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Abstract. Large-scale pre-trained vision-language models (VLMs),
like CLIP, have presented striking generalizability for adapting to
image classification in a few shot setting. Most existing methods ex-
plore a set of learnable tokens, such as prompt learning, on data-
efficient utilization for task adaptation. However, they focus on either
the coupled-modality property by prompt projection or decoupled-
modality characteristic by prompt consistency, which ignores effec-
tive interaction between prompts. To model the deep yet sufficient
cross-modal interaction and enhance the generalization between both
seen and unseen tasks, in this paper, we propose a novel coupled
and decoupled prompt learning framework, dubbed PromptCD, for
vision-language models. Specifically, we introduce a bi-directional
coupled-modality mechanism to intensify the interaction between
both vision and language branches. Additionally, we propose mix-
ture consistency to further improve the generalization and discrimi-
nation of the models on unseen tasks. The integration of such a mech-
anism and consistency facilitates the proposed framework adaptation
for various downstream tasks. We conduct extensive experiments on
11 image classification datasets under a range of evaluation proto-
cols, including base-to-novel and domain generalization, and cross-
dataset recognition. Experimental results demonstrate that our pro-
posed PromptCD overall outperforms state-of-the-art methods.

1 Introduction

With remarkable advances in the community of artificial intelli-
gence (AI), large-scale pre-trained vision-language foundation mod-
els, such as ALIGN [15] and CLIP [34], have owned powerful gen-
eralization to capture open-vocabulary visual concepts for domain-
specific image classification. A pioneering work by CLIP leverages
a contrastive loss [37] to train a two-tower architecture consisting of
image and text encoders, which aligns features of the paired image-
text in a common latent space. Unlike conventional fine-tuning meth-
ods, a more efficient alternative, like prompt learning, usually intro-
duces a few learnable tokens to optimize the CLIP model with most
of pre-trained parameters frozen. Such paradigm better adapts the
pre-trained models to various downstream tasks.

In the literature, according to the type of modality signals per-
ceived by prompts, mainstream CLIP-based prompt learning ap-
proaches can be roughly categorized into the following three types:
vision branch, language branch, and both. The first two approaches
[11, 16, 54, 55] target to learn uni-modal prompts, which neglects the
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Figure 1. Architecture comparison between PromptCD and existing
CLIP-based prompt learning approaches (likewise MapLe[18] and

PromptSRC [19]). (a) CLIP with conditional prompt paradigm performs the
interaction between branches via uni-direction prompt projection. (b) CLIP

with consistency constraint eliminates the discrepancy between seen and
unseen tasks by prompt regularization. (c) PromptCD integrates the

bi-directional interaction of learnable prompts and mixture consistency for
both coupled- and decoupled-modality characteristics.

distributions of new classes embedding. The latter one approaches
[18, 19, 23, 27, 36, 40, 44, 47] are to simultaneously treat a contin-
uous set of learnable prompts in both modality branches. Typically,
due to the inherent heterogeneity between modalities, dual-branch
prompt learning approaches stimulate the models to learn discrimi-
native representations for vision-language tasks.

However, there are two critical challenges in dual-branch prompt
learning studies based on the CLIP model. Most of existing CLIP-
based dual-branch prompt learning approaches overfocus on either
the coupled-modality property or decoupled-modality characteristic
of CLIP. Typically, the former [18, 28] refers to pushing one modal-
ity to align with another through a coupling function, which aims
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to eliminate the discrepancy between modalities. However, it uti-
lizes prompts to describe task-specific objectives [55], which pre-
vents the models from learning task-agnostic knowledge. Moreover,
such methods solely consider uni-direction prompt projection, and
easily induce the issue of one-way path learning. This ignores the
interaction of learnable prompts that include global semantic infor-
mation. A comparison of the conditional prompt paradigm for CLIP
and our proposed PromptCD framework is presented in Figure 1.

Secondly, previous CLIP-based prompt learning works [19, 49, 52,
54, 56] propose to employ various anti-overfitting strategies for ex-
ploring decoupled-modality characteristic of the CLIP model, which
captures discriminative representations for both seen and unseen
tasks. Among them, prompt regularization has emerged as an effi-
cient way to reach this anticipation. Nevertheless, these works fail
to establish the deep interaction between modality branches. It is not
easy to sufficiently perform alignment between modality features,
especially in scenarios with a small number of training samples. An
architectural comparison of the consistency constraint for CLIP and
the proposed framework is illustrated in Figure 1.

