HD), which can be
achieved on-the-fly during the training process. Following this line,
two advantages can be guaranteed. 1) it obviates the need for mod-
ifying the network structure, thus avoiding an increase in parameter
count, and 2) as some indicators involve supervised learning pro-
cesses and must be computed anyway, no additional computational
overhead is introduced. Upon determining the winner for the current
iteration, we utilize its parameters to update the teacher network θ

′
t

at training step t based on EMA, i.e., θ
′
t = αθ

′
t−1 + (1 − α)θt,

where α is the EMA decay that controls the updating rate. Since
the winner changes dynamically, the parameters of teacher network
remain uncoupled from any particular students, facilitating the as-
similation of more effective information during training. Moreover,
from the perspective of the teacher network, the status of both stu-
dents is the same, hence the decoupling of tight dependency can be
accomplished, which further allows for a more exclusive focus on the
acquisition of desirable knowledge.
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For unlabeled data, the latent knowledge they harbor merits com-
prehensive exploration. Hence, we introduce Lunsup to fully exploit
the relationship between labeled and unlabeled data, especially in
domains such as medical imaging, where scenes often manifest con-
sistent semantic information across the dataset.

Throughout the overall training process, to effectively promote the
efficacy of underperforming students (us), we utilize the teacher net-
work to correctly steer student models toward correct optimization,
thereby preventing them from converging in erroneous directions.
This can be likened to a tutoring process, for which the mentoring
loss is defined as:

Lms =
1

M

M∑

j=1

Lseg(f(x
U
j ; θus), Ŷ

U
j ) (2)

where Ŷ U
j is the pseudo label of f(xU

j ; θt).
As widely acknowledged, maintaining consistency in model pre-

diction results is of paramount importance in semi-supervised learn-
ing methods. However, applying conformance constraints directly
can cause models to collapse with each other due to the exchange
of incorrect knowledge [13]. Therefore, Dual Student-based meth-
ods often incorporate additional techniques to ensure an accurate ex-
change of information between models, thereby preventing the col-
lapse issue. Nevertheless, due to the presence of these mechanisms,
we can achieve satisfactory results by simply adding a straight-
forward consistency constraint between the two students, signifi-
cantly reducing performance overhead. The specific cross-pseudo-
supervision loss function is as follows:

Lcps =
1

M

M∑

j=1

(Lseg(f(x
U
j ; θs1), Ŷ

U
j ) + Lseg(f(x

U
j ; θs2), Ŷ

U
j ))

(3)
where Ŷ jU represents the pseudo label of f(xU

j ; θs2) if the result
compared with him comes from Student1, and vise versa. The loss
function for unsupervised data Lunsup can then be formulated as
follows:

Lunsup = Lcps + Lms (4)

Note that Lms is exclusively assigned to currently underperforming
students.

With all the sub-loss assembled, the overall loss is given as fol-
lows. It’s noteworthy that during the early stages of training, the
network’s uncertainty tends to be relatively high. Therefore, in line
with previous practices [45, 20], we introduce a parameter within the
Lunsup to stabilize the model training.

Ltotal = Lseg + λLunsup (5)

where λ is the concerned weight for balance control of Lunsup.

3.3 Discussions

In Figure 3(a), we provide a graphical representation of the weight
distance between the teacher network (t) and both student networks
(s1 and s2), throughout the training process. To visualize this, we
show the curves for more epochs of training. Notably, we observe an
inverse relationship between the weight distance of t and s1, and that
of t and s2, i.e., as the weight distance between t and s1 decreases,
there is a corresponding increase in the weight distance between t
and s2, demonstrating a clear antagonistic trend. We attribute this
phenomenon to the fact that when s1 performs EMA update on the
parameters of t, the weight between them will become similar, result-

Algorithm 1 Training of DCF for SSL
Require:

• The set of samples: X
• The random augmentation: ξ, ξ

′

• The teacher network: ft(θt)
• The student networks: fs1(θs1), fs2(θs2)

Procedure:
1: for each iteration do

2: Get f(X + ξ; θs1), f(X + ξ
′
; θs2), f(X; θt)

