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Figure 1: Attentive properties within the head. Inspired by DINO (https://github.com/facebookresearch/dino), the visualization approach reveals that each head
of our MIM-HD concentrates more on semantically discriminative regions compared to the TinyMIM, and effectively eliminates background noise, resulting in
a more powerful student.

Abstract. Self-supervised learning and knowledge distillation in-
tersect to achieve exceptional performance on downstream tasks
across diverse network capacities. This paper introduces MIM-HD,
which implements enhancements for masked image modeling (MIM)
distillation, in two key aspects. First, a vision transformer head-level
relation adaptive distillation approach is proposed, allowing the stu-
dent to dynamically draw multi-source knowledge from the teacher
based on its evolving state, compatible with scenarios where teacher-
student transformer block head count differs. Second, to address the
overemphasis on the encoder and neglect of the decoder role in main-
taining representation consistency in previous MIM distillations, a
dual-view decoding strategy for latent visual representations is in-
troduced, reusing the teacher’s decoder to alleviate MIM burdens on
smaller networks. MIM-HD effectiveness is demonstrated through
evaluations on ADE20K (mIoU) and ImageNet-1K (Acc), achieving
+1.4% and +0.5% improved performance, respectively, compared to
state-of-the-art methods, with substantial advantages on smaller pre-
training datasets. Moreover, MIM-HD achieves superior efficiency,
reducing pre-training epochs from 300 to 100.

∗ Corresponding Author: shibiaoxu@bupt.edu.cn

1 Introduction

Profound intrinsic representations can be learned in a self-supervised
manner from unlabeled visual datasets, allowing models to de-
velop general understanding without reliance on explicit task labels.
Masked image modeling (MIM), an established self-supervised pre-
training approach, has demonstrated its efficacy through outstand-
ing performance when fine-tuned on downstream tasks spanning im-
age classification [28, 31], semantic segmentation[33, 32, 29, 30, 22,
24], and multimodal understanding[34, 38]. Masked autoencoders
(MAE)[8] exemplify this family of techniques, utilizing an encoder-
decoder architecture to reconstruct corrupted regions of input im-
ages.

However, accessing these promising properties is not without cost.
Firstly, MIM does not alleviate the computational demands of pre-
training large vision transformer(ViT)[7] from scratch using exten-
sive datasets and complex optimization procedures. Secondly, larger
model capacities seem to derive disproportionately greater advan-
tage from MIM compared to smaller architectures, with MIM po-
tentially hindering performance in more compact models. This may
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stem from MIM serving as a challenging reconstruction task that
overtaxes smaller models’ abilities to establish meaningful semantic
associations between visible and masked regions, thereby impeding
coherent decoding and recovery of raw pixels.

The TinyMIM[18] study explores enabling smaller models to ben-
efit from MIM pre-training by systematically investigating various
distillation factors when using MIM-trained teachers, adopting token
relations as the distillation target. Specifically for self-attention de-
rived relations, a mismatch exists in the common multi-head setting,
for example, 12 heads in MAE-Base vs 16 heads in MAE-Large.
TinyMIM proposes replacing an adaptive block in the student en-
coder tail layer to align teacher-student head counts, then performing
head-to-head relation alignment as shown in Figure 2(c). However,
this approach still has the following three limitations:

1. Limited Knowledge Source. The student receives knowledge for
each head only from a single pre-determined teacher head, lacking
exposure to a teacher’s full representational breadth.

2. Neglect of Student Evolution. This approach neglects the stu-
dent’s developmental process by potentially overburdening lim-
ited early-stage imitation abilities.

3. Optimization Complexity. The introduction of the adaptive block
inconsistently alters optimization complexity between model
components, with potential negative effects, especially when ex-
tending it beyond the tail layer.

In summary, we argue that the efficient distillation process should al-
low students to dynamically acquire knowledge from teachers based
on its own developmental states, without disrupting model optimiza-
tion properties. Beyond TinyMIM, related MAE distillation work
(see Sec. 2) excessively focuses on the encoder while neglecting the
decoder’s role in maintaining representation consistency, decoupling
from the objectives of MIM pretraining.