To mitigate the aforementioned challenges, based on the CLIP
model, we propose a novel Coupled and Decoupled Prompt learning
framework for image classification, dubbed PromptCD, which aims
to model vision-language interaction and further boost the general-
ization on both seen and unseen tasks. More specifically, for the first
challenge, we enforce a bi-directional coupled-modality mechanism
on both vision and language branches to elegantly align embeddings,
as shown in Figure 1. Unlike prompt tuning by language-to-vision
projection, where one modality is dominant, our method focuses on
informative knowledge between modalities. Such mechanism effec-
tively enables the correlation between learnable prompts, and inte-
grates them during the process of cross-modal interaction. Further-
more, we enforce mixture consistency between both learnable and
pre-trained features on the perspectives of modality and task, which
effectively overcomes the overfitting problem when the models com-
bat a new class. We enforce consistency between both learnable and
pre-trained encoders on both vision and language branches. On the
other hand, we impose consistency between learnable and pre-trained
output logits on the combination of task-exclusive and task-agnostic
knowledge. By integrating these consistency constraints, as well as
a bi-directional coupled-modality mechanism, we can effectively en-
hance the generalization and discrimination of the models for both
seen and unseen tasks.

In summary, the main contributions of this work are three-fold as
follows:1

• We propose a novel coupled and decoupled prompt learning
framework (PromptCD) for pre-trained vision-language founda-
tion models, which effectively improves the performance of image
classification on both seen and unseen classes.

• We integrate the bi-directional coupled-modality mechanism and
mixture consistency into the CLIP-based prompt learning frame-
work. Concretely, the bi-directional coupled-modality mechanism
is to intensify the interaction between both vision and language
branches for modality alignment. The mixture consistency pro-
poses to optimize the compromise between dataset distributions.

• Quantitative and qualitative experiments are conducted on 11 im-
age classification datasets for a series of evaluation protocols,
including base-to-novel and domain generalization, and cross-
dataset recognition, which demonstrates the superiority of our pro-
posed framework over several state-of-the-art methods.

1 https://github.com/xiaofen623/PromptCD

2 Related Work

In this section, we review pre-trained vision-language foundation
models, parameter efficient fine-tuning, and prompt learning in
vision-language models, respectively.
Vision-Language Models. Recent years have witnessed the un-
precedented growth of VLMs in computer vision (CV) and natural
language processing (NLP). VLMs bridge the gap between vision
and language from image-text pairs, which shows the impressive
generalization on downstream tasks [6, 39, 43, 48]. Typically, ex-
isting VLMs involve two perspectives: model architecture and pre-
training objective. The former commonly includes fusion-encoder
[24, 51] and dual-encoder [26, 40]. Among them, dual-encoder ar-
chitecture, such as CLIP [34], employs uni-modal encoders to cap-
ture their respective semantic features for modality alignment. Such
streamlined architecture can mitigate the computation burden.

Moreover, pre-training objectives gradually converge to two types,
i.e., generative and discriminative modelling. More specifically, gen-
erative modelling includes masked/prefix language prediction [29]
and masked region/image prediction [21]. Discriminative modelling
contains image-text matching [50] and contrastive learning [1].
Among them, contrastive learning can better align different modality
representations in a common vector space. Thus, we focus on CLIP
that performs alignment through contrastive learning.
Parameter Efficient Fine-Tuning. Parameter efficient fine-tuning
(PEFT) has emerged as a low-cost and effective technique that adapts
VLMs to domain-specific downstream tasks [27, 36]. Such tech-
nique optimizes a small portion of model parameters, rather than
re-training VLMs from scratch. Thereby, it can maximize the com-
promise between computation burden and information capacity, and
achieve significant generalization for various downstream tasks. Ac-
cording to tuning types, existing PEFT approaches can be roughly
divided into three types, i.e., Low-Rank Adaption (LoRA) [14],
adapters [10] and prompt learning [25, 53]. The first two kinds
[17] devise additional modules with randomly initialized parameters,
which may perturb the knowledge from the raw models, resulting in
sub-optimal learning. The third kind [40] designs a few learnable
prompt tokens to adapt model’s features towards downstream tasks.
Thus, based on its simple design and scaling capacity, we focus on
prompt learning in the classic vision-language model, such as CLIP.
Prompt Learning in VLMs. Inspired by the successful applica-
tions of prompt learning in the realm of multimodal learning, a
series of relevant works [49, 56] explore the potential capacity of
prompt learning in VLMs, e.g., CLIP [34], for downstream tasks.
For example, CoOp [55] proposes to use learnable prompt vectors
for the text branch. VPT [16] proposes to introduce prompt tokens
for the image branch of the CLIP model. However, they face the
problem of the performance degradation on unseen tasks. To this
end, CoCoOp [54] designs a neural network to implement instance-
conditional prompts adaptation on CLIP. Unlike the above mentioned
approaches that learn prompts via a separate side, MaPLe [18] pro-
poses to align vision-language features by simultaneously optimizing
learnable prompts for each branch of CLIP. Beyond that, PromptSRC
[19] proposes to employ self-regulate prompts to absorb task-specific
and task-agnostic knowledge for CLIP adaptation.

