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Abstract. Combining images from multi-modalities is beneficial
for exploring various information in computer vision, especially
in the medical domain. As an essential part of clinical diagnosis,
multi-modal brain tumor segmentation presents a set of distinct chal-
lenges for accurately delineating both the normal anatomy and the
pathologic deviations caused by the tumor. In this paper, we aim
to fuse information on different imaging modalities with the med-
ical domain knowledge to segment tumors. We present MASM, a
novel Modality Aware and Shift Mixer that integrates intra-modality
and inter-modality dependencies of multi-modal images for effec-
tive and robust brain tumor segmentation. Specifically, we introduce
a Modality-Aware (MA) module according to neuroimaging stud-
ies for modeling the specific modality pair relationships at low lev-
els, and a Modality-Shift (MS) module with specific mosaic pat-
terns is developed to explore the complex relationships that are not
addressed by the MA module across modalities efficiently. Experi-
mentally, we outperform previous state-of-the-art approaches on the
public Brain Tumor Segmentation dataset. Further qualitative exper-
iments demonstrate the effectiveness and robustness of MASM.

1 Introduction

Leveraging images from multi-modalities has shown promising po-
tential in real-world scenarios due to the contribution of various
information, especially in the medical domain, where multi-modal
medical images are utilized to delineate anatomical structures and
other abnormal entities. For instance, the Computed Tomography
(CT) plain scan can be used to evaluate morphology and detect ab-
normalities, and the contrast-enhanced CT scan assesses the blood
supply to potential tumors, aiding in distinguishing between benign
and malignant lesions. Moreover, there are several Magnetic Res-
onance Imaging (MRI) sequences, such as T1-weighted (T1), T1-
weighted with contrast-enhanced (T1-CE), T2-weighted (T2), and
T2 Fluid Attenuation Inversion Recovery (T2-FLAIR) are combined
to emphasize and distinguish different tissue properties and areas of
tumors, as shown in Figure 1(a). As the most common cancer world-
wide, elaborating on the characterization of brain tumors is vital
for studying tumor progression and pre-surgical planning. However,
different from other scenarios of multi-modal segmentation, multi-
modal brain tumor segmentation presents a set of distinct challenges,
which can be attributed to the complex nature of brain anatomy, the
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Figure 1. (a) Multi-modal brain tumor segmentation; (b) Early-Fusion
strategy; (c) Later-Fusion strategy; (d) Our strategy

variability of tumor appearance, and the intricacies involved in inte-
grating multi-modal imaging data.

In recent years, promising advances in brain tumor segmenta-
tion have been primarily driven by the powerful capabilities of deep
learning-based techniques. Convolution Neural Networks (CNNs)
with the encoder-decoder architecture [15, 6, 12, 22, 14], which
demonstrates state-of-the-art performances on various benchmarks,
is an effective and reproducible solution for brain tumor delineation.
Due to the capability of learning long-range dependencies, some
transformer-based models [4, 10, 9] have been exploited for mod-
eling the relation of model patches. Nevertheless, these paradigms
overlook complementary information provided by different imaging
modalities, which involve tumor morphology, metabolism, and blood
flow. The use of multi-modal imaging data is crucial for further pro-
moting the accuracy of delineating brain tumors.

To this end, previous methods adopted an early-fusion strategy
where multi-modal images are merely concatenated at the input and
processed jointly as a single stream of the network, as shown in Fig-
ure 1(b). Since brain tumors are highly heterogeneous, both in terms
of their radiographic appearances, such early-fusion methods strug-
gle to distinguish between the wide range of tumor tissue and normal
variations in brain anatomy. Instead of concatenating all the modal-
ities in the early stage, another volume of studies [17, 33, 11, 31]
attempts to explore fusing features from multiple modalities in the
later stage, as shown in Figure 1(c). They began to design specific
fusion modules for multi-model information exchange and feature
fusions. However, the exchange of information among modalities
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is conducted via conventional fusion techniques. The utilization of
medical domain knowledge for integrating multi-modal imaging data
is neglected, especially when the original T1, T2, T1-CE, and FLAIR
images have different statistical properties due to significantly differ-
ent image acquisition processes. Moreover, multi-scale representa-
tion interactions, which are vital for accurately delineating both brain
anatomy and tumor regions, have also been disregarded. In this pa-
per, we strive to utilize information on different imaging modalities
with medical domain knowledge, as shown Figure 1(d).

