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Abstract. Transformers have recently gained considerable popular-
ity for capturing long-range dependencies in the medical image seg-
mentation. However, most transformer-based segmentation methods
primarily focus on modeling global dependencies and fail to fully
explore the complementary nature of different dimensional depen-
dencies within features. These methods simply treat the aggregation
of multi-dimensional dependencies as auxiliary modules for incor-
porating context into the Transformer architecture, thereby limiting
the model’s capability to learn rich feature representations. To ad-
dress this issue, we introduce the Dual Attention Encoder with Joint
Preservation (DANIE) for medical image segmentation, which syn-
ergistically aggregates spatial-channel dependencies across both lo-
cal and global areas through attention learning. Additionally, we de-
sign a lightweight aggregation mechanism, termed Joint Preserva-
tion, which learns a composite feature representation, allowing dif-
ferent dependencies to complement each other. Without bells and
whistles, our DANIE significantly improves the performance of pre-
vious state-of-the-art methods on five popular medical image seg-
mentation benchmarks, including Synapse, ACDC, ISIC 2017, ISIC
2018 and GlaS.

1 Introduction

Medical image segmentation is one of the key tasks in computer
vision, which provides valuable information about the anatomy ar-
eas that are needed for the detailed analysis. Accurate segmenta-
tion enables physicians to obtain dependable morphological statis-
tics, which is critical for disease diagnosis. Different from conven-
tional images, medical images usually contain intricate tissue struc-
tures and blurred edges,which pose a huge challenge to efficiently
segment specific targets from medical images.

Inspired by Fully Convolutional Network (FCN) [19] that boosts
the performance of semantic segmentation, Convolutional Neural
Networks (CNNs) have been the de-facto standard for medical image
analysis tasks. For instance, Unet [22] tries to apply fully convolu-
tional networks to medical image segmentation, where it employs an
encoder to extract features and a symmetric decoder to gradually up-
sample spatial dimensions. This classic paradigm has been followed
by some methods [23, 39], due to its simple structure and efficient
performance. However, the fixed receptive field of convolution op-
erators hinders these CNN-based methods to capture long-range re-
lationships between distant pixels in medical images. Recently, mo-
tivated by the success of vision transformers in natural image seg-
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Figure 1. Visualization of class activation maps in different structures with
Grand-CAM [24]. L-spa/cha is local spatial/channel attention; G-spa/cha

denotes global spatial/channel attention.

mentation, the transformer-based segmentation methods [7, 5] have
been developed to address the drawbacks of CNNs in medical image
segmentation. These methods leverage the global relation modeling
abilities of transformers to interact long-distance pixel information,
thereby identifying key features across the entire input.

Despite transformer-based segmentation methods have shown the
progress, they fail to make full use of the dependencies between spa-
tial and channel dimensions within features. This results in an in-
adequate understanding of feature semantics during target segmen-
tation. Specifically, these methods [38, 21] focus on learning global
dependencies through self-attention, which may overlooks the com-
plementary nature of dependencies across different dimensions. That
is, spatial dependencies involve the relationships between adjacent
pixel regions, which help to recognize the location of targets (such as
tissue boundaries, texture, etc.). Besides, learning channel-wise de-
pendencies can highlight the important feature semantics across var-
ious channels, thus revealing tissue structures that are not apparent in
a single channel. In short, both spatial and channel dependencies not
only play its unique role in improving feature representation, but also
supplement each other. Therefore, synergistically learning both de-
pendencies can enhance the feature diversity in the spatial dimension
and improve feature utilization in the channel dimension, so as to
boost the model’s capability for localizing anatomical structures. As
shown in Figure 1, class activation maps from the structures aggre-
gating both dimensional dependencies can better target objects than
those aggregating dependencies along a single dimension, either on
a global or local scale.

In this paper, we propose a Dual Attention ENcoder with JoInt
PrEservation (DANIE) architecture that synergistically aggregates
spatial-channel dependencies in both local and global areas, to con-
struct the rich feature representation of medical image. Architecture-
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wise, given two feature maps extracted from a medical image, we de-
sign a Dual Attention Encoder (DAE) to capture their spatial-channel
dependencies at multi-scales (e.g., four stages). At the first stage,
the encoder uses a self-attention perception (SAP) to perceive the
global spatial dependencies of one feature map via interacting its
all regions, alongside a hierarchical-attention perception (HAP) to
dynamically model the channel and spatial correlations of the other
feature map within local areas. In the following stages, we repeat the
above procedure to progressively model the multi-scale feature maps
with spatial-channel dependencies.