Although these approaches achieve nontrivial improvements to the
task of image classification, they neglect the deep and sufficient in-
teraction between vision and language branches. Thus, in this work,
we propose a novel coupled and decoupled prompt learning method
to stimulate the CLIP model to sufficiently improve generalization
and discriminative capabilities between both seen and unseen tasks.
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Figure 2. The framework of coupled and decoupled prompt learning (PromptCD) for image classification. For the given image-text pair, PromptCD utilizes
image and text encoders to capture multiple embeddings, including learnable text and image embeddings, pre-trained text and image embeddings. In the stage

of training, learnable embeddings are integrated by a bi-directional coupled-modality mechanism. Pre-trained embeddings are fed into their respective
transformer layers. Then, different modality branches achieve multiple features, including learnable text and image features, pre-trained text and image
features. PromptCD pulls learnable features and pre-trained features close by using L1 loss as a constraint. PromptCD employs the Kullback-Leibler

divergence loss as a constraint for output logits. In the stage of inference, PromptCD just calculates an output logit between prompt text and image features.

3 Methodology

In this section, we present an overview of the proposed PromptCD
framework, as illustrated in Figure 2. First, we give the prelimi-
naries over the prevalent vision-language foundation model, such
as CLIP, followed by the details of our proposed PromptCD. No-
tably, PromptCD can be extended to mainstream pre-trained vision-
language foundation models.

3.1 Preliminaries

Since the widely-used pre-trained vision-language foundation model
such as CLIP [34] has already shown significant results in various
downstream tasks [30, 43], thus we employ such foundation model as
the backbone in this work. More specifically, CLIP proposes to align
the matched image and text within a common vector space, which
mainly consists of an image encoder θI and a text encoder θT . These
modality encoders are based on the transformer network [42]. To bet-
ter understand, suppose that we have an image classification dataset
D = {xI

i , yi}Mi=1, where xI
i and M refer to an image and the number

of samples, respectively. Additionally, each image is assigned with a
ground truth yi from a set of classes c = {cj}Cj=1, where C is the
number of classes. CLIP generates a range of text descriptions xT

j

by leveraging the hand-crafted template, i.e., “a photo of a {cj}”,
for each class. Thereby, for each input text description xT

j , the text
encoder θT encodes them as zTj = θT (x

T
j ). These text features are

combined as the complete text embedding zT = [zT1 , z
T
2 , ..., z

T
C ].

For an input image xI
i , the image encoder θI encodes it as the patch

embedding zI . Finally, CLIP calculates the highest similarity be-
tween all the text embeddings and image embedding, which can be
formulated as follows:

P (yi|xI
i ) =

exp(sim(zI , zTyi)/τ)∑C
j=1 exp(sim(zI , zTj )/τ)

, (1)

where, sim is the cosine similarity, and sim(zI , zTj ) = zI(zTj )
T de-

notes the output logit between text and image embeddings. τ refers
to a temperature hype-parameter, which is utilized to control the soft-
ness of distribution.

Considering the limitation of the hand-crafted template across
domains, the recent CLIP-based prompt learning work such as
CoOP [55] employs a continuous set of learnable vectors to extract
task-specific text embeddings. Typically, CoOp utilizes m learnable
prompt vectors {v1, v2, ..., vm} to replace the raw sentence "a photo
of a {cj}", thereby yielding wj = {v1, v2, ..., vm, cj}. On the vision
branch, an input image is mapped as d image patches {q1, q2, ..., qd}.
These patches are concatenated with learnable prompt vectors, gen-
erating u = {v1, v2, ..., vm, q1, q2, ..., qd}. Therefore, the optimized
objective of CLIP is defined as follows:

P (yi|xI
i ) =

exp(sim(θI(u), θT (wyi))/τ)∑C
j=1 exp(sim(θI(u), θT (wj))/τ)

, (2)

These aforementioned methods leverage a set of learnable prompt
vectors to learn informative knowledge for the task of image classifi-
cation. However, they have a major limitation that lacks the sufficient
interaction between modality prompts. This prevents the pre-trained
vision-language foundation models from performing the synergy be-
tween image and text features. In the following subsections, we de-
tail the proposed PromptCD, a novel framework that overcomes this
limitation and effectively improves the performance of the models on
both seen and unseen tasks.