In this paper, we introduce MIM-HD, a novel and more efficient
distillation framework that further facilitates the utilization of MIM
by smaller models. Our main contributions are as follows :

• Adaptability and Compatibility. we propose a transformer block
head-level adaptive distillation approach that enables the student
to obtain attentive representations from multi-head of the teacher
in an adaptive manner. Such a design not only makes the distilla-
tion process student-driven, but also resolves potential issues aris-
ing from mismatched ViT block head counts.

• Visual representation consistency. To alleviate the complexity of
the MIM pretext task for smaller models, we propose a dual-view
decoding strategy. This strategy performs the generation of com-
plementary regions on the output token feature of the student’s
encoder and reuses the pre-trained decoder of the larger MAE
for raw pixel reconstruction and maintaining visual representation
consistency.

• Significant improvement. our extensive experiments conducted
on ADE20K and ImageNet-1K datasets validate the effectiveness
of MIM-HD. For ViT-B, our approach improves the mIoU metric
by +2.6 and +0.4 compared to MAE and TinyMIM, respectively.
Furthermore, our approach exhibits potential benefits in the do-
main of vision transformer token pruning by providing more pre-
cise hints of important regions, as shown in Figure 1.

• Efficient training. Evaluation experiments demonstrate that
MIM-HD achieves more efficient knowledge transfer in resource-
constrained scenarios, requiring only 100 pre-training epochs.
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Figure 2: Common solutions to address head number mismatch: (a) perform
averaging operations on multi-head of teachers and students, respectively; (b)
select the head that exerts the most significant influence on the downstream
task for the teacher; (c) utilize the adaptive block introduced by TinyMIM to
align the head number; (d) we introduce MIM-HD, which effectively extracts
knowledge from the multi-head of the teacher by generating adaptive weights,
ensuring compatibility even in scenarios with mismatched head counts.

2 Related Work

Within the knowledge distillation paradigm[37], models with
stronger performance are considered teachers for training more com-
pact student networks, enabling the preservation of outstanding ca-
pabilities while streamlining architectural requirements.
MAE distillation. At the intersection realm of self-supervision and
knowledge distillation, there is an absence of task-specific knowl-
edge transfer, such as logit dark knowledge in classification tasks,
thus necessitating a greater emphasis on extracting more valuable in-
termediate visual representations from the encoder and subsequently
achieving efficient transfer. Masked Image Modeling (MIM) is a
powerful self-supervised pre-training method, and Masked Autoen-
coders (MAE)[8] are a representative visual solution within this do-
main. Approaches such as DMAE[1], G2SD[9], and TinyMIM[18]
implement direct knowledge transfer from the teacher encoder, incor-
porating techniques like token feature alignment and token relation
transfer. TinyMIM empirically examines the diverse factors affecting
distillation while decoupling the decoder from MAE. G2SD catego-
rizes knowledge into task-agnostic and task-specific, subsequently
performing two-stage distillation. In AMD[39] and MGD[36] stu-
dent networks, the decoder employs the output of the teacher’s en-
coder as the reconstruction target. Additionally, methods such as
SMKD[13], MixMAE[15], and SdAE[6] integrate the MIM with
mask-level Mixup online to construct a teacher, thereby mitigat-
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ing spatial redundancy while exploiting latent visual representations,
however, these methods are still applied to the image pixel space.
Unlike native MAE, SD-MAE[16] offers supplementary supervision
to the visible patches.
Inadequately explored. Despite the substantial advancements in
performance facilitated by these methods, several areas remain un-
derexplored: i) prior methods have underutilized or neglected trans-
ferring insights from the teacher’s decoder, despite its potential con-
tribution to the student’s ability to reconstruct inputs. ii) inadequate
exploration of distillation at the head-level for transformer blocks
composed of multi-head. In the SSTA[26] for ii), the head that
exerts the greatest influence on accuracy is explored as the pri-
mary source of knowledge. However, this approach is constrained
by the specific downstream task and, within the context of a self-
supervised paradigm, ignores the discriminative representations em-
bedded within the other heads. Our MIM-HD can benefit from more
than one head. Furthermore, we advocate for the reuse of the de-
coder of the teacher network to mitigate the dilemma encountered in
TinyMIM.