3: Calculate supervised Loss on labeled samples
4: Calculate cross pseudo supervision loss on unlabeled samples

between fs1(θs1) and fs2(θs2)
5: Compare fs1(θs1), fs2(θs2) and get the winner fw(θs) and

the loser fl(θs)
6: ft(θt) assists fl(θs)
7: fw(θs) updates ft(θt)
8: end for

ing in a decrease in the weight distance between s1 and t. This can be
interpreted as indicating that the one who updates the teacher with
EMA will become closer in weight distance, while the others will
show a tendency to move farther away. In this scenario, the weight
of the teacher is not overly tethered to a single student, but alternates
between two students. As these two students progress in tandem, the
teacher can glean effective information from their interaction, thus
circumventing the bottleneck of poor performance induced by exces-
sive parameter coupling.

At the same time, we also plot the Prediction Distance between
the three networks during the training process, as illustrated in Fig-
ure 3(b). It is evident that in the initial stages of training, the predic-
tion distance between the two students steadily diminishes, indicat-
ing the influence of the consistency constraint among the students.
Consequently, the predicted outcomes of the two students become
increasingly similar. Subsequently, the prediction distance between
them reaches a threshold and remains relatively constant. Moving
forward, the prediction distance between the teacher and the two stu-
dents exhibits a similar trend, underscoring the model’s efficacy and
the effective consistency observed among the three networks.

4 Experiments and Results

4.1 Datasets and Metrics

ISIC Dataset. ISIC [6] was released by the International Skin Imag-
ing Collaboration (ISIC), which comprises 2594 dermoscopic 2D im-
ages along with the corresponding annotations. Following [33, 27],
we use 1815 images for training and 779 images for validation. In
the training set, 5% (91) and 10% (181) of the images are labeled for
different semi-supervised experimental settings.

Left Atrial (LA) Dataset. LA [40] is a benchmark dataset from
the 2018 Atrial Segmentation Challenge, consisting of 100 3D
gadolinium-enhanced MR imaging volumes. Each volume has an
isotropic resolution of 0.625 × 0.625 × 0.625mm3, whose ground
truth labels are all given. According to previous work [42], we utilize
80 scans for training purposes and reserve 20 scans for evaluation. In
the training set, 10% (8), and 20% (16) of the images are labeled for
different semi-supervised experimental settings.

Pancreas-CT Dataset. Pancreas-CT is also a well-known dataset
[26], which is publicly accessible from the National Institutes of
Health Clinical Center. For ease of research and analysis, the scans
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Table 1. Performance comparison with state-of-the-art methods on LA Dataset. Taking V-Net as the baseline, the green triangle � denotes the reduction
degree, while upturned red triangle � represents the rising rate.

Competing Methods
Volumes used Metrics

Labeled Unlabeled Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
V-Net 8(10%) 72 78.96 67.82 20.83 5.74
V-Net 16(20%) 64 86.87 77.19 11.93 3.29

UA-MT (MICCAI 2019) 8(10%) 72 84.25�6.70% 73.48�8.34% 13.84�33.5% 3.36�41.4%
SASSNet (MICCAI 2020) 8(10%) 72 87.32�10.6% 77.72�14.6% 9.62�53.8% 2.55�55.6%

DTC (AAAI 2021) 8(10%) 72 87.43�10.7% 78.06�15.1% 8.37�59.8% 2.40�58.2%
MC-Net+ (MIA 2022) 8(10%) 72 88.96�12.7% 80.25�18.3% 7.93�61.9% 1.86�67.6%

FUSSNet (MICCAI 2022) 8(10%) 72 89.12�12.9% 80.79�19.1% 7.13�65.8% 1.81�68.5%
CAML (MICCAI 2023) 8(10%) 72 89.44�13.3% 81.01�19.4% 10.10�51.5% 2.09�63.6%