Next, the obtained feature maps are fed into the Joint Preserva-
tion (JP) to learn a composite representation that encapsulates global
and local dependencies across spatial-channel dimensions. Specifi-
cally, JP contains two light-weight components: the enhancing self-
attentional perceptron is developed to learn channel representations
for global spatial dependencies from the feature maps of SAP, and the
enhancing hierarchical-attention perception is devised to enhance
non-local interactions for local spatial and channel feature from the
feature maps of HAP. Finally, the fused feature map is used to gen-
erate the segmentation image.

Our contributions can be summarized as follows:

• We propose a novel DANIE that aggregates global and local
spatial-channel features, in order to obtain a powerful composite
representation. Meanwhile, by leveraging these fine-grained local
dependency features at a larger scale, the model achieves a deeper
comprehension of intricate details.

• In DANIE, we first design DAE to not only capture global spatial
information, but also learn spatial-channel dependencies within
local regions. Then, JP is devised to learn a composite features
representation, where it integrates multiple dimensional depen-
dencies within a unified block and ensure these dependencies mu-
tually supplement each other.

• We demonstrate the effectiveness of DANIE on five challeng-
ing benchmark datasets: Synapse, ACDC, Skin Lesion segmen-
tation (ISIC 2017, ISIC 2018) and GlaS. Our DANIE produces
better results than state-of-the-art methods. Notably, our DANIE
outperforms recent transformer-based methods CASCADE [21]
(85.47% vs. 82.68%) using fewer computational cost (26.55
GFLOPs vs. 44.83 GFLOPs) on Synapse multi-organ dataset.

2 Related Work

2.1 CNN-based Segmentation Method

UNet [22] pioneers the application of CNNs for medical image seg-
mentation and shows promising progress. Inspired by this, numer-
ous subsequent methods have adopted the U-shaped, fully convolu-
tional network (FCN) design [39]. For instance, UNet++ [39] intro-
duces dense skip connections that link the encoder and decoder sub-
networks. The nnUNet [16], a highly influential variant of the UNet
architecture, uniquely automates data preprocessing and the selec-
tion of optimal network architectures tailored for specific tasks. Re-
cently, Han et al. [13] develop a 2.5D 24-layer FCN for liver segmen-
tation tasks, integrating a residual block into the model to improve its
performance. However, these CNN-based segmentation methods are
limited in performance due to their fixed receptive field. To address
this, we introduce global channel and spatial attention mechanisms
to enhance the interaction of distant feature information.

Figure 2. Conceptual comparison of recent Transformer-based
approaches. (a) employs a Transformer as backbone, supplemented with

attention mechanism as decoder to enhance multi-dimensional information
[21]. (b) combines Transformer and CNN for feature extraction, using

attention mechanisms to augment feature representation [10, 38]. (c) is our
proposed efficient dual attention aggregate structure.

2.2 Transformer-based Segmentation Method

With the success of Transformers in computer vision [27, 29], the
transformer-based methods for medical image segmentation become
popular. TransUNet [7] tries to combine CNNs and Transformers,
where CNNs play the role of local modeling and basic feature ex-
traction, while Transformers can capture long-range dependencies.
SwinUNet [5] designs a U-shaped architecture based on pure Swin
Transformer blocks. SSFormer [33] introduces a layered architec-
ture that leverages the original Swin Transformer as its backbone,
achieving a reduction in parameters by merging image patches and
employing shifted windows. Recent research investigates the incor-
poration of attention mechanisms as assisted modules with Trans-
formers. For instance, TransFuse [38] proposes the BiFusion mod-
ule based on attention mechanism for fusing Transformer and CNN
branches to maximize the advantages offered by both. CASCADE
[21] introduces an attention-based decoder combined with a Trans-
former encoder. Although existing transformer-based methods add
attention mechanisms as auxiliary to enhance the expressive capa-
bility of the Transformer architecture, these models still fail to fully
exploit the intrinsic correlations among features. In contrast, we ana-
lyze and synergistically utilize the complementarity of dependencies
across different dimensions, thereby improving the perception of de-
tail information.

2.3 Attention Mechanism

Attention Mechanism is widely adopted as an important ingredient
in various vision tasks [28, 30]. For example, Hu et al. [15] design
a squeeze-and-excitation block to compute channel attention and en-
hance important channel feature maps. Wang et al. [34] are inspired
by traditional methods [4] and generalize the classical non-local op-
eration into deep neural networks. Subsequently, GCNet [6] proposes
query-independent attention maps, which further reduce the amount
of computation and achieve excellent performance in quality. Re-
cently, to leverage attention mechanism for medical image segmenta-
tion, AttnUnet [20] combines spatial attention with UNet for abdom-
inal pancreas segmentation. PraNet [11] leverages a guide map gen-
erated by aggregating high-level features during the decoding phase,
which enhances boundary refinement through collaboration with re-
verse attention mechanisms.