3 Method

3.1 Adaptive and Compatible Relation Distillation

Inspired by the research conducted on TinyMIM[18], which calcu-
lates token relations and acts as targets for distillation through the
pair form of V-V and Q-K derived from the transformer block, makes
it possible for smaller networks to reap the self-supervised benefits of
the pre-trained larger MIM networks. For the mth head of the trans-
former block at layer-i, the above token relation pairs can be written
as RV V

i,m ,RQK
i,m , which can be formulated as:

RV V
i,m = Softmax(

V m
i V m

i
�√

D/M
),

RQK
i,m = Softmax(

Qm
i Km

i
�√

D/M
),

(1)

where RV V
i,m , RQK

i,m ∈ R
N×N , D and M denote the dimension of the

latent space and the head number, respectively, and the [class] token
is ignored for simplicity.

It is crucial to acknowledge that these relation pairs are indepen-
dently calculated within the respective networks of teachers and stu-
dents, which necessitates addressing the challenge of the mismatch
in head number(M). In addition to the TinyMIM solution, we re-
port in Section 1 and Figure 2(c). In Figure 2, we summarize sev-
eral common solutions. Specifically, Figure 2(a) represents the av-
eraging strategy, which involves performing head-level distillation
by merging multi-head into a single head, and in AttnDistill[25] in-
volves transfer [class] token attention weights via the similar averag-
ing strategy, yet this coarse fusion ignores the diversity of head rep-
resentations. Figure 2(b) depicts the selection of the most significant
head in SSTA[26] by quantifying its impact on accuracy. However,
SSTA is intertwined with a specific downstream task.

To mitigate the aforementioned issue, we propose a student-driven
head-level adaptive distillation approach. Specifically, drawing inspi-
ration from self-attention, we generate adaptive weights by treating
the student’s multi-head and the teacher’s multi-head as independent
queries and keys, respectively, as illustrated in the upper part of Fig-
ure 2(d). Subsequently, these weights are utilized for the knowledge
transfer of token relations. This setup is not only compatible with the

scenario of mismatch in the head number between teachers and stu-
dents, but also allows students to dynamically draw knowledge from
multiple sources.

Figure 3 provides an overview of the proposed method. To for-
mulate our adaptive matching mechanism in head-level distillation,
we consider distilling the V-V relation pair from the ith transformer
block of teacher to the jth transformer block of student and, for
more general purposes, denote the head number within the block
as M1(teacher head number) and M2(student head number), respec-
tively, which means:

R
V V (T )
i → R

V V (S)
j , (2)

where R
V V (T )
i ∈ R

M1×N×N , R
V V (S)
j ∈ R

M2×N×N and M1 �=
M2, thus the candidate set of heads is generated:

C = {(m1,m2)|∀ m1 ∈ [1, · · · ,M1],m2 ∈ [1, · · · ,M2]}, (3)

for instance, RV V (T )
i,m1

denotes V-V relation pair from the m1-th head

of the ith transformer block of the teacher, while RV V (S)
j,m2

denotes the
m2-th head of the jth transformer block of the student. For the sake
of clarity in notation, K-K and Q-V relation pairs all follow simi-
lar conventions, let us uniformly denote the relation distillation as
R(T ) → R(S), after selecting the corresponding matching layer for
teachers and students. In scenarios involving teacher-student layer
mismatch, we adopt the initial setup from TinyMIM, where the tar-
get is designated as the 18th block of the teacher encoder.

Inspired by self-attention mechanism, our head-level adaptive dis-
tillation approach considers the multi-head of student as queries, dy-
namically assigning attention weights to the multi-head of teacher, as
shown in Figure 2(d). This enables the student to selectively acquire
specific knowledge based on its current state of evolution. Notably,
pairwise similarity matrices can be employed to quantify the seman-
tic similarity among the heads, as demonstrated in SemCKD[23]:

S(T ) = F (R(T )) · F (R(T ))�,

S(S) = F (R(S)) · F (R(S))
�
,

(4)

where F (·) : R
M×N×N �−→ R

M×1 represents the average oper-
ation, while S(T ) ∈ R

M1×M1 and S(S) ∈ R
M2×M2 denote the

similarity matrices of teacher and student, respectively.
For the student, m2-th head, the query vector of the subspace qSm2

is obtained by feeding the similarity matrix S(S) into the projection
module Proj:

q(S)
m2

= Proj(S(S)), (5)

where q
(S)
m2 ∈ R

1×C , C is the embedding dimension of the query
subspace, similar operations are applied to the other student heads to
obtain the final query vector q(S) ∈ R