UCMT (IJCAI 2023) 8(10%) 72 88.13�11.6% 79.18�16.7% 9.14�56.1% 3.06�46.7%
VSRC (JBHI 2023) 8(10%) 72 88.42�12.0% 79.57�17.3% 8.52�59.1% 2.37�58.7%
BCP (CVPR 2023) 8(10%) 72 89.62�13.5% 81.31�19.9% 6.81�67.3% 1.76�69.3%

DCF (ours) 8(10%) 72 89.94�13.9% 81.78�20.6% 6.38�69.4% 1.80�68.6%

UA-MT (MICCAI 2019) 16(20%) 64 88.88�2.31% 80.21�3.91% 7.32�38.6% 2.26�31.3%
SASSNet (MICCAI 2020) 16(20%) 64 89.54�3.07% 81.24�5.25% 8.24�30.9% 2.20�33.1%

DTC (AAAI 2021) 16(20%) 64 89.42�2.93% 80.98�4.91% 7.32�38.6% 2.10�36.2%
MC-Net+ (MIA 2022) 16(20%) 64 91.07�4.83% 83.67�8.39% 5.84�51.0% 1.67�49.2%

FUSSNet (MICCAI 2022) 16(20%) 64 91.13�4.90% 83.79�8.55% 5.10�57.2% 1.56�52.6%
CAML (MICCAI 2023) 16(20%) 64 90.71�4.42% 83.08�7.63% 6.08�49.0% 1.59�51.7%

UCMT (IJCAI 2023) 16(20%) 64 90.41�4.07% 82.54�6.93% 6.31�47.1% 1.70�48.3%
VSRC (JBHI 2023) 16(20%) 64 90.59�4.28% 82.60�7.01% 5.60�53.1% 1.72�47.7%
BCP (CVPR 2023) 16(20%) 64 90.74�4.45% 83.17�7.75% 6.40�46.3% 1.65�49.8%

DCF (ours) 16(20%) 64 91.44�5.26% 84.28�9.19% 5.24�56.1% 1.55�52.9%

Figure 4. Dice scores for 10% and 20% labeled data across various models
on the Pancreas-CT dataset. Our method exhibits a significantly smaller

performance gap between these two cases.

were preprocessed, involving adjustments of Hounsfield Units (HU)
to ranges of [−125, 275] or [−120, 240], as per the specific study re-
quirements, and resampled to an isotropic resolution of 1.0 mm ×
1.0mm× 1.0mm. Consistent with previous protocols [37, 22], the
dataset is divided into 62 training samples and 20 samples for perfor-
mance evaluation.

Evaluation Metrics: For 3D datasets, four typical metrics with
different criteria are employed, including Dice Similarity Coefficient
(Dice), Jaccard Similarity Coefficient (Jac), 95% Hausdorff Distance
(95HD), and Average Surface Distance (ASD). Among them, Dice
and Jaccard are regional sensitivity metrics assessing the overlap be-
tween predictions and ground truth. Both 95HD and ASD are edge-
sensitive metrics. The former determines the maximum surface-to-
surface distance at the 95th percentile between predicted and actual
regions, while the latter computes the average distance between con-
cerned points on both surfaces. As for 2D datasets, the primary eval-
uation metric for segmentation performance is the widely used Dice

coefficient.

4.2 Implementation Details
DCF is implemented with PyTorch and executed on an NVIDIA
3090 GPU. In the following, we provide distinct processing meth-
ods employed for various datasets.

Left Atrial Dataset: For the LA dataset, we utilize Vnet as the
baseline and trained the network for 500 epochs. The batch size is
set to four, comprising two labeled and two unlabeled images. During
the training phase, random volume cropping is conducted, resulting
in input dimensions of 112×112×80 for model updates. During the
inference phase, segmentation results are generated using a sliding
window with the same dimensions and a stride of 18 × 18 × 4..
AdamW is employed as the optimizer, with a fixed learning rate of
1e-4.

Pancreas-CT Dataset: Throughout the training process, all vol-
umes undergo random cropping to attain dimensions of 96×96×96.
While during inference, a stride of 16×16×16 is implemented. We
trained the network for 600 epochs for the PA dataset. Other config-
urations mirror those of the LA dataset.