3 Method

In this section, we first conduct an analysis of previous work. Sub-
sequent sections will detail the formulations of DANIE. Specifically,
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Figure 3. Our DANIE primarily consists of three parts: Embedding, Dual Attention Encoder (DAE) and Joint Preservation. (a) is overview of DANIE, (b)
and (c) are the two attentional streams of the DAE.

our DANIE framework contains three key components: (a) Embed-
ding Layer, (b) Dual Attention Encoder that model both global and
local dependencies across spatial and channel dimensions, and (c)
Joint Preservation for learning composite feature representation.

3.1 Analysis of Previous Work

As illustrated in Figure 2, while transformer-based methods can mit-
igate the limitations of CNN-based approaches and capture multi-
scale information via attention modules, they still do not fully ex-
ploit the complementary interactions among spatial-channel depen-
dencies. Essentially, these methods merely use attention mechanisms
to augment the modeling capabilities of Transformer architectures.
There are two key differences between our DANIE and previous
works: (1) Fusion of global and local information. While prior stud-
ies such as [7, 38] have employed the fusion of global and local fea-
tures, they typically rely on a hybrid structure of Transformers and
CNNs for feature extraction, without selectively modeling feature
representation. In contrast, our DANIE strategically activates global
and local features from the perspective of spatial-channel dependen-
cies interactions. (2) Aggregation of diverse dependencies. Unlike
the coarse aggregation methods (e.g., element-wise addition, con-
catenation) employed in previous works, we analyse the property of
various dependencies, and design a aggregate attention mechanism
that effectively compensates for the deficiencies in extracting fea-
tures.

3.2 Embedding Layer

The input images first pass through separate embedding layers to
extract informative representations before fed into the Dual Atten-
tion Encoder. For the self-attentional perception (SAP) stream, the
embedding layer divides the input image into multiple patches and
learns a vector representation for each patch. When an image with
dimensions (H × W × 3) is input to the network, the embedding
layer transforms the image into embedded patches s ∈ R

(H
4
×W

4
×C),

where H , W , and C denotes the height, width, and number of chan-
nels respectively. The embedded patches is the input to SAP stream.

For the hierarchical-attentional perception (HAP) stream, the em-
bedding layer applies convolutional filters across the input image
to extract hierarchical features. When an image with dimensions
(H × W × 3) is input to the network, the embedding layer trans-
forms it into feature maps h ∈ R

(H
4
×W

4
×C). The filters activate on

low-level cues like edges and textures to generate C-channel feature
representations, preserving local relationships in the image.

3.3 Dual Attention Encoder

We input the feature maps into a dual-stream module to learn multi-
dimensional features. An independent self-attentional stream can
learn the complete region-to-region correlation over a global range.
The hierarchical attentional stream captures channel and spatial di-
mension dependencies, focusing on key local areas of the input.

Self-Attentional Perception. To capture global spatial relation-
ships, we employ multi-head self-attention (MHA). MHA is an ex-
tension of the self-attention (SA) mechanism, where multiple SA
blocks are applied in parallel. The outputs of these parallel SA blocks
are concatenated and then projected back to the original dimension,
resulting in a latent representation that encodes global spatial depen-
dencies. Specifically, SA generates query, key and value vector repre-
sentations for each input. The dot product between the query vectors
and all key vectors yields an attention distribution, indicating the rel-
evance of the other inputs as described in Figure 3 (b). A weighted
sum of the value vectors is then computed based on the attention dis-
tribution to obtain a new contextualized representation. The formula
for SA is:

SA(Q,K, V ) = softmax(QKT )V (1)

where Q, K, and V are the query, key and value matrices respec-
tively. Parallelly computing multiple SA blocks and concatenating
their outputs, MHA captures multi-scale interdependencies. Essen-
tially, this self-attentional stream generates attention masks based on
semantic information, highlighting crucial long-range spatial depen-
dencies for segmenting complex organizational structures.

Hierarchical-Attentional Perception. Whilst self-attentional
stream captures global dependencies of feature, it does not spec-
ify how to learn local detail in the channel and spatial dimensional.
Therefore, we introduce a hierarchical-attentional stream alongside
the self-attentional stream. This stream includes channel attention
and spatial attention to highlight important features. Additionally,
dynamic calibration is designed for the effective integration of these
features, ensuring accurate localization of fine details.