3.2 Bi-directional Coupled-modality Mechanism

Bi-directional coupled-modality mechanism aims to establish the
deep and sufficient interaction between both vision and language
branches, which intensifies the coupled-modality property of CLIP
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to align the pairs of image and text for task-specific datasets distri-
bution. Based on the streamlined two-tower architecture, i.e., inde-
pendent modality branches of CLIP, we iteratively perform learn-
able prompt projection for task-specific perception without intro-
ducing excessive model parameters. More specifically, on the first
layer of the vision branch, the prompt vectors are initialized from
text prompts by a linear layer. Text prompts are randomly initial-
ized, which are concatenated into the fixed template. For subsequent
transformer layers, we explicitly condition prompts on the interaction
between both vision and language branches. That is, we leverage a
language-to-vision coupling function to transfer knowledge between
branches, followed by adding a vision-to-language coupling function
to perform the same target. Formally, the whole process can be ex-
pressed as follows:

f̂T
l = fT

l + ψI2T (f
I
l ), f̂

I
l = f I

l + ψT2I(f
T
l ), (3)

where, l denotes the l-th transformer layer of modality encoders. ψ
denotes the coupling operation, i.e., linear layers, maintaining the
same dimension of features as another branch. f̂ are the intergrated
embeddings with m learnable prompt vectors.

3.3 Mixture Consistency

Although prompt coupling enables the model to maximize infor-
mation communication between modalities, it may easily fit task-
specific datasets. To enhance representation learning of the model
regarding unseen tasks, we impose mixture consistency to improve
the generalization of the model for new classes. To distinguish the
discrepancy between modality features, we employ the L1 loss as
a consistency constraint between learnable and pre-trained features.
Notably, other variants, likewise MSE and cosine similarity, can also
be utilized to replace L1 loss as the consistency constraint. This con-
straint is implemented on both vision and language branches, which
can be calculated as follows:

LI
1 = |f I

p − f I |, LT
2 = |fT

p − fT |, (4)

where, fI
p and fT

p are the learnable features with their respective
prompts. f I and fT are the pre-trained features from the frozen en-
coders of the CLIP model.

On the other hand, the discrepancy between output logits can be
formulated as follows:

L3 = KL(P (fI
p , f

T
p ), P (fI , fT )), (5)

L4 = KL(P (fI
p , f

T ), P (fI , fT
p )), (6)

where, the symbol P is declared in preliminaries. KL denotes the
Kullback-Leibler (KL) divergence loss for calculating the proba-
bility distribution between predictions. Among these output logits,
P (f I

p , f
T
p ) is the prompt output logit, and P (f I , fT ) is the general

output logit. P (f I
p , f

T ) denotes the output logit between prompt im-
age features and general text features. P (f I , fT

p ) denotes the output
logit between general image features and prompt text features.

Overall, the proposed mixture consistency is imposed by combin-
ing all the constraints. Therefore, the final objective is expressed by:

L = Lce + LI
1 + LT

2 + αL3 + (1− α)L4, (7)

where, Lce denotes a supervised loss that represents the task of image
classification. The sign α denotes a balancing factor.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate PromptCD on 11 benchmark datasets, i.e.,
ImageNet [5], Caltech101 [8], OxfordPets [33], StanfordCars [22],
Flowers102 [32], Food101 [2], FGVCAircraft [31], SUN397 [46],
DTD [4], EuroSAT [12], and UCF101 [38]. For evaluating domain
generalization, we adopt four variants of ImageNet, i.e., ImgNet-V2
[35], ImgNet-Sketch [45], ImgNet-A [9], and ImgNet-R [13].
Baselines. We compare PromptCD with a broad spectrum of base-
lines, including CLIP [34], CoOP [55], CoCoOp [54], ProGrad [56],
KgCoOP[49], AAPL[20], MaPLe [18], and PromptSRC [19].
Implementation Details. We implement all the experiments based
on the CLIP model, which regards ViT-B/16 [7] as the backbone.
Following previous works [18, 55], we use a few-shot training strat-
egy in all experiments at 16 samples per class for all seen classes.
The length m and depth l of prompts are set as 4 and 9, respectively.
The value of α is set as 0.3. In the training stage, an SGD optimizer
is employed for updating learnable parameters with a learning rate
of 0.0025, as well as a batch size of 4. The maximal training epoch
is set to 25. The reported accuracy and harmonic mean (HM) are an
average over three random runs. All experiments are conducted by
using PyTorch on a single NVIDIA GeForce RTX 3090 GPU.