ISIC Dataset: DeepLabv3+ augmented with ResNet50 serves as
the baseline architecture for the ISIC dataset. The batch size is set
to 8, including 4 labeled samples and 4 unlabeled samples. All im-
ages are resized to 256×256 during inference, with outputs reverted
to their original dimensions for evaluation. Again, AdamW serves
as the optimizer, with a fixed learning rate set at 1e-4. We train the
network for 30 epochs for the ISIC dataset.

4.3 Results on Left Atrial Dataset
The evaluation results on LA are summarized in Table 1, where
we compare our proposed DCF with several other SSMIS methods,
including UA-MT [42], SASSNet [17], DTC [20], MC-Net+ [37],
FUSSNet [39], CAML [8], UCMT [27], VSRC [46], and BCP [1].
Additionally, the classic V-net is used as a fully supervised bench-
mark model, presenting its performance for reference purposes. To
ensure a fair comparison, we implement these models using their of-
ficial codes and maintain consistency with their respective parame-
ter settings. Furthermore, to comprehensively assess the performance
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Table 2. Performance comparison with state-of-the-art methods on Pancreas-CT Dataset. Taking V-Net as the baseline, the green triangle � denotes the
reduction degree, while upturned red triangle � represents the rising rate.

Competing Methods
Volumes used Metrics

Labeled Unlabeled Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
V-Net 6(10%) 56 55.10 41.02 33.72 12.79
V-Net 12(20%) 50 72.24 58.22 19.39 5.39

UA-MT (MICCAI 2019) 6(10%) 56 66.84�21.3% 51.73�26.1% 21.32�36.8% 6.12�52.2%
SASSNet (MICCAI 2020) 6(10%) 56 69.02�25.3% 53.21�29.7% 18.77�44.3% 3.09�75.8%

DTC (AAAI 2021) 6(10%) 56 67.76�23.0% 52.14�27.1% 15.98�52.6% 4.21�67.1%
MC-Net+ (MIA 2022) 6(10%) 56 74.01�34.3% 60.02�46.3% 12.59�62.7% 3.34�73.9%

RCPS (JBHI 2023) 6(10%) 56 76.62�39.1% 62.96�53.5% 16.32�51.6% 3.01�76.5%
CauSSL (ICCV 2023) 6(10%) 56 72.89�32.3% 58.06�41.5% 14.19�57.9% 4.37�65.8%

DCF (ours) 6(10%) 56 78.94�43.3% 66.05�61.0% 11.69�65.3% 1.38�89.2%

UA-MT (MICCAI 2019) 12(20%) 50 77.13�6.77% 63.28�8.70% 10.52�45.7% 2.39�55.6%
SASSNet (MICCAI 2020) 12(20%) 50 77.25�6.94% 63.59�9.22% 11.98�38.2% 3.12�42.1%

DTC (AAAI 2021) 12(20%) 50 78.27�8.35% 64.75�11.2% 8.36�56.9% 2.25�58.2%
MC-Net+ (MIA 2022) 12(20%) 50 80.59�11.6% 68.08�16.9% 6.47�66.3% 1.74�67.7%

RCPS (JBHI 2023) 12(20%) 50 81.59�12.9% 69.04�18.6% 7.50�61.3% 2.03�62.3%
CauSSL (ICCV 2023) 12(20%) 50 80.92�12.0% 68.26�17.2% 8.11�58.2% 1.53�71.6%

DCF (ours) 12(20%) 50 81.65�13.0% 69.48�19.3% 6.77�65.1% 1.21�77.6%

across varying degrees of supervision, we employ 8 (10% supervi-
sion), and 16 (20% supervision) samples from the training dataset as
labeled data, while treating the remainings as unlabeled data.