M2×C . Following the same
process, we can obtain the key vector k(T ) ∈ R

M1×C from the
teacher similarity matrix S(T ). Finally, we can obtain the head-level
attention weight matrix between students and teachers:

W(m2,m1) =
eq

(S)
m2 ·k(T )

m1

�

∑
j e

q
(S)
m2 ·k(T )

j

� , (6)

where W ∈ R
M2×M1 , and the generated attention weights, and sat-

isfy condition
∑M1

m1=1 W(m2,m1) = 1, (m1,m2) ∈ C. Once pre-
pared, the objective function of the distillation relation pair LR is
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Figure 3: Overview of the proposed MIM-HD. The left half of the figure illustrates the proposed head-level adaptive distillation approach employed during the
transfer of token relation pair knowledge. This approach enables students to dynamically acquire multi-head knowledge and is compatible with scenarios involv-
ing a mismatch in the head number. The right half depicts our proposed dual-view decoding strategy, which enhances the consistency of visual representations
by reusing the pre-trained teacher decoder. This strategy allows smaller models to benefit from the advantages of MIM.

obtained:

LR =
∑

(m1,m2)∈C

Dist(R(S)
m2

, R(T )
m1

,W(m2,m1))

=

M1∑
m1=1

M2∑
m2=1

Dist(R(S)
m2

, R(T )
m1

,W(m2,m1))

=

M1∑
m1=1

M2∑
m2=1

KL(R(S)
m2

, R(T )
m1

,W(m2,m1)),

(7)

where KL is Kullback-Leibler divergence. Specifically, we denote
the relation pair objective functions for Q-K and V-V as LQK

R and
LV V

R , respectively.

3.2 Benefit from MIM

In previous research on MAE distillation, some approaches[1, 9, 18]
enable students to fully replicate the visual representations from a
single perspective, potentially over-emphasizing the encoder at the
expense of the decoder. Alternatively, directly applying the masked
autoencoding pre-training paradigm to smaller networks does not
consistently provide the expected gains in downstream task perfor-
mance and may even prove inferior to training from scratch.

Upon reviewing these confusions, we argue that precisely mim-
icking a teacher’s modeling capabilities requires students to emulate
both the teacher’s encoder and decoder. To achieve this, we design an
approach wherein the output of the students’ encoder is masked and
provided as input to the shared pre-trained teacher decoder, which
then performs reconstruction of the raw pixel data as it does dur-
ing the teacher’s own pre-training. Compared to the MAE training
paradigm, which generates discrete regions at the encoder input and
performs masking there, the visual representations generated by the
visible regions are independent of the masked ones, introducing in-
consistent mask symbols during fine-tuning. The weak correlations

between the two types of regions make the reconstruction of these
mask regions challenging for the smaller network. It is important to
note that in our approach, the entire image serves as input to the stu-
dent encoder, resulting in semantically strongly relevant visual rep-
resentations. Furthermore, the similarity of the tokens in the deeper
layers of the encoder is also highly remarkable[35, 21, 19], indicat-
ing that the visual representations captured within the tokens are no
longer independent of each other. Consequently, the visible tokens
possess the ability to generate raw pixels in the neighboring masked
region, and our configuration potentially alleviates the difficulty as-
sociated with executing the MIM task on smaller networks.

To further leverage the powerful recovery capability of the pre-
trained teacher decoder and enhance the consistency of visual repre-
sentations, we propose a simple yet effective complementary dual-
view recovery mechanism. Specifically, we randomly generate a
mask V1 with a drop rate of 50% as one of the views and desig-
nate the remaining region as mask V2, the other view. Subsequently,
applied to the student encoder output FN ∈ R

N×D , the [class] token
is omitted here: {

F 1
N = [FN � V1, Fm],

F 2
N = [FN � V2, Fm]

(8)

where symbol [ ] denotes the concatenation operation, F 1
N ∈ R

N×D

and F 2
N ∈ R

N×D represent the visual representations of the tokens
generated under the dual-view mask, respectively, and Fm are the
shared learnable mask tokens. To achieve raw pixel recovery, we take
both F 1

