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Abstract. The pretrain-then-finetune paradigm has been widely
adopted in computer vision. But as the size of Vision Transformer
(ViT) grows exponentially, the full finetuning becomes prohibitive
in view of the heavier storage overhead. Motivated by parameter-
efficient transfer learning (PETL) on language transformers, re-
cent studies attempt to insert lightweight adaptation modules (e.g.,
adapter layers or prompt tokens) to pretrained ViT and only fine-
tune these modules while the pretrained weights are frozen. How-
ever, these modules were originally proposed to finetune language
models and did not take into account the prior knowledge specifically
for visual tasks. In this paper, we propose to construct Convolutional
Bypasses (Convpass) in ViT as adaptation modules, introducing only
a small amount (less than 0.5% of model parameters) of trainable pa-
rameters to adapt the large ViT. Different from other PETL methods,
Convpass benefits from the hard-coded inductive bias of convolu-
tional layers and thus is more suitable for visual tasks, especially in
the low-data regime. Experimental results on VTAB-1K benchmark
and few-shot learning datasets show that Convpass outperforms cur-
rent language-oriented adaptation modules, demonstrating the neces-
sity to tailor vision-oriented adaptation modules for adapting vision
models.

1 Introduction

Pretraining on large-scale datasets (e.g., ImageNet) and then fully
finetuning on downstream tasks has become the de-facto paradigm
to achieve state-of-the-art (SOTA) performance on visual tasks [21].
However, this paradigm is not storage-efficient — it requires one to
store a whole model for each downstream task. Recently, as Vision
Transformer (ViT) [8] dominates vision field gradually, the size of
vision models has grown exponentially (58M of ResNet-152 [10]
vs. 1843M of ViT-G [43]), which creates the demand for parameter-
efficient transfer learning (PETL) on ViT.

Fortunately, since transformer was first adopted in neural lan-
guage processing (NLP) [35], PETL on large pretrained language
models has been studied sufficiently [14, 15, 23, 9], which can be eas-
ily ported to ViT. Concretely, these PETL methods insert lightweight
adaptation modules into the pertrained models, freeze the pretrained
weights, and finetune these modules end-to-end to adapt to down-
stream tasks. Recent work has verified the effectiveness of these
PETL methods on ViT [16, 46], but we raise a question: Are these
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Figure 1: Average accuracy vs. number of trainable parameters
on VTAB-1K benchmark. Our vision-oriented Convpass outper-
forms other language-oriented methods.

modules designed for the language models optimal for vision models
as well?

It is known that NLP tasks and visual tasks desire different induc-
tive bias, which profoundly affects the model architecture design.
By analyzing current PETL methods from an unraveled perspective,
we argue that these methods, called “language-oriented modules”,
also imply the inductive bias for language, e.g., weak spatial relation
and support for variable-length input. Therefore, a better adaptation
module for ViT should also reflect visual inductive bias, such as spa-
tial locality and 2D neighborhood structure, which is referred to as
“vision-oriented modules”.

When a model (e.g., ViT) has weak inductive bias, it needs a large
amount of data to learn the inductive bias from scratch. This may not
be a serious problem in the pretraining process, since we can leverage
easily accessible unlabeled data for self-supervised learning [2, 11],
or resort to multi-modal pretraining [32, 40]. However, data of down-
stream tasks is usually collected from specific domains that may be
expensive or hard to acquire. Therefore, besides the inductive bias
learned from pretraining data, a well-designed vision-oriented PETL
module is expected to introduce additional inductive bias and im-
prove data efficiency much further.

In this paper, we propose to construct Convolutional Bypasses
(Convpass) in ViT as adaptation modules. Convpass is an inserted
convolutional bottleneck block parallel to the MHSA or MLP block,
which “bypasses” the original ViT block. It reconstructs the spatial
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structure of the token sequence and performs convolution on image
tokens and [cls] token individually. During finetuning, only these
Convpass modules and the classification head are updated. Due to the
hard-coded locality of convolutional layers, Convpass can capture vi-
sual information more efficiently, especially when the downstream
data is limited. As shown in Figure 1, Convpass only introduces and
tunes about 0.33M new parameters for a ViT-B of 86M, while achiev-
ing better performance than both full finetuning and current SOTA
language-oriented methods on 19-task VTAB benchmark [42]. Fur-
ther experiments on few-shot learning demonstrate that Convpass
also outperforms other baselines in the low-data regime, and can be
directly used on vision-language model [32] with good domain gen-
eralization performance.
We summarize the contributions as follows:

e We point out the weak visual inductive bias of current PETL meth-
ods that limits their performance on ViT.

e We propose Convpass, a simple yet effective PETL method which
leverages trainable convolutional blocks as bypasses to adapt pre-
trained ViT to downstream visual tasks.

e Experimental results show that Convpass outperforms previ-
ous language-oriented methods, indicating the necessity to tailor
vision-oriented adaptation modules for vision models.