In the table presented, our proposal exhibits a notable advance-
ment in Dice score, elevating from 78.96% to 89.94% when utiliz-
ing only 10% labeled data, showcasing a distinct advantage over al-
ternative methodologies. With a subsequent increase in labeled data
to 20%, DCF further boosts the performance to 91.44%, marking a
notable gap of 4.57% compared to the baseline. In particular, DCF
consistently outperforms the other competing approaches in both su-
pervision settings, underscoring its superiority. Furthermore, for a
more visually comprehensible depiction of segmentation outcomes,
Figure 5 illustrates the results on the LA dataset. At first glance, it
can be easily observed that our approach yields clearer segmenta-
tion boundaries and finer-grained details, aligning closely with the
Ground Truth.

4.4 Result on Pancreas-CT Dataset
Table 2 shows the results specific to Pancreas-CT. Note that the vol-
umes in this dataset provide a more complex backdrop compared to
LA MRIs, rendering pancreas segmentation a more challenging task.
To facilitate an intuitive comparison, we again employ several state-
of-the-art competitors, namely UA-MT [42], SASSNet [17], DTC
[20], MC-Net+ [37], RCPS [45], and CauSSL [22]. The performance
metrics reported in their respective papers are directly adopted. Simi-
larly, we employ Vnet with varying proportions of labeled data (10%,
and 20%) for comparative analysis. Similarly, we select 6 samples
for 10% supervision and 12 samples for 20% supervision from the
training dataset, and consider the remainder as unlabeled data.

Yet within a notably challenging task, the proposed DCF demon-
strates promising performance in both scenarios. Even with only 10%
of the data labeled, DCF significantly improves Dice scores from
55.10% to 78.94%, surpassing all other SSL methods. With 20% la-
beled data, DCF achieves a Dice score of 81.65%, outperforming
again other cutting-edge competitors. It should be noted that our pro-
posal exhibits the smallest disparity between 10% and 20% labeled
scenarios, as illustrated in Figure 4. The marginal 2.71% variance
in DCF’s Dice scores between these proportions suggests its effec-
tive utilization of unlabeled data, thereby demonstrating robustness
and generalization capabilities. We further deliver visualization of
the results obtained by DCF and others, as illustrated in Figure 6. It
is observed that our results closely resemble the ground truth (GT)
compared to those of other methods. Moreover, our method exhibits

Table 3. Performance comparison with state-of-the-art methods on ISIC
Dataset. The best results are in Bold font.

Methods
Volumes used Metrics

Labeled Unlabeled Dice(%)↑
MT (NIPS 2017) 90(5%) 1725 86.43

UA-MT (MICCAI 2019) 90(5%) 1725 87.02
CCT (CVPR 2020) 90(5%) 1725 84.48
CPS (CVPR 2021) 90(5%) 1725 86.79

UCMT (IJCAI 2023) 90(5%) 1725 88.22
DCF (ours) 90(5%) 1725 88.88

MT (NIPS 2017) 181(10%) 1634 86.97
UA-MT (MICCAI 2019) 181(10%) 1634 87.48

CCT (CVPR 2020) 181(10%) 1634 85.72
CPS (CVPR 2021) 181(10%) 1634 87.92

UCMT (IJCAI 2023) 181(10%) 1634 88.46
DCF (ours) 181(10%) 1634 89.23

more precise boundary positioning and provides the more detailed
information.

4.5 Result on ISIC
To further validate the generalizability of our proposed model, an
additional verification is carried out using 2D images. Several state-
of-the-art methods are re-implemented on the ISIC dataset, including
MT [30], UA-MT [42], CCT [24], CPS [5], and UCMT [27]. The
concerned results are presented in Table 3. Similarly, two scenarios
with 5% and 10% labeled data are respectively established. As given,
we observe that DCF outperforms the other methods, demonstrating
its superior generalization capability

5 Ablation Study

Comprehensive ablation experiments are conducted on the final DCF
architecture, validating the effectiveness of the tutoring mechanism
and assessing the impact of various competitive approaches.

Impact of Competitive treatments: When evaluating student per-
formance in the current iteration, we have multiple indicators to be
chosen. In this experiment, we use Dice, CE, Jac, 95HD, and ASD,
studying their individual and combined effects.