N and F 2
N to the shared pre-trained teacher decoder Dec,

respectively, following the design guidelines of the MAE, we also
only calculate the reconstruction loss in the mask region:

X̂ = R(Dec(F 2
N )� V1,Dec(F 1

N )� V2), (9)

LREC = ‖X − X̂‖22, (10)
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Figure 4: Visualization of ADE20K segmentation results. The left figure rep-
resents the ground truth, while the right figure represents the output of MIM-
HD.

where R(·) is unshuffle operation used to restore the positions of
the visible regions and masked regions, X̂ represents the recovered
raw pixels, and � denotes element-wise multiplication. Finally, the
reconstruction loss LREC is computed using the Mean Squared Er-
ror(MSE).

3.3 Optimization

To leverage the advantages of the MIM pre-training paradigm dur-
ing knowledge distillation for smaller networks, MIM-HD introduces
specific behaviors outlined in Eq. 7 and Eq. 10. These equations em-
body head-level token relation-based distillation in the encoder stage
and dual-view raw pixel reconstruction in the decoder stage, respec-
tively. The combination of these strategies leads to the final joint op-
timization training objective, denoted as L:

L = LQK
R + LV V

R + αLREC , (11)

where α is the regularization factor.

4 Experiments

4.1 Implementation Details

In the experimental section, we adopt an end-to-end strategy to opti-
mize the parameters of the student network, guided by the objective
function defined in Eq. 11. During the pre-training phase, we utilize
the AdamW optimizer with an initial learning rate of 1.5e−3 and
employ a cosine annealing strategy for the learning rate policy. The
image input size is set to 224× 224. For the fine-tuning downstream
task phase, our experiments are conducted on NVIDIA RTX 3090
GPUs and the OpenMMLab platform. Table 2 presents a summary
of the statistics for the downstream tasks that we employed for vali-
dation purposes.

4.2 Downstream Tasks

We evaluate the visual representations learned from MAE-ViT-L us-
ing the proposed MIM-HD on the two downstream tasks presented
in Table 2. For specific task heads used, we employ a linear layer for
classification and follow UperNet[27] for semantic segmentation, re-
spectively.

As can be observed from Table 1, our MIM-HD demonstrates su-
perior performance compared to TinyMIM across various capacities
of the student model, even with a pre-training phase of only 100
epochs. For instance, in the ImageNet classification(Top-1 Acc), uti-
lizing our approach for knowledge transfer on ViT-B outperforms
MAE, CAE, and TinyMIM by +1.2, +0.9, and +0.3, respectively.
Similarly, in the ADE20K semantic segmentation(mIoU), our ap-
proach outperforms MAE, CAE, and TinyMIM by +2.6, +0.5, and
+0.4, respectively, and we show some segmentation results in Fig-
ure 4.

Furthermore, during the pre-training phase, we explore the poten-
tial of MIM-HD to facilitate knowledge extraction on constrained
datasets, specifically working with TinyImageNet. As can be seen
from the gray-marked area, our method surpasses TinyMIM by +1.4

mIoU on ADE20K.

4.3 Visualization

The discriminative properties of the transformer block multi-head in
TinyMIM and MIM-HD are visualized by analyzing the attention
weights of the [class] token in the last layer, following the validation
scheme demonstrated in DINO[3]. The characterization patterns of
the first 8 heads are presented in Figure 5, marked using orange and
green arrows for TinyMIM and MIM-HD, respectively. The follow-
ing observations can be obtained:

1. Incomplete semantic regions: In TinyMIM (orange arrow), some
transformer block heads capture only partial semantic regions of
the object or background noise, as observed in the dashed box of
Figure 5.

2. Stronger head behavior: In our MIM-HD (green arrow), each
transformer block head independently draws knowledge from
multi-head of the teacher model. This distributed approach facil-
itates the identification of semantically meaningful regions, even
for complex objects or scenes, as each student transformer block
head can focus on a valuable aspect of the object concept or do-
main.

The enhanced representational capabilities of MIM-HD directly
benefit token pruning techniques[12, 17, 2, 10] that rely on ana-
lyzing [class] token attention weights. More precisely, by providing
more accurate region markings, MIM-HD facilitates the selective re-
tention of informative image tokens while helping to mitigate the
inclusion of noisy or irrelevant image tokens.