4.2 Base-to-novel Generalization

To verify the effectiveness of the proposed PromptCD in the base-
to-novel generalization task, where the model is trained on the seen
classes in a few-shot setting and evaluated on both seen (base) and
unseen (novel) classes in a zero-shot setting, we divide each dataset
into base and novel classes following [18, 19]. Table 1 summaries
a comparison of PromptCD with baseline methods in the base-to-
novel generalization task. From the average results over all classi-
fication datasets, we obverse that PromptCD achieves the best per-
formance than other methods. It demonstrates that PropmtCD has
strong generalization between seen and unseen tasks. Typically, in
the accuracy of base classes, PropmtCD achieves an improvement of
2.16% over MaPLe, and 0.18% over PromptSRC. In the accuracy of
novel classes, PropmtCD gains more than 1.27% and 0.31% over
MaPLe and PromptSRC, respectively. Meanwhile, we notice that
PromptCD obtains a nontrivial improvement regarding the satellite-
image dataset EuroSAT. We found the fact that EuroSAT contains
only 10 classes, and consists of 13,500 samples, resulting in overfit-
ting on seen classes and performance degradation on unseen classes.
PromptCD sufficiently integrates the characteristics of coupled- and
decoupled-modality to improve the generalization and discrimina-
tion, especially in datasets with fewer classes. Notably, CLIP out-
performs most existing methods on unseen tasks which is a chal-
lenge for them. Prompt learning makes these models fit seen classes,
but leads to an obvious performance degeneration on learning task-
agnostic knowledge in the setting of a few-shot samples. However,
the utilization of prompt projection or regularization can improve the
generalization on both seen and unseen tasks. In the harmonic mean,
PromptCD achieves more than 8.53%, 1.68%, and 0.26% improve-
ments over CLIP, MaPLe and PromptSRC, which demonstrates that
our proposed method possesses strong generalization and discrimi-
nation between seen and unseen tasks. Moreover, from the harmonic
mean of each dataset, we can obverse that PromptCD is superior to
existing baseline approaches on 6 out of 11 classification datasets.
The significant performance illustrates that PromptCD has robust
generalization ability between both seen and unseen tasks.
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Table 1. Comparison of PromptCD with existing methods in the base-to-new generalization task on 11 classification datasets. The best results are bolded.

Dataset Sets CLIP[34] CoOP[55] CoCoOp[54] ProGrad[56] KgCoOP[49] AAPL[20] MaPLe[18] PromptSRC[19] PromptCD

Average
Base 69.34 82.69 80.47 82.48 80.73 80.27 82.28 84.26 84.44

Novel 74.22 63.22 71.69 70.75 73.06 72.17 75.14 76.10 76.41

HM 71.70 71.66 75.83 76.16 77.00 76.01 78.55 79.97 80.23

ImageNet
Base 72.43 76.47 75.98 77.02 75.83 76.53 76.66 77.60 77.80

Novel 68.14 67.88 70.43 66.66 69.96 70.57 70.54 70.73 70.75

HM 70.22 71.92 73.10 71.46 72.78 73.43 73.47 74.01 74.11

Caltech101
Base 96.84 98.00 97.96 98.02 97.72 97.87 97.74 98.10 97.97
Novel 94.00 89.81 93.81 93.89 94.39 95.10 94.36 94.03 94.63
HM 95.40 93.73 95.84 95.91 96.03 96.46 96.02 96.02 96.27

OxfordPets
Base 91.17 93.67 95.20 95.07 94.65 95.63 95.43 95.33 95.43
Novel 97.26 95.29 97.69 97.63 97.76 97.40 97.76 97.30 97.80

HM 94.12 94.47 96.43 96.33 96.18 96.51 96.58 96.30 96.60

StanfordCars
Base 63.37 78.12 70.49 77.68 71.76 70.33 72.94 78.27 77.73
Novel 74.89 60.40 73.59 68.63 75.04 73.50 74.00 74.97 75.43

HM 68.65 68.13 72.01 72.88 73.36 71.88 73.47 76.58 76.56

Flowers102
Base 72.08 97.60 94.87 95.54 95.00 95.10 95.92 98.07 97.77
Novel 77.80 59.67 71.75 71.87 74.73 70.63 72.46 76.50 75.67
HM 74.83 74.06 81.71 82.03 83.65 81.06 82.56 85.95 85.31

Food101
Base 90.10 88.33 90.70 90.37 90.50 90.70 90.71 90.67 90.73

Novel 91.22 82.26 91.29 89.59 91.70 91.60 92.05 91.53 91.87
HM 90.66 85.19 90.99 89.98 91.09 91.15 91.38 91.10 91.30

FGVCAircraft
Base 27.19 40.44 33.41 40.54 36.21 34.07 37.44 42.73 42.53
Novel 36.29 22.30 23.71 27.57 33.55 24.17 35.61 37.87 36.33
HM 31.09 28.75 27.74 32.82 34.83 28.28 36.50 40.15 39.19