Following these premises, we leverage the power of transformers
and introduce a novel method dubbed as Modality Aware and Shift
Mixer (MASM) as shown in Figure 2, which incorporates multi-
scale feature modeling and multi-modal relationships mining for ac-
curate segmentation. To model multi-modal features at low levels, we
first propose a Modality-Aware module for more effective and rea-
sonable information exchange across different modalities. Since dif-
ferent MRI sequences are often combined for diagnosis (e.g., T2 and
FLAIR are together to observe water signals), the Modality-Aware
module is carefully designed according to neuroimaging studies and
attempts to establish the inter-modality dependencies between the
specific pair of modalities, conforming to radiologists’ process of
analyzing combinations of two MRI sequences. For multi-modal fea-
tures at high levels, a transformer-based Modality Shift module with
specific mosaic patterns is introduced to explore and learn the rela-
tionship among modalities that are not addressed by the MA module
(e.g., T1, T1-CE, and FLAIR). We endow transformers with the ca-
pability of modalities modeling without additional parameters and
computational costs by shifting patches along the modality dimen-
sion for later self-attention. Each modality’s patches are replaced
with patches from other modalities according to the patterns. In our
experiments, we measure the segmentation performance on the pub-
lic Brain Tumor Segmentation Challenge (BraTS). MAMS shows
robust segmentation performance across three tumor subcategories,
outperforming the previous leading methods (generic and special-
ized). Our contributions can be summarized as follows:
• We propose a novel model that exploits the relationship and in-

teraction among multi-modal imaging data with medical domain
knowledge for accurately delineating brain tumors.

• The introduced Modality-Aware module enables reasonable in-
formation exchange on the multi-scale features according to neu-
roimaging studies, which are crucial for tumor segmentation. With
the specific design, our introduced Modality-Shift explores the
feature from multi-modalities without additional parameters or
computational overhead.

• We validate the effectiveness of our method in the BraTS Chal-
lenge. MASM achieves state-of-the-art performance on the bench-
mark compared to the universal and specifically designed multi-
modal methodologies.

2 Related Work

2.1 Medical Image Segmentation

Convolutional Neural Networks (CNNs) have demonstrated signif-
icant effectiveness in medical image segmentation tasks [27]. How-
ever, due to the local property of the convolutional kernels, the CNN-
based segmentation models cannot learn long-range dependencies,
which can severely impact the accurate segmentation of tumors that
appear in various shapes and sizes. To cope with such an issue, an-
other volume of transformer-based models has been exploited for
powerful relation modeling. Chen et al. [4] proposed TransUNet,

which introduced the self-attention mechanism to model the global
context for high-level features. After Vision Transformer (ViT) [7]
was shown to be a good visual feature extractor, there was a volume
of new segmentation frameworks based on ViT. As a roadmap of uti-
lizing a ViT as its encoder without relying on a CNN-based feature
extractor, UNETR [10] has shown good performance in segmenta-
tion. Since multi-scale features play a pivotal role in medical image
segmentation tasks such as tumor segmentation, a model is required
to handle features across multiple scales effectively. To leverage the
multi-scale features, SwinUNERT [9] was proposed to compute self-
attention in an efficient schema. In medical fields, it is often neces-
sary to use MRI scans to identify and locate brain tumors. However,
a single MRI sequence, such as T1-weighted or T2-weighted im-
ages, may not provide sufficient information for accurate and robust
segmentation results. Therefore, multi-modal segmentation methods
should be employed, where those sequences offer complementary
information about the tumor’s location, size, and other characteris-
tics, thereby enhancing the accuracy of the segmentation. However,
the aforementioned methods fall short of effectively merging diverse
imaging modalities. In this paper, we try reasonable and efficient
modules to boost the performance in the multi-modal brain tumor
segmentation task.