2 Related Work
2.1 Vision Transformer

Transformer-based models have achieved great success in NLP [7,
33, 4]. ViT adopts this architecture in visual tasks by partitioning the
images into patches which are embedded and flattened into 1D token
sequences.

In ViT, each layer consists of two kinds of blocks: Multi-Head
Self-Attention (MHSA) and Multi-Layer Perceptron (MLP). In an
MHSA block, the input sequence X € RM*? is firstly projected
toquery Q = XW,, key K = XWjy, and value V = XW,,
respectively, in which W/, € R*4, They are further divided
into Nj, heads: {QW N {K®}Nn (V)N Then, the self-
attention of a single head is formulated as

The outputs of all heads are further concatenated and linearly pro-
jected as the outputs of the MHSA block.

An MLP block consists of two fully-connected (FC) layers, whose
weights are W, € R*™P and W, € RP*?, respectively. Ignoring
the bias parameters for simplicity, the MLP is formulated as

Attn-Head? (X) = Softmax <

MLP(X) = GELU(XW )W

Since ViT has much less visual inductive bias, it performs worse
than its convolutional counterparts (e.g., ResNet) when the training
data is not sufficient. For this reason, some recent work proposes
to introduce visual inductive bias into ViT [26, 39], which signifi-
cantly reduces its dependency on scale of dataset. However, vanilla
ViT still has some nonnegligible advantages. Since vanilla ViT shares
the same backbone as the transformer-based language models, it can
leverage current SOTA multi-modal pretraining methods with a vast
amount of auto-annotated image-text pairs [38, 40, 19]. Therefore,
we still focus on PETL on vanilla ViT architecture, but propose to
introduce hard-coded inductive bias by adaptation modules during
finetuning instead of pretraining.

2.2 Parameter-Efficient Transfer Learning

PETL aims at using a small number of trainable parameters to adapt
large models to downstream tasks. We here introduce some common
PETL methods used for ViT.

Adapter [14, 31, 18, 20] is a bottleneck MLP block composed
of two fully connected layers, whose weights are W 4o, € RE*H
and W, € R"*?, where h << d. Adapters are inserted into net-
works as residual connections, i.e., given an input X € R™*, the
computation is formulated as

X' X + ¢(XW gown)Wup

where ¢ is activation function such as GELU.

Pfeiffer et al. [31] propose to place Adapters after the MLP blocks
(i.e., X is the output of MLP blocks), which has been proved to be an
efficient design in previous literature [15], so we follow this setting
in this paper. Besides the above design, He et al. [9] and Chen et al.
[5] also propose a parallel Adapter to adapt MLP blocks, which is
formulated as

X/ — X +MLP(X) +s- ¢(XWdown)Wup

where s is a hyperparameter, X is the input of MLP blocks. This
Adapter design is referred to as AdaptFormer by Chen et al. [5].

LoRA [15] learns the low-rank approximation of increments of
W, and W . Formally, it decomposes AW/, into A,/ B0,
where A/, € R*" B,/, € R"™*%and r << d. The query and
key are computed as

Q/V =XW,,+s-XAyuBym

in which s is a scaling hyperparameter.

VPT [16] has a similar idea with P-Tuning v2 [25]. It concatenates
the input X with several trainable prompts P € R'*? before each
layer. This extended sequence is formulated as

X'« [X, P]

These prompts are then cut away at the end of a layer, and the
prompts for the next layer are concatenated.

NOAH [46] is a newly proposed PETL method for ViT, which
combines the above three modules together and performs neural ar-
chitecture search on hidden dimension h of Adapter, rank r of LoRA,
and prompt length [ of VPT.

Note that although VPT and NOAH are proposed for visual tasks,
their components are ported from NLP in essence. Therefore, all
the aforementioned PETL methods can be classified as language-
oriented methods. Other PETL methods include BitFit [41], which
finetunes the bias parameters only; Sidetune [44], which finetunes
a small side-network and interpolates between pretrained and side-
tuned features; FacT [17], which tensorizes the ViT as a single ten-
sor and reparameterizes its change as several factors according to
Tensor-Train or Tucker format; and SSF [24], which modifies the
intermediate features of network via affine transformation.