When 20% of labeled data is employed, Table 5 presents specific
findings demonstrating that on the LA dataset, optimal outcomes are
achieved with the utilization of Dice as the sole competitive metric.
We believe that this is because the Dice metric outperforms other
metrics in accurately evaluating model performance in the field of
medical image segmentation. However, for varied tasks, it is also be-
lieved that alternative evaluation metrics should be contemplated.
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(a) UAMT (b) SASSNet (c) DTC (d) MC-Net+ (e) FUSSNet (f) CAML (g) VSRC (h) Ours (i) Ground Truth

Figure 5. Comparison of visualization results on LA Dataset. The first row shows the results in 2D form, while the second row provides the visualizations in
3D form, where certain details have been enlarged for better clarity.

(a) UAMT (b) SASSNet (c) DTC (d) MC-Net+ (e) RCPS (f) CauSSL (g) Ours (h) Ground Truth

Figure 6. Comparison of visual results on Pancreas-CT Dataset. The first row shows the results in 2D form, while the second row provides the visualizations
in 3D form, where certain details have been enlarged for better clarity.

Table 4. Ablations of different tutoring mechanisms on LA dataset.

Methods
Metrics

Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
(1) 91.10 83.72 5.36 1.50
(2) 90.26 82.31 5.68 1.67
(3) 90.63 82.92 5.86 1.60
(4) 90.70 83.03 5.68 1.59
(5) 91.44 84.28 5.24 1.55

Effectiveness of Tutoring Mechanism. To assess the engineered
tutoring mechanism, various scenarios are devised: 1) Teachers re-
fraining from tutoring. 2) Teachers tutoring irrespective of perfor-
mance. 3) Alternating tutoring duties among students. 4) Teachers
offering extra support to high-performing students. 5) Providing tu-
toring to low-performing students. The experimental outcomes on
the LA dataset (20% labeled data) are detailed in Table 4.

It is illustrated that the model exhibits optimal performance when
the teacher administers remediation to poorly performing students,
thereby validating the efficacy of our remediation treatment. How-
ever, the efficacy of the model diminishes when remediation is pro-
vided exclusively to well-performing students or when simultaneous
remediation is administered to two students. This decline may be
due to an exacerbated variance between students. Regarding the ran-
domized remediation method, we contend that its indiscriminate na-
ture undermines its ability to yield favorable outcomes. In instances
where no tutoring mechanism is employed, the model neither exacer-
bates variance among students nor achieves optimization, potentially
yielding subpar results.

6 Conclusion

In this study, we present a novel semi-supervised framework for
3D medical image segmentation, which is specifically designed to
tackle the challenge of tight coupling in the Teacher-Student struc-
ture within MT-based methods. In addition, a competitive tutoring

Table 5. Variations in model performance on LA Dataset under differing
evaluation schemes during student competition.

Methods
Metrics

Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
Dice 91.44 84.28 5.24 1.55
CE 90.50 82.70 6.02 1.56
Jac 89.32 80.79 7.43 2.21

ASD 90.80 83.20 5.51 1.52
95HD 90.72 83.07 5.75 1.60

Dice+Jac 89.07 80.40 6.56 2.15
Dice+CE 90.37 82.51 6.08 1.58
CE+Jac 89.44 81.01 7.66 2.20

95HD+ASD 91.05 83.62 5.60 1.48
CE+Jac+Dice 88.45 79.43 7.60 2.39

mechanism is crafted to improve communication between models,
thus mitigating the risk of model collapse resulting from the acqui-
sition of erroneous knowledge. Besides, we employ weight distance
and prediction distance to perform a detailed analysis of the state
changes among the three networks throughout the training process.
The effectiveness of our DCF in semi-supervised medical image seg-
mentation is validated on three public benchmark datasets. Further-
more, we believe that our proposed DCF framework can serve as a
plug-and-play solution, readily applicable across diverse SSL fields.
However, our method still suffers from certain limitations, e.g., the
dynamic interplay between two students is mostly pronounced dur-
ing the initial and middle periods, which would gradually wane as
time progresses. Moving forward, we intend to further investigate
strategies to enhance consistency between students.
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