2.2 Multi-modal Segmentation

Recently, many methods [18, 18, 28] have been developed to tackle
multi-modal image fusion in the natural image field. A common
pipeline utilizes CNN-based feature extraction. The workflow in-
volves extracting basic modality features via shared encoders and
distinguishing modality-specific features via private encoders. How-
ever, these methods can hardly extract global information since CNN
only extracts local information in a relatively small receptive field.
Such limitations would be magnified when applied in the medi-
cal field, where 3D volume contains more contextual patches. One
pointer work realized modality-specific and modality-shared feature
extractions by a dual-branch Transformer-CNN feature extractor. De-
spite the remarkable performance, its dual-branch encoder can not be
applied in brain tumor segmentation, where more modalities (the T1,
T2, FLAIR, and T1-CE sequences) are utilized concurrently accord-
ing to the real clinical scenario. Recently, our community has wit-
nessed a wide adoption of deep-learning techniques to model the re-
lationships among multi-modal images for medical image segmenta-
tion tasks. Lin et al. [17] proposed a clinical knowledge-driven model
with a dual-branch hybrid encoder that splits the modalities into two
groups based on the imaging principle as input. Xing et al. [31] per-
formed nested multi-modal fusion for different modalities by estab-
lishing intra- and inter-modality coherence to build the long-range
spatial dependencies across modalities. DBTrans [32] improves the
segmentation process with dual-branch architectures for both the en-
coder and decoder, including a local branch and a global branch to
capture both local and global information with linear computational
complexity. Instead of applying one modality-fusion module for
multi-scale features, we propose two novel modules (i.e., Modality-
Aware and Modality-Shift) to exploit the relationships among multi-
ple modalities across different scales.

3 Method

As illustrated in Figure 2, our MASM consists of a backbone based
on U-Net, the Modality-Aware module, and the Modality-Shift mod-
ule. We apply the Modality-Aware module and the Modality-Shift
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Figure 2. The overall architecture of MASM based on U-Net: 1) Modality-Aware module that handles the interaction between specific modalities, 2)
Modality-Shift module that exploits high-level relationships among modalities.

module in the original skip connection for modeling the multi-modal
relationships. Features from the first five layers are regarded as
low-level features where the Modality-Aware is adopted, while the
Modality-Shift module is only utilized in the last layer for modeling
high-level features. Our experiments reveal the effectiveness of such
a design. Given multi-modal images M i ∈ R

D×H×W , i ∈ [1, 4],
our model aims to output the segmentation results S ∈ R

D×H×W×3,
where M i represents modal T2, T1, T1-CE, and FLAIR respectively.

3.1 Backbone

Since U-Net [27] has been proven powerful in medical image seg-
mentation, we adopt it as the backbone to extract multi-scale features
from multi-modal magnetic resonance images. Instead of employing
the modality-specific encoder to extract features for each modality,
we leverage a single shared encoder to represent the image features.
The input of each modal image individually goes through the shared
module, and this design can effectively reduce the number of model
parameters. It is worth noting that the parameter sharing in the en-
coder does not degrade the performance. In a similar way, we can
formulate the extracted feature maps as:

F i
j ∈ R

dj×hj×wj×
Cj
4

where dj , hj , wj = D
2j
, H
2j
, W
2j
, j ∈ [1, 5]. And the high-level em-

beddings from the last layer are obtained as F i
6 ∈ R

D
25

× H
25

×W
25

×C6
4 .

3.2 Modality Aware Module

In clinical diagnosis, T1 images are usually combined with T1-CE
images to get valuable information about the presence and nature
of various abnormalities, and T2 images are often combined with
FLAIR images for detecting different types of information about the
tissues. Given features F i

L in the layer L, we propose a Modality-
Aware module to aggregate the features in a reasonable way, which
models the relationships according to the neuroimaging studies to
make the segmentation process conformance to the real scenario.

Moreover, the presence of redundant patches in each modality fea-
ture is a common occurrence for volumetric medical images, espe-
cially for multi-modal segmentation, where normal patches repeat-
edly appear in multiple modalities of images. Redundant patches in
each modality feature may undermine the process of information ex-
change. Therefore, we selectively mask the uninformative tokens to

obtain more discriminative features and reduce the computational
scope. The Modality-Aware module produces a binary decision mask
for each scale feature to decide which patches are redundant and
can be pruned for each modality and substituted by alignment fea-
tures from other modalities after feature mixing. As shown in the
left part of Figure 3, we first flatten each feature F i

L into a sequence

F̂ i
L ∈ R

NL×CL
4 , and binary decision masks Di ∈ {0, 1}NL is

maintained to indicate whether to mask each token or not, where
NL = dL × hL × wL is the number of the sequence embeddings.
We input F̂ i

L to the mask prediction module and compute the deci-
sion mask D as follows:

ylocal
i = MLP(F̂ i

L) ∈ R
NL×C′

(1)

yglobal
i = Agg(MLP(F̂ i

L)) ∈ R
C′
, (2)

where C′ is half the dimension of F̂ i
L. ylocal

i and yglobal
i are the local

and global features computed by MLP [8]. Agg is for aggregating
the information from local features and can be implemented by an
average pooling.