SUN397
Base 69.36 80.60 79.74 81.26 80.29 79.65 80.82 82.67 82.80

Novel 75.35 65.89 76.86 74.17 76.53 76.90 78.70 78.47 78.37
HM 72.23 72.51 78.27 77.55 78.36 78.25 79.75 80.52 80.52

DTD
Base 53.24 79.44 77.01 77.35 77.55 73.90 80.36 83.37 83.60

Novel 59.90 41.18 56.00 52.35 54.99 53.43 59.18 62.97 63.00

HM 56.37 54.24 64.85 62.45 64.35 62.02 68.16 71.75 71.85

EuroSAT
Base 56.48 92.19 87.49 90.11 85.64 87.00 94.07 92.90 96.10

Novel 64.05 54.74 60.04 60.89 64.34 66.30 73.23 73.90 76.27

HM 60.03 68.69 71.21 72.67 73.48 75.25 82.35 82.32 85.04

UCF101
Base 70.53 84.69 82.33 84.33 82.89 82.20 83.00 87.10 86.40
Novel 77.50 56.05 73.45 74.94 76.67 74.27 78.66 78.80 80.40

HM 73.85 67.46 77.64 79.35 79.65 78.03 80.77 82.74 83.29

Table 2. Comparison with existing methods in the domain generalization
task on four variants of ImageNet (ImNet). The advanced results are bolded.

Method Source Target
ImNet Avg. -V2 -SK. -A -R

CLIP 66.73 57.18 60.83 46.15 47.77 73.96
CoCoOP 71.02 59.91 64.07 48.75 50.63 76.18
ProGrad 72.24 59.07 64.73 47.61 49.39 74.58
KgCoOp 71.20 60.11 64.10 48.97 50.69 76.70
MaPLe 70.72 60.27 64.07 49.15 50.90 76.98
PromptSRC 71.27 60.65 64.35 49.55 50.90 77.80
PromptCD 72.10 60.75 65.25 49.60 50.35 77.80

4.3 Domain Generalization

To illustrate the performance of PromptCD in the domain general-
ization task which evaluates performance on target domains while
training on the source domain, we treat ImageNet as the source do-
main, and regard other variants as target domains. Notably, source
and target domains contain the same classes, but there are differ-
ent distributions between them. Table 2 presents a comparison be-
tween PromptCD and existing methods in the domain generalization
task. From this table, PromptCD achieves comparable performance
with ProGras on the source domain, and performs 1.38% and 0.83%
higher than MaPLe and PromptSRC. For target domains, PromptCD
gets overall favourable performance, with an improvement of 1.68%
over ProGra. Additionally, PromptCD outperforms all baseline meth-
ods on 3 out of 4 target domains. The significant results show pow-
erful generalization of PromptCD for datasets with domain shifts.

4.4 Cross-dataset Recognition

In the above evaluation suites, the base-to-novel generalization task
has similar dataset distributions between seen and unseen classes,
and the domain generalization task has the same classes between the
source domain and target domains. In order to further demonstrate
the generalization and discrimination capabilities of PromptCD in
the cross-dataset recognition task, we train PromptCD on the Ima-
geNet dataset and evaluate the model on the irrelevant classification
datasets. Table 3 shows a comparison between PromptCD and ex-
isting CLIP-based methods. From Table 3, the proposed PromptCD
achieves the highest average result than all baseline methods, and
provides a 0.54% improvement over PromptSRC. Moreover, in com-
parison with CoCoOP, MaPLe, and PromptSRC, PromptCD presents
competitive results in most datatsets, and gets the best performance
in 4 out of 10 datasets. The favorable results demonstrate the effec-
tiveness of the proposed PtomptCD in capturing general knowledge.

5 In-depth Analysis

5.1 Ablation Study

In this section, we successively ablate different components of the
proposed PromptCD model, including the bi-directional coupled-
modality mechanism and mixture consistency, to comprehensively
demonstrate the effectiveness of these components. Following previ-
ous methods [18, 19], the ablation experiments are implemented in
the evaluation setting of base-to-novel generalization. Additionally,
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Table 3. Comparison in the cross-dataset recognition of PromptCD with existing approaches on the remaining 10 datasets. The best performances are bolded.

Source Target

ImageNet

Average

Caltech101

OxfordPets

StanfordCars

Flowers1
02

Food101

FGVCAircraft

SUN397
DTD

EuroSAT
UCF101

CoOP 71.51 63.88 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55
CoCoOP 71.02 65.74 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21
MaPLe 70.72 66.30 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69
PromptSRC 71.27 65.81 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75
PromptCD 72.10 66.35 93.45 90.15 65.66 70.20 86.25 25.30 67.12 46.80 49.10 69.50

Table 4. Ablation study for critical components in the base-to-novel
generalization task. Where “BCM” and “MC” denote the bi-directional
coupled-modality mechanism and mixture consistency in the proposed

PromptCD framework, repspectively.