4.4 Ablation Study

To validate the effectiveness of each component of the proposed
method, we start by pre-training ViT-B on the TinyImageNet dataset
and then conduct various ablation experiments on ADE20K.
Ablation studies of our MIM-HD framework: To isolate the in-
fluence of various factors on distillation performance, we adopt the
TinyMIM initial configuration, employing a ViT-B student encoder
with its last layer mimicking the MAE-ViT-L teacher encoder on the
18th layer. In Table 3, we establish the distillation targets as the
Q-K and V-V relation pairs. Subsequently, by applying our head-
level adaptive distillation approach with LQK

R and LV V
R as objective

functions, we outperform TinyMIM by 1.2 on ADE20K. We exper-
iment with replacing the distance function with MSE, but this does
not result in any performance gains. Finally, the implementation of
the LREC objective function corresponding to the dual-view strategy
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Table 1: Comparison with state-of-the-art MIM methods. Accuracy and mean Intersection over Union (mIoU) are used as evaluation metrics in the downstream
ImageNet-1K classification task and ADE20K segmentation task, respectively. T : model pre-training on TinyImageNet. ∗: the reproduction results on 2 NVIDIA
3090 RTX GPUs using the officially released code.

Backbone Method Pre-training
dataset

Pre-training
epochs

Segmentation
mIoU(%)

Classification
Top-1 Acc(%)

ViT-B

MAE[8]CV PR′22 IN1K 1600 48.1 83.6
CAE[5]IJCV ′22 DALLE250M+IN22K+IN1K 1600 50.2 83.9
SdAE[6]ECCV ′22 IN1K 300 48.6 84.1
DINO[3]ICCV ′21 IN1K 1600 47.2 83.3
Ge2-AE[14]AAAI′23 IN1K 800 48.9 84.8
A2MIM[11]ICML′23 IN1K 800 49.0 84.2
TinyMIM∗[18]CV PR′23 IN1K 300 50.3 84.5
MIM-HD(Ours) IN1K 100 50.7(+0.4) 84.8(+0.3)
TinyMIM∗T [18]CV PR′23 TinyImageNet 300 39.6 79.2
MIM-HDT (Ours) TinyImageNet 100 41.0(+1.4) 79.7(+0.5)

ViT-S

MAE[8]CV PR′22 IN1K 1600 42.8 80.6
DINO[3]ICCV ′21 IN1K 1600 45.3 81.5
TinyMIM∗[18]CV PR′23 IN1K 300 46.8 82.3
MIM-HD(Ours) IN1K 100 47.6(+0.8) 82.3

ViT-Ti

MAE[8]CV PR′22 IN1K 1600 37.6 71.6
Moco[4]ICCV ′21 IN1K 1600 39.3 73.3
TinyMIM∗[18]CV PR′23 IN1K 300 42.8 75.2
MIM-HD(Ours) IN1K 100 43.2(+0.4) 75.7(+0.5)

Figure 5: Visualization of the attention area maps within the student ViT-B last layer transformer block first 8 heads and the selection of semantic regions. The
orange arrow and The green arrow represent TinyMIM and MIM-HD (Ours), respectively. In the dashed box, it can be observed that TinyMIM suffers from
issues such as semantic region incompleteness and background noise. Our approach, allocates significant attention to the discriminative regions in all the heads.

Table 2: Dataset Statistics

Type Dataset #Classes

Classification ImageNet-1K [20] 1,000

Semantic segmentation ADE20K [40] 150

yields a further improvement in mIoU, 40.8 → 41.0, thus validating
the effectiveness of our proposed method.
Ablation studies on teacher target block: In Table 4, we report the
impact of varying target depths in the pre-training phase on the down-
stream task. When the stacking depths of the teacher and student net-
works differ, we conduct experiments with the S-9th and S-12th lay-
ers of the student network taking the T-10th, T-12th, T-18th, and T-
24th layers of the teacher network as distillation targets, respectively.
An empirical setup is proposed in TinyMIM and DMAE[1], specifi-
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Table 3: Ablation experiments with our MIM-HD components.