Formally, given a feature map h, we compress its spatial dimen-
sions via pooling and then apply a multi-layer perceptron (MLP) to
derive channel attention maps: Ac

[max,avg] ∈ R
C×1×1, where max

and avg denote the max pooling and average pooling branches, re-
spectively. These attention maps are then applied to enhance the orig-

S. Li et al. / Dual Attention Encoder with Joint Preservation for Medical Image Segmentation332



Figure 4. Details of the Enhancing Self-Attentional Perceptron (ES). The
feature maps s are extracted from the SAP stream.

inal features, yielding weighted features: m[max,avg] ∈ R
H×W×C .

Following this, we compress the channel dimension of the feature
map m[max,avg] and then apply a convolutional layer to generate
spatial attention maps: As

[max,avg] ∈ R
1×H×W . These attention

maps are then used to weight m[max,avg], resulting in refined fea-
tures: O[max,avg] ∈ R

H×W×C . This process can be described by
the following equation:

m[max,avg] = σ
(
MLP (Ps

[max,avg](h))
)� h

= Ac
[max,avg] � h

(2)

O[max,avg] = σ
(
Conv(Pc

[max,avg](m))
)�m

= As
[max,avg] �m

(3)

where Ps
[max,avg] and Pc

[max,avg] represents spatial dimension pool-
ing operation and channel dimension pooling on the max branch and
the average branch respectively. � denotes to hadamard product, and
σ is the sigmoid function. Conv is 1×1 convolution layer.

Finally, we employ the dynamic calibration to finely adjust the
focus of the attention mechanism, enhancing the model’s sensitiv-
ity and accuracy towards key information. Further the output of Od

is the weighted sum of refined features O[max, avg] from the two
branches. as depicted in the equation:

Od = ωmaxOmax + ωavgOavg (4)

where ωavg and ωmax are learnable scalars to control the relative
importance of two branches. Subsequently, a 1×1 convolution is ap-
plied to compress the channel dimensions, and a sigmoid activation
function is utilized to generate the attention maps: Ad ∈ R

C×1×1.
These attention maps is weight the original features h:

Ohap = ConvBlock(σ(c ∗Od)� h)

= ConvBlock(Ad � h)
(5)

where c∗ denotes 1×1 convolution layer; ConvBlock(·) is a convo-
lutional block, which helps to integrate these dependencies.

3.4 Joint Preservation

To effectively aggregate spatial-channel dependencies, we analyze
both self-attentional perception and hierarchical-attentional percep-
tion, implementing lightweight processing on each. While retaining
key features of different dimensions, we conducted complementary
fusion of these features.

Enhancing Self-Attentional Perceptron (ES). The self-attention
mechanism establishes dependencies across arbitrary positions
within features, but it struggles to capture inter-channel correlations.
Therefore, implementing global modeling on the channel dimension

Figure 5. Details of the Enhancing Hierarchical-Attentional Perceptron
(EH). The feature maps h are extracted from the HAP stream.

of the features following the self-attention block can effectively com-
plement this limitation. As shown in Figure 4, we use the similar
self-attention mechanism to capture the channel dependencies [12].
Specifically, given the feature map Sin ∈ R

H×W×C from the self-
attention block, we first reshape Sin into two branches, resulting in
S1 ∈ R

C×(H×W ) and S2 ∈ R
(H×W )×C . Then, we use matrix mul-

tiplication between S1 and S2, and apply a softmax layer to generate
the channel attention maps: Wc ∈ R

C×C as:

wi,j =
exp(S1,i · S2,j)∑C
i=1 exp(S1,i · S2,j)

(6)

where wij denotes the impact of ith channel on jth channel. Subse-
quently, we reshape original feature Sin to S3 ∈ R

C×(H×W ), and
perform a matrix multiplication between S3 and Wc. Finally, we ap-
ply an element-wise addition operation between Sin and the result of
the matrix multiplication to obtain the output es ∈ R

H×W×C :

esj = λ
C∑

i=1

wi,jS3,j + Sin,j (7)

where λ is a scale parameter that modulates the significance of the
channel attention map in relation to the input feature map, and it
progressively learns a weight from 0.