Intuitively, the local feature represents the information of each
patch, and the global feature contains the context information. The
global features will be expanded to the same length as local features
and then concatenated with local features in the last dimension. Then,
the concatenated vector is used to decide whether to mask the token:

yik =
[
ylocal
ik ,yglobal

ik

]
, 1 ≤ k ≤ NL, (3)

πgumbel
i = Softmax((MLP(yi) +G)/τ) ∈ R

NL×2 (4)

πonehot
i = onehot (argmax (πgumbel)) , (5)

Here G ∈ R
NL×2 are i.i.d random samples drawn from the

Gumbel(0, 1) distribution and τ is a learnable coefficient. Since it is
non-differentiable to get a mask D sampling from π (i.e., one-hot),
following [26, 29], we adopt the straight through trick [13] to sample
from π :

Di =
(
πonehot

i

)�
+ πgumbel

i − sg
(
πgumbel

i

)
,∈ {0, 1}NL , (6)

where sg is the stop gradient operator and index 0 in D represents
masking the corresponding patch. After attaining the masks, F̂ i

L can
be pruned by the Hadamard product with Di:

F̃ i
L ← F̂ i

L �Di, (7)
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Figure 3. (a) The illustration of Modality-Aware; (b) The process of Modality-Shift. The Modality-Aware is performed on two modalities (i.e., T2 and
FLAIR), and The Modality-Shift is applied to three modalities (i.e., T1, T1-CE, and FLAIR).

As shown in Figure 3, Modality Self-Attention is utilized to com-
pute the correlation and interaction between the modalities F̃ i

L. We
use F̃ 1

L and F̃ 4
L (i.e., T2 and FLAIR) as an example to illustrate the

Modality Self-Attention. In this module, each image patch of F̃ i
L

(e.g. F̃ i
L1) is considered as one token, and tokens at the same lo-

cation in different modalities form a paired modality sequence like
z̃1 = {F̃ 1

L1, F̃
4
L1}. Then the Modality Self-Attention is employed

to the formed patches sequence z̃ = [F̃ 1
L, F̃

4
L]. This operation can

be performed efficiently by reshaping the input z̃ with batch size

B from R
B×2×NL×CL

4 to R
B·NL×2×CL

4 and leveraging the self-
attention [30] scheme to compute the correlation for the above se-
quences:

Q = z̃ WQ,K = z̃ WK , V = z̃ WV (8)

Modality-SA (z̃) = Softmax

(
QKT

√
d

)
V (9)

HL = FFN(Modality-SA (z̃)) (10)

FFN(x) = max (0, x W0 + b0)W1 + b1 (11)

where WQ, WK , WV ∈ R
d×d, W0 ∈ R

d×4d and W1 ∈ R
4d×d

are learnable parameters and b0, b1 are the bias terms. In our imple-
mentation, d is equal to CL

4
.

After getting the output HL, we reshape it back to R
B·NL×2×CL

4

and attain [h1
L, h

4
L]. Then, these masked features in hi

L are substi-
tuted with the corresponding token in hj

L as shown in Figure 3 (a).
For example, F̃ 1

L3 is masked, we replace h1
L3 with h1

L4. The features
are concatenated together to generate F ′

L for the decoding stage.

3.3 Modality Shift Module

According to [23], later fusion of high-level features is better for the
complex relationships between different modalities. Inspired by the
notable performance of transformers in modeling relationships be-
tween different entities, we endow transformers with the capability
of modality modeling without additional parameters and computa-
tional costs. To explore complex relationships among modalities in

high-level, we introduce a Modality-Shift Module to fuse the highest
level features F i

6 as shown in the right part of Figure 3.
Specific mosaic patterns are designed for patch shifting along the

modality dimension. We can define a generic modality shift operation
in transformers as follows:

Z1 =
[
z10, z

1
1, . . . , z

1
N

]
(12)

Z2 =
[
z20, z

2
1, . . . , z

2
N

]
(13)

A = [a0,a1, . . . ,aN ] (14)

Z = IA=1 � Z1 + IA=2 � Z2 (15)

where Z1,Z2 represent the patch features for modality 1 and modal-
ity 2, respectively. N is the number of patches, and A represents the
matrix of shifting with ai ∈ {1, 2, 3, 4} indicating the source of the
shifting patch i. I is an indicator asserting the subscript condition. Z
is the output image patches after shift operation.