BCM MC Base Novel HM
� � 84.44 76.41 80.23
� × 83.95 73.36 78.30
× � 83.21 74.85 78.81
× × 83.12 72.61 77.51

Table 5. Ablation study for PromptCD with different coupled-modality
strategies. Where “TP” and “VP” denote the prompt projection from

language to vision, and that from vision to language, respectively.

TP VP Base Novel HM
� � 84.44 76.41 80.23
� × 84.31 76.12 80.01
× � 84.12 75.68 79.68
× × 83.21 74.85 78.81

we explore the influence of the scale of the models on the generaliza-
tion capability. Experimental results are presented in Table 4, Table 5
and Table 6, we can obtain the following findings:

• To understand the impact of each component, we conduct rel-
evant experiments, as shown in Table 4. Typically, in the first
row of this table, PromptCD achieves the highest performance,
which provides a harmonic mean of 80.23%. Firstly, when
ablating mixture consistency from PormptCD, the novel ac-
curacy and harmonic mean are 3.05% and 1.93% drops, re-
spectively. The reason is that mixture consistency enforces the
model in learning the discrepancy between seen and unseen
tasks. Such results emphasize the importance of mixture consis-
tency in PromptCD. Subsequently, we remove the bi-directional
coupled-modality mechanism from PromptCD, resulting in a
1.23% drop in the base accuracy. It highlights that the bi-
directional coupled-modality mechanism can enhance the per-
formance of the model in task-specific datasets. Finally, to il-
lustrate the impact of the integrated components, we remove
both components in the final row of Table 4. There is a seri-
ous performance degradation in the base-to-novel generaliza-
tion task. This indicates that all the proposed components can
effectively improve the generalization and discrimination capa-
bilities of the model on seen and unseen tasks.

• To deeply demonstrate the effectiveness of the interaction be-
tween both vision and language branches, we perform a se-
ries of fine-grained ablation experiments on the bi-directional
coupled-modality mechanism, as illustrated in Table 5. Typi-
cally, compared to the results of the final row of this table,
any of the employed coupling functions can enhance the perfor-
mance of the model in accuracy. Moreover, we make a compari-
son between “TP” and “VP”. When removing “TP”, the perfor-

Table 6. Comparison of different prompt learning methods using various
image encoders. † indicates the results produced by our re-implementation.

Method Backbone Base Novel HM
MaPLe 82.28 75.14 78.55
PromptSRC ViT-B/16 84.26 76.10 79.97
PromptCD 84.44 76.41 80.23
MaPLe† 85.57 78.42 81.84(↑ 3.29)
PromptSRC† ViT-L/14 87.22 81.58 84.31(↑ 4.34)
PromptCD 87.82 81.98 84.80(↑ 4.57)

mance of this variant degrades more. The reason is that the lan-
guage branch of CLIP can provide informative knowledge for
VLMs on image classification. This is consistent with previous
CLIP-based prompt learning methods. Notably, when ablating
all coupling functions, the variant degrades as PromptCD with-
out BCM. This result is the lowest accuracy, which is a 0.87%
drop in the harmonic mean. Above all results clearly indicate
that the bi-directional coupled-modality mechanism is benefi-
cial for PromptCD on both seen and unseen tasks.

• In order to demonstrate the performance of PromptCD on
larger vision-language foundation models, we perform extended
experiments on existing baseline methods by employing the
ViT-L/14 backbone of CLIP [3], as shown in Table 6. From
this table, we can obverse the following findings: (1) Diverse
prompt learning methods achieve higher results by utilizing
larger vision-language foundation models. These performance
gains may be from the increasing numbers of backbone param-
eters, or tuning strategies. (2) PromptCD with the ViT-L/14 of
CLIP achieves more improvements than MaPLe and Prompt-
SRC with the same backbone. Such results further show that
the proposed method can effectively improve the performance
of larger vision-language models for downstream tasks.

5.2 Parameters Sensitivity

In this section, we give a sensitivity analysis of PromptCD about
its critical parameters on the base-to-novel generalization task. First,
we explore how the balancing factor α affects the performance of
PromptCD. As shown in Figure 3, we can observe that each accuracy
curve roughly presents a consistent tendency which first increases
and then decreases. Specifically, PromptCD achieves the highest re-
sults when the value of α is set to 0.3. As α > 0.3, the base accuracy
has a slight fluctuation, and there is a degradation over the novel ac-
curacy. The harmonic mean serves as a balance metric between both
base and novel accuracy, which has a performance drop. Such results
indicate that the balance factor α can influence the generalization of
PromptCD between both seen and unseen tasks.