Enhancing Hierarchical-Attentional Perceptron (EH). The
hierarchical-attention emphasizes the dependencies within channel
and spatial dimensions in localized regions, yet it overlooks inter-
actions on a larger scale. Therefore, incorporating non-local interac-
tions on top of extracting local fine features can enhance the model’s
ability to accurately segment the target. Inspired by previous works
[40, 6], we introduce the EH module, designed to augment non-local
interactions in the hierarchical attention block, as illustrated in Fig-
ure 5. We first aggregate feature information though Context Model-
ing, which leverages the inherent correlations within the input feature
Hin ∈ R

H×W×C , deriving global correlation maps: Ag ∈ R
C×1×1:

Ag = ψ
(
(Fr1(c1 ∗Hin)

)×Fr2(Hin) (8)

where ψ(·) is softmax function; c1∗ is a convolution layer with 1×1
kernel size; × denotes matrix multiplication and Fri(·) denotes re-
shaping operations. Subsequently, instead of the previous methods
that distribute the global correlation map across all pixel positions via
element-wise addition, we introduce Context Integration for global
interactions. This method transforms the global correlation maps Ag

into global attention maps Wg ∈ R
C×1×1. These maps are then used

to weight the original feature Hin, effectively integrating non-local
information into the feature representation:

eh = σ
(
c2 ∗GELU

(
LN(c1 ∗Ag)

))�Hin

= Wg �Hin

(9)
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Table 1. Results on Synapse multi-organ dataset. DICE scores are reported for individual organs. ↑ denotes higher the better, ↓ denotes lower the better. The
best results are in bold.

Method
Average

GFLOPs Aorta GB KL KR Liver PC SP SM
DICE↑ mIoU↑ ASD↓

UNet[22] 70.11 59.39 14.41 65.41 84.00 56.70 72.41 62.64 86.98 48.73 81.48 67.96
AttnUNet [20] 71.70 61.38 10.00 67.11 82.61 61.94 76.07 70.42 87.54 46.70 80.67 67.66
TransUNet [7] 77.48 67.32 4.66 28.39 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
SSFormer [33] 78.01 67.23 4.56 29.71 82.78 63.74 80.72 78.11 93.53 61.53 87.07 76.61
MT-UNet [32] 78.59 66.33 5.10 44.21 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

LeViT-UNet[36] 78.53 67.17 4.40 25.55 87.33 62.23 84.61 80.25 93.11 59.07 88.86 72.76
SwinUNet [5] 79.13 66.88 4.70 26.25 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

CASTformer [37] 82.55 74.69 5.81 42.71 89.05 67.48 86.05 82.17 95.61 67.49 91.00 81.55
CASCADE [21] 82.68 73.48 2.83 44.83 86.63 68.48 87.66 84.56 94.43 65.33 90.79 83.52

DANIE-S (our) 84.21 75.42 3.65 13.29 87.31 73.11 85.29 83.86 95.20 70.20 92.85 85.90
DANIE-L (our) 85.47 76.60 2.76 26.55 88.17 77.80 88.59 84.68 94.84 71.94 91.95 85.82

Table 2. Results on the ACDC dataset. DICE scores are reported for
individual organs. The best results are in bold.

Method mDICE ↑ RV↑ Myo↑ LV ↑
UNet[22] 89.41 87.77 85.88 94.67

AttnUnet[23] 89.01 87.30 85.07 94.66
PraNet [11] 90.19 87.21 88.73 94.54

TransUNet [7] 89.71 88.86 84.53 95.73
nnUnet [16] 91.61 90.24 89.24 95.65

MT-UNet [32] 90.43 86.64 89.04 95.62
SwinUNet [5] 90.00 88.55 85.62 95.83

LeViT-UNet[36] 90.32 89.55 87.64 93.76
CASCADE [21] 91.63 89.14 90.25 95.50

DANIE-S (our) 91.96 89.61 90.37 95.89
DANIE-L (our) 92.36 90.12 90.99 96.00

where σ(·) is sigmoid function; LN(·) is layer normalization; ci∗
denotes 1×1 convolution layer. Essentially, EH aims to learn and un-
derstand correlations across global regions by aggregating local con-
textual information provided by the hierarchical attention block.

Aggregation. Finally, we fuse the features from two distinct per-
ceptron modules as follows:

ei = esi + ehi (10)

these fused features, denoted as: ei ∈ R
H×W×C , are then passed

into a convolutional block along with features ji−1 ∈ R
H×W×C

from the previous Joint Preservation block:

ji = ConvBlock
(
Cat[ei, ji−1]

)
(11)

where Cat[·, ·] represents the concatenation of channel dimensions.
ConvBlock(·) is a convolutional block, which consists of two 3×3
convolution layers each followed by a batch normalization layer and
a GELU activation layer.

We generate four prediction maps from the four stages of the Joint
Preservation. The final prediction map, denoted as: y, is computed
using additive aggregation:

y = α1p1 + α2p2 + α3p3 + α4p4 (12)

where p1, p2, p3, and p4 represent the feature maps from the four
prediction heads, and αi are the weights for individual prediction
heads. In our experiments, we set all α values to 1.0.