Using the proposed modality shift operation, we can achieve infor-
mation exchange among modalities at a high level. Since one specific
modality has interacted with the other in the Modality-Aware mod-
ule, we apply shift operation in the rest of the modality features in
our case. To reduce the mixing space, we adopt fixed shift patterns.
Namely, there is an invariant Ai for each Mi. For example, M1 is
interacted with M4, thus, M1 would be fused with M2 and M3 by
the shift operation as follows:

F̃ 1
6 = IA1=1 � F̂ 1

6 + IA1=2 � F̂ 2
6 + IA1=3 � F̂ 3

6 (16)

where F̂ i
6 ∈ R

N6×C6 is the flatten feature.
Then, we can exploit the complex relationships among modalities

via the attention mechanism. The spatial self-attention and modal-
ity self-attention are employed sequentially in this module. The spa-
tial self-attention can be performed by reshaping the input F̃ i

6 with

batch size B from R
B×4×N6×C6

4 to R
B·4×N6×C6

4 . Different from
the Modalitiy-Aware module, we adopt MultiHead Attention (MHA)
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and LayerNorm (LN). The process can be formulated as follows:

X̂ = MHA(LN(X)) +X (17)

MHA(x) = [Att1(x), . . . ,Attn(x)]W
O (18)

Atti(x) = Softmax

(
x WQ

i

(
x WK

i

)T
√
dn

)
x WV

i (19)

where X denotes the input features. WQ
i ,W

K
i ,W

V
i ∈ R

d×dn and
WO ∈ R

d×d are learnable parameters, dn = d/n, [·, ·] stands for
concatenation operation. After self-attention, patches from different
modalities are shifted back to their original locations as follows:

S̃1
6 = IA1=1 � S1

6 + IA2=1 � S2
6 + IA3=1 � S3

6 (20)

where Si
6 is the output of the spatial self-attention and S̃6 ∈

R
B×4×N6×C6

4 is the visual feature after shifting back. Then, the
modality self-attention is utilized to augment the feature fusion
among modalities further. Similar to the operation in the Modality-

Aware module, S̃6 is reshaped to R
B·N6×4×C6

4 and Eq 17 are ap-
plied. The output features are concatenated together along channels
to generate F ′

6.

3.4 Decoder

In the decoding stage, we first fold F ′
j back to a 4D feature map

R
dj×wj×hj×Cj . Subsequently, with a 3D convolution and 2× up-

sampling operation, the resolution of the feature maps is increased
by a factor of 2, and the outputs are concatenated with the outputs of
the previous stage, a full resolution feature map is obtained and then
converted to the final segmentation outputs by a sigmoid activation
function. The soft Dice loss function [21] is adopted as follows:

L(G,P ) = 1− 2

J

J∑
j=1

∑I
i=1 Gi,jPi,j∑I

i=1 G
2
i,j +

∑I
i=1 P

2
i,j

(21)

where I and J denote the number of voxels and classes, respectively.
For class j at voxel i, Pi,j denote the prediction of our model, and
Gi,j is the ground truth.

4 Experiments

In this section, we measure the performance of MASM on brain tu-
mor segmentation and compare it to existing models (4.3). We ablate
the proposed modules to show their importance (4.4). Finally, we vi-
sualize some cases to more intuitive demonstration.

4.1 Dataset

The BraTS dataset [20, 1, 2] is a public brain tumor segmentation
dataset, including 1251 and 219 cases in the training and valida-
tion set, respectively. Each case contains four MRI modalities: a)
T1-weighted, b) T1 contrasted-enhanced, c) T2-weighted, and d) T2
Fluid-attenuated Inversion Recovery (T2-FLAIR), which are rigidly
aligned and resampled to the same resolution. The data were col-
lected from multiple centers with different MRI scanners, and the
labels in the training set were annotated by experts [2, 3]. The task of
the dataset is to segment regions of brain tumors (i.e., whole tumor
(WT), tumor core (TC), and enhancing tumor (ET)). Since the seg-
mentation labels of the validation set are not publicly available, we
adopt the training set for all the experiments.