LQK
R LV V

R LREC KL MSE Method mIoU

TinyMIM[18]CV PR′23 39.6
40.3

MIM-HD 40.1
(Ours) 40.8

41.0

Figure 6: Ablation experiments with dual-view decoding strategies. At dif-
ferent mask ratios, dual-view decoding consistently outperforms single-view
decoding for dense prediction tasks, such as ADE20K.

cally, T-18th → S-12th in TinyMIM, as well as in DMAE where it is
discovered to be more effective at 3

4
depth, that is, T-18th → S-9th.

It can be observed that our MIM-HD yields superior performance
when T-18th → S-12th.

Table 4: Ablation experiments with teacher target block

Student layer Teacher layer
10th 12th 18th(

3
4
) 24th

9th(
3
4
) 37.8 39.2 40.7 40.1

12th 38.1 39.6 41.0 40.3

Ablation studies on dual-view strategy: Our dual-view decoding
strategy aims to further enhance the consistency of the teacher-
student encoder output by reusing the generative power of the shared
pre-trained teacher decoder to recover the raw pixel. To substanti-
ate the effectiveness of this method, we conduct comparative anal-
yses under varying mask ratios for both single-view and dual-view
configurations, as depicted in Figure 6. Notably, our dual-view ap-
proach exhibits superior performance in downstream tasks. This can
be primarily attributed to two factors: firstly, the reduced complex-
ity for smaller models in executing the MIM task, as discussed in
Section 3.2, and secondly, the extraction of region-complementary
visual representations from multiple perspectives, which proves ad-
vantageous for downstream intensive prediction tasks.

5 Further analysis

5.1 Training speed of MIM-HD

Table 5 details the pre-training time consumed by the proposed MIM-
HD model on ImageNet-1K. The metrics reported are: i) PT.Ep - the

Table 5: To elaborate on the efficiency comparison between TinyMIM and
MIM-HD (Ours), the training time for a single epoch (Ep. Hours) is obtained
by averaging the results of five independent executions to account for vari-
ability, while the total time (Total Hours) is calculated cumulatively.

Method Model PT.Ep Ep. Hours Total.Hours Device

TinyMIM[18]CV PR′23 ViT-B 300 2.4 720 3090
MIM-HD (Ours) ViT-B 100(-67%) 2.8 280(-61%) 3090

TinyMIM[18]CV PR′23 ViT-S 300 1.8 540 3090
MIM-HD (Ours) ViT-S 100(-67%) 2.2 220(-59%) 3090

number of iterative epochs required for pre-training; ii) EP.Hours

- the average time consumed per epoch, calculated over five inde-
pendent runs; iii) Total.Hours - the full training time of the entire
network is calculated cumulatively.

While our approach introduces a slight increase in computational
overhead per epoch, stemming primarily from computing the Q-K
and V-V weight distribution matrices W and lightweight decoder
inference, these additional costs are outweighed by more efficient
knowledge extraction and transfer, thus making it easier for the stu-
dent network to converge. Specifically, compared to TinyMIM, our
MIM-HD requires fewer pre-training epoch, reducing the number of
iterations from 300 → 100. Consequently, the overall training dura-
tion is reduced by approximately 60%, achieving comparable down-
stream task performance with TinyMIM.

5.2 Future work

This paper aims to achieve efficient distillation by enhancing the
method of knowledge extraction and transfer from the teacher net-
work. Figure 1 and Figure 5 illustrate that our approach yields more
precise importance region indications, suggesting its potential use as
a weight initialization method that directly benefits ViT token prun-
ing and token merging domains[12, 17, 2, 10].

6 Conclusion

In this paper, we propose the MIM-HD distillation framework,
which enables smaller models to further capitalize on the pre-training
advantages of masked image modeling. It comprises two primary
components: an adaptive head-level token relation distillation ap-
proach and a dual-view decoding strategy. The former allows stu-
dent models to acquire intermediate visual representations from more
than one transformer block head of the teacher based on its evolu-
tionary state, and compatible with scenarios where the number of
student and teacher multi-head differ. The latter involves perform-
ing a dual-view mask on the encoder output to mitigate the difficulty
faced by smaller models in executing the masked image modeling
task by reusing the shared pre-trained teacher decoder. The effec-
tiveness of our approach is validated through experiments on various
downstream tasks. Moreover, our method is significantly more re-
laxed with respect to pre-training configurations than state-of-the-art
masked image modeling distillation methods, reducing training time
by around 60% while achieving competitive downstream task per-
formance.
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