4 Experiment

4.1 Datasets

Synapse Multi-Organ Segmentation. There are 30 abdominal CT
scans with 3779 axial contrast-enhanced abdominal CT images in the

Figure 6. Visualization of segmentation from DANIE and other SOTA
methods on Synapse (above) and ACDC (below) dataset. Red rectangles
highlight areas where our proposed method clearly outperforms others.

Synapse multi-organ dataset [17]. Each CT scan consists of 85-198
slices of 512×512 pixels, with a voxel spatial resolution of ([0:54-
0:54]×[0:98-0:98]×[2:5-5:0])mm3. Following TransUNet [7], we
partitioned the dataset into two sets: 18 scans (consisting of 2212
axial slices) for training and 12 scans for validation.

ACDC dataset. The ACDC dataset [3] contains MRI images of
100 patients. The labels for each case include the left ventricle (LV),
right ventricle (RV), and myocardium (Myo). Following TransUNet
[7], the dataset is split into 70 for training, 10 validation for valida-
tion, and 20 cases for testing.

Skin Lesion Segmentation. We conduct extensive experiments
on the skin lesion segmentation datasets. Specifically, we utilize the
ISIC 2017 dataset [9] comprising 2000 dermoscopic images for train-
ing, 150 for validation, and 600 for testing. Moreover, we adopt the
ISIC 2018 [8] and follow the literature work [1] to divide the dataset
into the train, validation, and test sets accordingly.

GlaS dataset. The GlaS dataset [25] comprises microscopic im-
ages of slides stained with Hematoxylin and Eosin (H&E). The
dataset includes a total of 165 images, divided into two sets: 85 im-
ages designated for training purposes and 80 images allocated for
testing.

4.2 Implementation Details

In Synapse multi-organ segmentation, we train each model with a
maximum of 300 epochs and a batch size of 24. In ACDC cardiac
organ segmentation, we set the batch size to 12 and the maximum
number of training epochs to 400 for each model. In ISIC 2017 and
2018, we train our model for 200 epochs with a batch size of 8. In
GlaS dateset, we train DANIE with a 100 epochs.

DANIE-S utilizes multi-head attention from MaxViT-tiny [31]
as its self-attentional stream, with channel dimensions set to [64,
128, 256, 512] across its encoder layers. Similarly, DANIE-L uses

S. Li et al. / Dual Attention Encoder with Joint Preservation for Medical Image Segmentation334



Table 3. Performance comparison of the proposed method against the SOTA approaches on ISIC 2017 and ISIC 2018 skin lesion segmentation benchmarks.
The best results are in bold.

Method GFLOPs
ISIC 2017 ISIC 2018

DICE↑ SE↑ SP↑ ACC↑ DICE↑ SE↑ SP↑ ACC↑
UNet [22] 65.41 81.59 81.72 96.80 91.64 85.45 88.00 96.97 94.04

AttnUNet [20] 67.11 80.82 79.98 97.76 91.45 85.66 86.74 98.63 93.76
DAGAN [18] 62.12 84.25 83.63 97.16 93.04 88.07 90.72 95.88 93.24
TransUNet [7] 28.39 81.23 82.63 95.77 92.07 84.99 85.78 96.53 94.52
FAT-Net [35] 23.06 85.00 83.92 97.25 93.26 89.03 91.00 96.99 95.78
TransFuse[38] 26.21 87.31 84.22 96.13 93.50 88.27 90.76 96.11 95.23
TMU-Net [2] 30.49 91.64 91.28 97.89 96.60 90.59 90.38 97.46 96.03
SwinUNet [5] 26.25 91.83 91.42 97.98 97.01 89.46 90.56 97.98 96.15
HiFormer [14] 19.21 92.53 91.55 98.40 97.02 91.02 91.19 97.55 96.21

DANIE-S (our) 13.29 93.84 92.92 98.73 97.58 93.32 95.34 96.63 96.28
DANIE-L (our) 26.55 94.25 94.10 98.61 97.72 93.47 94.17 97.27 96.43

Table 4. Performance comparison of the proposed method against the
SOTA approaches on GlaS dataset. The best results are in bold.