4.2 Implementation Details

Our framework is implemented using PyTorch on an NVIDIA
GTX 3090 GPU. We adopt U-Net with six layers as the back-
bone of our architecture. The channels Cj of each layer are
{96, 128, 192, 256, 384, 512}. We also employ sinusoidal positional
encodings [16] to represent the position information. AdamW [19]
is utilized as the optimizer in all our experiments. The initial learn-
ing rate is 1 × 10−4, and we decay it following the learning rate
scheduling strategy of [9]. To ensure consistency with the experi-
ment settings of previous work [31, 9, 33], each volume is cropped
into patches with a size of 128× 128× 128 and normalized to have
zero mean and unit standard deviation according to non-zero voxels.
Random mirroring, shift, and scale are applied for data augmenta-
tion. To gauge the performance, we employ the Dice score and 95%
Hausdorff Distance (HD95) as evaluation metrics.

4.3 Comparison with SOTAs

We conduct experiments on a widely used split [24] where the 1251
MRI scans are split into 834, 208, and 209 for training, valida-
tion, and testing, respectively. To demonstrate the effectiveness, we
first compare the performances of our model with a wide range
of state-the-art models on BraTS21, including universal models
(UNETR [10], SegTransVAE [25] and SwinUNETR [9]) and mod-
els designed for multi-modal imaging (MMEF-nnUNet [11], CKD-
TransBTS [17] and NestedFormer [31]).

For a fair comparison, we adopt the results from the original pa-
pers. As illustrated in Table 1, MASM, with moderate model size
and slight computation, can outperform all the state-of-the-art meth-
ods across all metrics and achieve the best segmentation perfor-
mance. It can be observed that models with specific designs for multi-
modal imaging attain a notable improvement compared to the uni-
versal models. The results indicate that exploring multi-modal fea-
tures and dependencies is conducive to the tumor segmentation of
MRI scans. Instead of considering single-modality spatial coherence
and cross-modality coherence at high levels (i.e., NestedFormer),
MASM introduces a more reasonable architecture for multi-scale
features that is conformable to the property of each modality. Al-
though with more parameters, it shows MASM not only improves
the Dice score and HD95 score but also lowers the computations sig-
nificantly with around 1/4 of the FLOPs. Such improvements demon-
strate that our model can effectively learn multi-modal features and
accurately identify the relationship between modalities. To further
evaluate our method, we compare our method in the cross-validation
split following [9] with several methods. The quantitative results are
presented in Table 2, where our model outperforms the previous
methods across all five folds. We conducted a significant test with
SwinUNETR, which showed remarkable results. The P-values for
ET, WT, and TC are 0.0001, 0.0005 and 0.02, respectively. The re-
sults demonstrate the effectiveness of our model even with only a
modest improvement in Dice scores.

To provide a comprehensive validation of the effectiveness, we
conduct experiments on BraTS23 and compare our method against
the most current methods in multi-modal fusion for image segmen-
tation in Table 3. MAMS outperforms the baselines by at least
absolute 1.5% in all subclass segmentation. Our comparison in-
cludes CDDFuse, a popular multi-modal fusion method. By apply-
ing CDDFuse to fuse pairs of modalities (T1 with T1CE, and T2
with FLAIR) in a manner analogous to our Modality-Aware mod-
ule, we highlight its limitations. The absence of cross-modality in-
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Table 1. Quantitative comparison on BraTS 2021 dataset with respect to Dice score and 95% Hausdorff Distance. ET, WT and TC denote Enhancing Tumor,
Whole Tumor and Tumor Core respectively.