3 Methodology
3.1 Rethinking Adapters from an Unraveled View

Since Adapters and MHSA/MLP blocks all contain skip connections,
we can unravel the ViT and rewrite it as a collection of paths. Veit
et al. [36] point out that the original network is an ensemble of un-
raveled paths, so we here give a look at these paths to analyze the
property of the original network.
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Figure 2: Illustration of the unraveled view of ViT equipped with
sequential Adapter (top) or parallel Adapter (bottom). For sim-
plicity, we show the unraveled view of a fragment of ViT (MHSA-
MLP-MHSA) and the type of each path. Normalization layers are
omitted.

As shown in Figure 2, a ViT equipped with Adapter can be viewed
as an ensemble of three types of paths: (Type I) Frozen paths, which
only contain MHSA/MLP blocks of the ViT. These paths are not
trainable, and the sum of their outputs is identically equal to the out-
put of the pretrained ViT. (Type II) MHSA-Adapter paths, where all
MHSA blocks come before the first Adapter. (Type III) Adapter-
MHSA paths, where at least one MHSA block is placed after an
Adapter.

Finetuning the Adapters is equivalent to fitting the changes of out-
puts by the paths of Type II & III. In Type II paths, given the same
input, the output tokens of the last MHSA blocks are unchanged, and
there is no information exchange between tokens after that. There-
fore, only the Type III paths, in fact, make changes to the token
mixer of the pretrained ViT.

In a Type III paths, we can treat all Adapters and MLP blocks be-
fore an MHSA block as a part of its query/key/value transformation,
i.e., complicate these transformations form linear mapping to

Q/K/V = forso(X)

where fq/i/, are channel-wise MLPs. Therefore, finetuning Type
III paths can be considered as finetuning the MHSA with the com-
plicated query/key/value transformations.

Meanwhile, since LoRA finetunes W, in a low-rank subspace
and VPT can be regarded as parallel and gated Adapters [9], all these
language-oriented methods rely on tuning MHSA to adjust the token
mixer on downstream tasks. MHSA, however, lacks visual inductive
bias, which may perform poorly when the data of downstream visual
tasks is limited.

3.2 Adapting ViT via Convolutional Bypasses

Recent studies on modifying the architecture of ViT have verified
that introducing convolution into ViT will improve the performance
when training data is not adequate [8, 39]. Since the data of down-
stream tasks is usually limited even few-shot, we can also introduce
convolution into the adaptation modules for PETL.

Convpass Module
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Figure 3: Overview of the proposed method. We restore the spatial
structure of the token sequence, and use trainable ResNet-style con-
volutional blocks as bypasses. The [cls] token is regarded as an
individual image.

As illustrated in Figure 3, a Convpass module consists of three
convolutional layers: an 1 X 1 convolution reducing the channel, a
3 X 3 convolution with the same input and output channel, and an
1 x 1 convolution expanding the channel. Since ViT flattens the im-
age into an 1D token sequence, we restore the 2D structure before
convolution. The [cls] token serves as an individual image. The
Convpass modules are placed parallel to the MHSA/MLP blocks,
which can be formulated as

X' + X + MHSA/MLP(LN(X)) + s - Convpass(LN(X))

where s is a hyperparameter and LN is Layer Normalization [1].
Note that the Convpass modules are similar to the residual bottle-
neck blocks of ResNet [10]. If we ignore the MHSA/MLP blocks,
the ViT will turn into a ResNet-like CNN.

From the unraveled view, we can find that in each transformer
layer, besides the frozen paths, there are also trainable paths that only
contain Convpass or contain both Convpass and MHSA which act
as token-mixers. Therefore, the original transformer layers are con-
verted to an ensemble of transformers, ResNet-like CNNs, and hy-
brid models. This design can help transfer learning from several per-
spective. First, since all the trainable paths contain Convpass mod-
ules, the finetuning process can benefit from the inherent visual in-
ductive bias of CNN. Second, the 2D neighborhood structure of the
3 X 3 convolution focuses on local information, complementary to
the MHSA that has global receptive field.

Convpass is storage-efficient. If the bottleneck channel size (i.e.,
the input & output channel of the 3 x 3 convolution) is denoted as h,
and the amount of ViT layers is L, the number of trainable parameters
is 2L x ((2h 4+ 1)d + 9h* + 2h). In view of h << d (e.g.,d =
768, h = 8 in our experiments), this amount is O(Lhd), which is
negligible compared to ViT’s O(Ld?) parameters.