Method GFLOPs mDICE↑ mIoU↑
UNet [22] 65.63 89.62 82.14

UNet++ [39] 138.66 90.05 82.80
AttnUnet [20] 66.64 89.90 82.87
TransUNet [7] 28.39 91.08 84.01
TransFuse[38] 26.21 90.97 84.29
SSFormer[33] 29.31 91.08 83.75
SwinUNet [5] 26.25 91.39 84.60
TGANet[26] 42.08 91.43 84.90

CASCADE [21] 44.83 90.97 84.76

DANIE-S (our) 13.29 91.28 84.23
DANIE-L (our) 26.55 92.65 86.28

MaxViT-small model for its self-attention stream, featuring channel
dimensions of [96, 192, 384, 768] in the encoder. Both models ini-
tialize using pre-trained ImageNet weights from the timm library for
MaxViT. We train our model using AdamW optimizer with a weight
decay and learning rate of 0.0001. We optimize the combined DICE
and Cross-Entropy (CE) loss L with λ1 = 0.7 and λ2 = (1-λ1) = 0.3
in all our experiments:

L = λ1Ldice + λ2Lce (13)

where λ1 and λ2 are the weight for the DICE (Ldice) and CE (Lce)
losses, respectively. Our framework was implemented with Pytorch
and all experiments were performed on an NVIDIA GeForce RTX
3090 GPU.

4.3 Evaluation Metrics

We use mDICE, mean intersection over union (mIoU) and Average
surface distance (ASD) as the evaluation metrics in our experiments
on Synapse Multi-organ dataset. Following existing methods, we use
DICE scores for the ACDC dataset. In the experiment of the Skin
Lesion Segmentation, we made an overall evaluation of the main-
stream medical image segmentation network by using four indica-
tors: mDice, Sensitivity (SE), Accuracy (ACC), and Specificity (SP).
In GlaS dataset, we apply mDICE and mIoU as the evaluation metric
in our experiments.

4.4 Comparative Results

Comparative Results on Synapse dataset. Table 1 shows the per-
formance comparison of our DANIE with state-of-the-art methods

Figure 7. Visual comparisons of different methods on the ISIC 2017
(above) and GlaS (below) dataset.

on the Synapse dataset. Specifically, compared to the mainstream
segmentation method TransUNet, our DANIE-L achieved improve-
ments of 7.99%, 9.28%, and 1.9% in average DICE, mIoU, and
ASD scores. It also can be observed that DANIE-L outperforms
the recent best model CASCADE [21], with absolute improvements
of 2.79% and 3.12% in average Dice and mIoU respectively. Our
DANIE model achieved higher scores than the SOTA model on 6
out of the 8 organs, which is sufficient to demonstrate that DANIE
has adequate performance to accurately segment both large and small
organs. Additionally, compared to previous transformer-based meth-
ods, DANIE is more advantageous in segmentation gallbladder, pan-
creas and stomach, which are difficult to delineate using past seg-
mentation models. It can be observed that DANIE not only accu-
rately localizes organs but also produces coherent boundaries, even
in small object.

Comparative Results on ACDC dataset. From the results shown
in Table 2. DANIE-L outperforms two popular methods, TransUNet
and SwinUNet, by 2.65% and 2.36% respectively. Additionally,
DANIE-L gains average DICE score (92.36%), RV DICE score
(90.17%), Myo DICE score (90.99%), and LV DICE score (96.00%)
are all superior to other SOTA methods. It can be seen that our
method also demonstrates strong performance on MRI images of
the human heart, verifying our promising scalability across different
medical imaging data modalities.

Comparative Results on Skin Lesion Segmentation datasets.

The comparison results for benchmarks of ISIC 2017 and ISIC 2018
skin lesion segmentation task against leading methods is presented
in Table 3. In ISIC 2017 dataset, we can observe that our DANIE-L
achieve the highest average DICE (94.25%), SE (94.10%) and ACC
(97.72%) surpassing the current SOTA method HiFormer [14] by
1.72%, 2.55% and 0.7%. In ISIC 2018 dataset, the mDice value of
our DANIE-L is 2.45%, 4.01% and 8.48% higher than that of the
HiFormer, SwinUNet and TransUNet network respectively.
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Table 5. Ablation study of the Dual Attention Encoder on the Synapse
dataset. spatial/channel att denotes spatial/channel attention from

hierarchical-attention. The best result is bolded.

Index Architecture GFLOPs Avg DICE

A.1 DANIE w/o hierarchical-attention 19.06 77.12
A.2 DANIE w/o self-attention 10.98 74.06
A.3 DANIE w/o spatial att 22.13 81.18
A.4 DANIE w/o channel att 23.25 80.65
A.5 DANIE 25.16 82.97

Comparative Results on GlaS dataset. We conducted experi-
ments on GlaS dataset, which focus on segmenting glands from
stained slide images. As shown in Table 4, our DANIE still outper-
forms other competitive methods. Specifically, DANIE-L get high-
est scores in mDice (92.65%) and mIoU (86.28%) than other SOTA
methods. Note that TransFuse adopts attention mechanism in de-
coder for capturing multi-scale information, which ignores the com-
plementarity between dependencies across different dimensions, and
thus obtain sub-optimal performance.