Next, as shown in Table 7, we investigate how the performance
of PromptCD varies with different lengths and depths of prompts.
Table 7(a) presents the impact of different lengths of prompts for
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Table 7. Performance of PromptCD with different prompt settings.

(a) Length choices.

Length Base Novel HM

1 79.21 73.23 76.10
2 82.21 73.56 77.64
3 83.56 75.41 79.28
4 84.44 76.41 80.23
5 83.17 75.32 79.05

(b) Depth choices.

Depth Base Novel HM

1 81.81 74.52 78.00
3 81.91 74.62 78.10
6 82.35 76.19 79.15
9 84.44 76.41 80.23
12 84.21 76.01 79.90

Table 8. Comparison of learnable parameters for different approaches.

Method Learnable parameters Base Novel HM
CLIP - 69.34 74.22 71.70
CoCoOp 35360 80.47 71.69 75.83
MaPLe 3.55M 82.28 75.14 78.55
PromptSRC 46080 84.26 76.10 79.97
PromptCD 412416 84.44 76.41 80.23

PromptCD, we can observe that as the length of prompts increases,
the overall average performance increases. Typically, we get the
highest performance when the length of prompts is set as 4. The har-
monic mean does not increase for the prompt length greater than 4.
Table 7(b) shows the influence of different depths of prompts for
PromptCD. From this table, we find that PromptCD with 9 prompt
layers achieves the best performance. Notably, differing from previ-
ous works, PromptCD improves the base accuracy while maintain-
ing the novel accuracy, which benefits from cross-modal interactions
and consistency constraints. This indicates that PromptCD has robust
generalization capability to unseen classes.

Additionally, we present an analysis of the computational com-
plexity of PromptCD compared with other methods, as depicted in
Table 8. Typically, MaPLe with more learnable parameters does not
achieve significant improvements compared with the novel accuracy
of zero-shot CLIP. The reason may be that MaPLe utilizes prompt
projection to enable the model to sufficiently learn task-specific fea-
tures, and lacks the generalization to unseen tasks. This illustrates
that anti-overfitting strategies should be explored to enhance the per-
formance of the models on unseen tasks. Although PromptSRC has
a few learnable parameters apart from zero-shot CLIP, its perfor-
mance improvements are more than MaPLe. We think the reason why
PromptSRC outperforms MaPLe is that consistency constraints can
effectively learn complementary knowledge between task-specific
and task-agnostic features. However, PromptSRC ignores the prompt
interaction between branches, which is limited by the semantic con-
sistency across modalities. Our proposed PromptCD integrates the
bi-directional coupled-modality mechanism and mixture consistency
to intensify cross-modality interaction and enhance the generaliza-
tion and discrimination for adapting VLMs to image classification.

5.3 Representation Visualization

To further demonstrate the generalization and discriminative abili-
ties of PromptCD between seen and unseen classes, we enforce t-
SNE [41] to visualize the image representations of PromptCD and
other traditional approaches, like MaPLe and PromptSRC, on the
EuroSAT dataset. In Figure 4, in regard to seen classes, PromptCD
presents a powerful discrimination between classes, which can pull
consistency representations close and push those inconsistency rep-
resentations apart. Such results benefit from sufficient interactions
between modalities. On the other hand, unseen classes are challeng-
ing for almost all approaches. However, PromptCD still maintains a
good performance compared to other baseline approaches. For ex-

Figure 3. Performance of PromptCD for different values of the balancing
factor α. Symbol � represents the best results.

Figure 4. Visualization of the image representations obtained by MaPLe,
PromptSRC, and PromptCD on the EuroSAT. The first and second rows

represent the results of all methods on seen and unseen tasks, respectively.

ample, the marked red circle in Figure 4 indicates that PromptCD
can separate the subtle discrepancy between new classes. The rea-
son is that mixture consistency can enhance the generalization of the
model between seen and unseen classes. These plots clearly present
that PromptCD has strong generalization and discrimination.

6 Conclusion

In this work, we propose a novel coupled and decoupled prompt
learning framework for vision-language foundation models, which
aims to improve the performance of the models for both seen and un-
seen tasks. PromptCD is a well-designed approach with two critical
components that establish vision-language interaction and enhance
generalization for various downstream tasks. Extensive experiments
are conducted across three evaluation settings, such as base-to-novel
and domain generalization, and cross-dataset recognition, demon-
strate the effectiveness of our proposed approach. Moreover, ablation
analysis comprehensively confirms the impact of each component for
adapting vision-language models to image classification.

In the future, we would like to extend our proposed prompt learn-
ing method to fine-tune other vision-language models for a range of
multimodal applications. The reason is that the alignment between
modalities or features is a common challenge in these applications.
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