3.3 Reduce Redundancy of Convpass

Inspired by the FacT [17], we infer that there is redundancy in the
parameters of Convpass. Building on this insight, we further propose
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Table 1: Full results on the VTAB-1K benchmark. “Average” denotes the average results over three group-wise averages in Figure 4. “#
params” denotes the average number of trainable parameters in backbones. Convpass(-attn) achieves 12 SOTA results out of the 19 tasks
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Figure 4: Group-wise average results on VTAB-1K. Convpass outperforms other baselines in all of the three groups.

a design to lightweight Convpass. Specifically, we share two 1 x 1
convolutions across all Convpass modules, and for the 3 X 3 con-
volutions, we employ depth-wise convolutions. The bias terms are
deprecated in all convolutional layers. Then the number of trainable
parameters is reduced to 2dh + 9Lh. In view of L << d, the num-
ber of Convpass’s trainable parameters is reduced from O(Lhd) to
O(hd).

4 Experiments
4.1 Transfer Learning on VTAB-1K Benchmark

First of all, our method is evaluated on the basic transfer learning
scenario — finetuning the pretrained models on various dowmstream
tasks.

4.1.1 Datasets

To evaluate the performance on transfer learning of our methods,
we use VTAB-1K [42] as a benchmark. VTAB-1K benchmark con-
tains 19 image classification tasks from different fields, which can
be roughly categorized into three groups: Natural, Specialized, and
Structured. Each classification task only has 1,000 training samples,
which are split into a training set (800) and a validation set (200)
during hyperparameter search. The reported results are produced by
evaluating the model trained on all the 1,000 training samples on test
set. Following [46], we resize the images to 224 X 224, and then
normalize them with ImageNet’s mean and standard deviation.

4.1.2 Baselines

We compare our method with two traditional finetuning methods:
Full finetuning, which optimizes all parameters end-to-end; Lin-
ear evaluation, which freezes the pretrained backbone and only
learns a classification head; as well as four PETL methods: VPT,
Adapter, AdaptFormer, LoRA, and NOAH. For our method Con-
vpass, we also report two simplified variant: ConvpasSam, which
only inserts the Convpass modules alongside the MHSA blocks; and
Convpassgiare, Which adopts the redundancy-reduction design. Note
that VPT, Adapter, LoRA, and Convpass only contain one type of
PETL module, and the network architecture is the same for all tasks;
while NOAH focuses on architecture search to combine other exist-
ing PETL modules, resulting in a dynamic network architecture.

4.1.3  Setup

We use a ViT-B/16 [8] supervisedly pretrained on ImageNet-21K [6]
for all methods. The networks are finetuned for 100 epochs except
for NOAH, which also trains a supernet for another 500 epochs.
The hidden dimension h of Adapter, AdaptFormer, Convpass, and
Convpassam, as well as the rank r of LoRA are all set to 8. The hid-
den dimension h of Convpassa, is 32. The prompt length [ of VPT
follows the best recipe in its original paper. The hyperparameter s
of Convpass and AdaptFormer is roughly searched from {0.01, 0.1,
1, 10, 100}. In this setting, Adapter, AdaptFormer and Convpassam
have similar numbers of trainable parameters, while the Convpass’s
trainable parameters are slightly more than LoRA’s but fewer than
VPT’s and NOAH’s. Other hyperparameters are listed in Table 3.



206 S. Jie et al. / Convolutional Bypasses Are Better Vision Transformer Adapters

Average FGVCAircraft OxfordPets
80- i
90
50-
70- 85
— . 40" —80-
< 60- S S
) o 30 o /5
6 NOAH 6 NOAH 6 / —— NOAH
g 50- —— LoRA g —— LoRA g 70- '/ —— LoRA
Adapter 20- Adapter i Adapter
40- —— AdaptFormer —— AdaptFormer 65 —— AdaptFormer
—— VPT 10- —— VPT 60- —— VPT
30- Convpass Convpass Convpass
12 4 8 16 12 4 8 16 12 4 8 16
# labeled training examples per class # labeled training examples per class # labeled training examples per class
Food101 StanfordCars Flowers102
100-
70-
70-
60- 90-
—~ 60- — —
X x 50- / 3
gSO' —— NOAH g40— —— NOAH g 80" —— NOAH
ﬁ —— LoRA % 30- —— LoRA &“7 —— LoRA
40- Adapter Adapter 70- Adapter
—— AdaptFormer 20- —— AdaptFormer —— AdaptFormer
30- —— VPT —— VPT —— VPT
Convpass 10- Convpass 60- Convpass
12 4 8 16 12 4 8 16 12 4 8 16

# labeled training examples per class

# labeled training examples per class

# labeled training examples per class

Figure 5: Results of few-shot learning on five fine-grained visual recognition datasets. Convpass outperforms other baselines on average

results.