4.5 Visualization Results

We visualize some segmentation results of our DANIE and other
methods on four public datasets. As shown in Figure 6, our DANIE
can greatly reduce the number of false positive predictions than Tran-
sUNet [7] on the Synapse dataset. Especially for the prediction of red
block, our results are more consistent with the original image, and
there are fewer areas of wrong prediction. Meanwhile, compared to
SwinUNet [5] and CASCADE [21] on ACDC dataset, we can see
that DANIE produced more accurate prediction maps for the right
ventricle. In fact, this phenomenon has been reflected in Table 1 and
Table 2, where DANIE is significantly better than CASCADE when
DICE is the default evaluation metric. For the large lesion regions
segmentation, such as ISIC 2017 and GlaS datasets as shown in Fig-
ure 7. It shows that our results are more distinguishable than other
networks. DANIE generates better segmentation results, which are
more similar to the ground truth than other SOTA methods. These
results verify that our model works well with different types images.

4.6 Ablation Studies

Effectiveness of Dual Attention Encoder. We conducted a series of
ablation studies with various structures to validate the effectiveness
of the Dual Attention Encoder, To ensure the fairness, we simply
used element-wise addition for fusion.

As shown in Table 5, we observe a notable improvement in perfor-
mance with an increase in the dimensionality of feature extraction.
Through A.1, A.3, and A.4, we can see that adding local attention
mechanisms for additional dimensions to a self-attentional stream
significantly boosts performance. This finding confirms that extract-
ing dependencies from both global and local perspectives aids the
model in more effectively segmenting details in images. Addition-
ally, gradual enhancement in segmentation accuracy with the expan-
sion of attention dimensions within the model. This suggests that, un-
like mainstream methods that primarily rely on self-attention for cap-
turing feature dependencies in a single dimension, integrating multi-
ple dependencies proves to be more effective.

Effectiveness of Hierarchical-Attentional Perception. In this
experiment, we employed the same experimental setup as in the Dual
Attention Encoder ablation study. We analyzed the impact of com-
ponent choreography order in hierarchical-attention on the model,

Table 6. Ablation study of the Hierarchical-Attentional Perception
structure. Dcal: dynamic calibration. The best result is bolded.

Index Description Dcal Synapse ACDC

B.1 Spatial + Channel × 81.52 90.43
B.2 Spatial + Channel mc 82.22 90.79
B.3 Channel + Spatial × 82.10 90.83
B.4 Channel + Spatial � 82.97 91.02

Table 7. Ablation study of the Joint Preservation on the Synapse dataset.
Add: Element-wise addition. Res: Residual.

Index Fusion GFLOPs Avg DICE

C.1 Concat+Res 27.88 83.58
C.2 Add 25.16 82.97
C.3 EH + Add 26.53 84.56
C.4 ES + Add 26.52 84.25
C.5 Joint Preservation 26.55 85.47

since the different functions of each module mean order may affect
overall performance. Table 6 summarizes the experimental results of
different attention order and dynamic calibration. From the results,
channel-first order performs slightly better than spatial-first order.
Meanwhile, we found that when dynamic calibration is included in
hierarchical attention, it can better refine features, thus improving
segmentation accuracy. This indicates the advantages of hierarchical
attention in the order design of channel and spatial attention as well
as dynamic calibration.

Effectiveness of Joint Preservation. Table 7 clearly demonstrates
the effects of different fusion mechanisms. All the experiments were
conducted under the same backbone and settings. By comparing C.5
with C.1 and C.2, we can see that Joint Preservation outperforms the
two current mainstream fusion mechanisms (element-wise addition
and concatenation). Despite a slight increase in complexity over C.2,
the average DICE on the Synapse dataset improved by 2.5%. We be-
lieve the extra computation is worthwhile. Furthermore, comparing
C.2 with C.3 and C.4, we can assert that Joint Preservation effectively
enhances the fusion of dual attentional streams, both in lightweight
processing of self-attentional and hierarchical-attentional perception.

5 Conclusions

In this work, we introduce DANIE, a simple yet powerful network
for medical image segmentation. The key insight is to harness the
synergy of various dependencies for effectively modeling semantic
information. DANIE benefits from our proposed dual attention en-
coder that progressively and selectively learns interesting parts of
the objects. Further, a joint preservation design is used to boost seg-
mentation performance and correspondingly enable the encoder to
capture complementary features. Extensive experiments demonstrate
that our DANIE outperforms previous state-of-the-art methods on
five popular medical datasets considerably, achieving an optimal bal-
ance between computational complexity and segmentation accuracy.
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