Methods Param
(M)

FLOPs
(G)

Dice↑ HD95↓
ET WT TC Avg ET WT TC Avg

UNETR [10] 71.31 1159.0 0.852 0.922 0.866 0.880 12.26 7.78 7.73 9.26
SegTransVAE [25] 44.72 400.7 0.862 0.925 0.899 0.895 10.59 7.71 5.88 8.06
SwinUNETR [9] 62.19 774.8 0.871 0.925 0.899 0.897 11.06 7.62 6.86 8.51

MMEF-nnUNet [11] 76.85 208.1 0.872 0.928 0.900 0.900 9.68 8.29 5.10 8.29
CKD-TransBTS [17] - - 0.885 0.933 0.901 0.906 5.93 6.20 6.54 6.22
NestedFormer [31] 10.57 206.9 0.882 0.932 0.909 0.908 7.14 7.88 5.43 6.81

MASM (Ours) 24.89 160.1 0.888 0.934 0.912 0.912 5.72 5.94 5.40 5.65

Table 2. Mean Dice score for Enhancing Tumor, Whole Tumor, and Tumor Core in terms of five-fold cross-validation benchmarks. † denotes our
implementation and * means we cite results from the original paper

MASM NestedFormer† SwinUNETR∗ nnU-Net∗

Dice ET WT TC ET WT TC ET WT TC ET WT TC
Fold 0 0.891 0.933 0.915 0.867 0.927 0.904 0.876 0.929 0.914 0.866 0.921 0.902
Fold 1 0.901 0.936 0.919 0.899 0.934 0.915 0.908 0.938 0.919 0.899 0.933 0.919

Fold 2 0.891 0.933 0.918 0.890 0.931 0.915 0.891 0.931 0.919 0.886 0.929 0.914
Fold 3 0.890 0.933 0.918 0.889 0.930 0.916 0.890 0.937 0.920 0.886 0.927 0.914
Fold 4 0.891 0.935 0.919 0.885 0.933 0.917 0.891 0.934 0.917 0.880 0.929 0.917
Avg. 0.892 0.934 0.917 0.886 0.931 0.913 0.891 0.933 0.917 0.883 0.927 0.913

formation exchange between T1 and T2 modalities in CDDFuse re-
sulted in suboptimal performance, underscoring the critical impor-
tance of the Modality-Shift module within MAMS. As shown in the
last four rows, MAMS surpasses the previous latest methods and
demonstrates its superiority through rigorous statistical testing.

Table 3. Quantitative comparison on BraTS 2023 dataset with respect to
Dice score and statistical tests (P-value).

Models Dice↑ P-value
ET WT TC Avg.

nnU-Net 0.873 0.920 0.904 0.899 4.61e-3
UNETR 0.870 0.919 0.901 0.896 1.47e-3

SwinUNETR 0.871 0.921 0.902 0.898 6.30e-3
CDDFuse [34] 0.875 0.932 0.911 0.906 1.05e-2
DBTrans [32] 0.877 0.933 0.913 0.907 2.45e-2

Q-CSL [5] 0.873 0.929 0.910 0.904 8.80e-3
MASM (Ours) 0.886 0.936 0.918 0.913 -

4.4 Ablation Study

To fully analyze our proposed modules, we conduct ablation studies
on the five-fold cross-validation.

Table 4. Ablation study for proposed modules.

Module Dice↑ Complexity↓
Aware Shift ET WT TC Param(M) FLOPs(G)

0.868 0.922 0.903 16.18 148.75
� 0.879 0.929 0.911 24.36 160.12

� 0.876 0.927 0.908 16.72 149.14
� � 0.892 0.934 0.917 24.89 160.14

4.4.1 Effect of proposed modules

To evaluate the effectiveness of our method, we conduct ablation
studies for critical components (i.e., Modality-Aware and Modality-
Shift). Table 4 summarizes the average results on the five-fold

cross-validation benchmarks for the variants. We first remove the
Modality-Aware and Modality-Shift modules in our MASM as the
baseline in our experiments. Then, we apply Modality-Aware in all
layers and Modality-Shift in the last three layers, respectively. One
thing worth noticing is that the baseline differs from nnU-Net [12],
where the multi-modal images are separated and fed to one single
encoder sharing parameters. As can be seen, Modality-Shift boosts
performance with a margin (e.g., 0.868 → 0.876) in Dice score
for Enhanced tumor, and Modality-Aware brings a more consider-
able improvement (e.g., 0.868 → 0.879). The performance gain of
the Modality-Aware module and the Modality-Shift module demon-
strates that using our proposed modules helps construct the relation-
ship information and enhance the dependency information among
modalities. The reason why the combination of the Modality-Aware
and Modality-Shift modules leads to significant improvement is that
the design of Modality-Aware is aligned with the experience of ra-
diologists in routine diagnosis and the highly non-linear relation-
ships of the high-level features can be modeled by both spatial and
channel-wise attention in the Modality-Shift module. Moreover, it is
observed that the shift operation does not cause much increment of
model parameters and computation. To validate the effectiveness of
the two modules intuitively, we visualize results in Figure 5.

4.4.2 Effect of different backbones

In previous work, different backbones were typically applied to med-
ical image segmentation tasks, such as UNETR and SwinUNETR.
To further evaluate the impact of our proposed modules, we ap-
ply Modality-Aware and Modality-Shift on different backbones. We
compare variations of different backbones as shown in Table 5. The
modules are integrated into the specific layer of the framework where
skip-connection is employed. It can be seen that replacing backbones
does not boost performance. This could be partially attributed to the
complex relationship modeling capability of the transformer-based
backbone. It might degrade the interaction among multi-modal fea-
tures. Moreover, comparing with the first three rows, we confirm that
the proposed module is beneficial to medical multi-modal image seg-
mentation.
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Figure 4. The visual comparison results on BraTs 2021. Segmentation examples of the predicted labels (ET, WT, TC) are overlaid on T1, T1ce, T2, and
FLAIR MRI axial slices in each row. The right column is the Ground Truth.

w/o Aware w/o Shift MASM GroundTruthw/o MASM 

Figure 5. Visualizations of the results of designed modules.

Table 5. Ablation study for different backbones. The results are
implemented by ourselves.

Backbones Dice↑
ET WT TC Avg

UNETR 0.867 0.921 0.892 0.893
SwinUNETR 0.861 0.927 0.898 0.895

UNet 0.866 0.924 0.906 0.898
MASM-UNETR 0.881 0.926 0.905 0.904

MASM-SwinUNETR 0.883 0.929 0.908 0.906
MASM-UNet 0.892 0.934 0.917 0.914

4.4.3 Effect of different ratios of two modules

In the encoder part, the input image first passes through a series of
convolutional layers to capture fine-grained details and edge infor-
mation, which can be regarded as low-level features. As the layer
goes deeper, the receptive field becomes larger. These features rep-
resent higher-level abstractions. We design the Modality-Aware and
the Modality-Shift modules for low-level and high-level features, re-
spectively. To investigate the impact of the different ratios of two
modules, we apply the different ratios of two modules to 6 block
features, the results are shown in Table 6.

Table 6. Analysis for different ratios of two modules.

MA:MS Dice↑
ET WT TC Avg

3:3 0.870 0.929 0.905 0.901
4:2 0.889 0.932 0.911 0.910
5:1 0.892 0.934 0.917 0.914

6:0 0.888 0.930 0.911 0.910

4.5 Qualitative Analysis

To better understand the effectiveness of our model, we also visu-
alize several segmentation results in Figure 4. Intuitively, the re-
sults predicted by MASM are accurate and robust, which shows
better alignment with ground truth. As the figure shows, owing
to the employment of the proposed Modality-Shift and Modality-
Aware, our model is able to effectively fuse multi-modal MRIs and
accurately segment brain tumors and peritumoral edema, even for
small regions. Moreover, we include additional visual comparison
results with models in Table 2 in Figure 6 (i.e., NestedFormer, Swin-
UNETR and nnUNet). Most methods suffer from segmentation target
incompleteness-related failures and misclassification of background
regions as tumors (false positives). MASM produces sharper bound-
aries and generates results that are more consistent with the ground
truth in comparison with other models.

NestedFormer SwinUNETR Our GroundTruthnnUnet

Figure 6. Visualizations of comparisons with other methods.

5 Conclusion

In this work, we present a simple yet effective approach MASM for
segmenting multi-modal volumetric medical images. The key insight
is to construct and identify the relationship across modalities accu-
rately. Our proposed model uses a CNN-based U-shaped network
as the encoder and decoder. Furthermore, MASM incorporates the
Modality-Aware and Modality-Shift modules for learning intra- and
inter-modality dependencies and is able to capture representations
at multiple scales efficiently and effectively. Experimental results on
the BraTS 2021 dataset validate the effectiveness of our approach.
Ablation studies also prove the potential of the proposed parts. Over-
all, we hope this architecture can shed novel insights into learning
from multi-modal medical images. More applications of MASM in
medical image segmentation will be considered in future work.
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