4.1.4 Results

As shown in Table 1, Convpassu:, outperforms its counterpart
Adapter and AdaptFormer on 16 and 10 out of the 19 tasks, while
Convpass outperforms its counterparts LORA and NOAH on 15 and
13 tasks, respectively. Although using fewer parameters, Convpass
still performs better than VPT on 17 tasks. All the PETL meth-
ods are better than full finetuning overall. Because of the variety
of tasks, no one method achieves SOTA on all tasks at once, but
Convpass achieves the best average performance, 1.1% higher than
the previous SOTA PETL methods, NOAH. It is worth noting that
Convpassa, also has better average results than NOAH with only
half as many parameters as NOAH. Moreover, since NOAH need to
train an additional large supernet for architecture search, Convpass is
also superior to NOAH in terms of training efficiency. Convpassiare
still performs on-par with NOAH, using 6 x fewer parameters.

Figure 4 shows that Convpass has the best performance in all the
three groups of VTAB, indicating that Convpass specializes in visual
tasks from various domains. The superiority of Convpass is signif-
icant in the Natural and Structured groups. But in the Specialized
group, Convpass does not remarkably outperform NOAH and Adapt-
Former.

4.2 Few-Shot Learning

Few-shot learning is a common scenario when the data of down-
stream tasks is hard to obtain, and there are only a few training sam-
ples for each task that can be utilized.

4.2.1 Datasets

We use five fine-gained datasets to evaluate the performance of
our methods on few-shot learning: FGVC-Aircraft [28], Oxford-
Pets [30], Food-101 [3], Stanford Cars [22], and Oxford-

Method Source Target
ImageNet -V2 -Sketch -A -R

ZS CLIP 66.73 60.83  46.15  47.77  73.96
LP CLIP 65.85 5626 3477  35.68 5843
CoOp 71.51 6420 4799  49.71 75.21
CoCoOp 71.02 64.07 4875  50.63  76.18
Tip-Adapter-F 73.41 6539 4858 4923 7754
Convpasscrip 74.23 66.61 49.10 4927 78.17

Table 2: Results of 16-shot ImageNet classification and domain
generalization on CLIP. We report top-1 accuracy. Convpasscrip
outperforms the baselines on source domain and three of the four
target domains.

Flowers102 [29]. We conduct experiments on 1, 2, 4, 8, and 16
shot settings. The results are averaged over three runs with differ-
ent seeds. The experimental setup and baselines are the same as for
VTAB-1K. Following [46], for training samples, we use color-jitter
and RandAugmentation; for validation/test samples, we resize them
to 256 X 256, crop them to 224 x 224 at the center, and then normalize
them with ImageNet’s mean and standard deviation.

4.2.2 Results

As shown in Figure 5, the average results of Convpass are all higher
than the other baselines across the five settings. On FGVC-Aircraft
and Stanford Cars, the advantages of Convpass are highlighted. On
simpler Oxford-Pets and Oxford-Flowers102, all the methods have
similar performance, while Convpass is still in the lead. On Food-
101, Convpass slightly underperforms NOAH in the 16-shot case, but
the trend is reversed when the number of training data gets smaller.
These results demonstrate that the introduced inductive bias of Con-
vpass enhances ViT’s capability to learn in the low-data regime.
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optimizer  batch size learning rate  weight decay  #epochs Irdecay  # warm-up epochs

VTAB-1K AdamW 64 le-3 le-4 100 cosine 10

Few-shot learning AdamW 64 5e-3 le-4 100 cosine 10

Domain generalization =~ AdamW 64 le-5 0 50 cosine 0

Table 3: Hyperparameters.

4.3 Domain Generalization Model Method Avg.  Nat.  Spe. St
Besides vision models, PETL has been studied in the field of vision- ConvNeXt-B Full 140 = 980 83.7 604
language models as well. Considering the outstanding domain gen- ConvNeXt-B Linear 636 745 815 348
eralization property of vision-language models, we also evaluate the Swin-B Full 75.0 792 862 597
performance of our method under domain shift when applied to Swin-B Linear 62.6 735 808 335
vision-language models. Swin-B VPT 71.6 76.8 84.5 53.4
Swin-B Adaptformer ~ 77.2 82.8 86.6 62.3
Swin-B Convpass 78.1 83.1 872 641
431 Datasets ViT-B/16 Full 689 759 834 476
In domain generalization experiments, the models are trained on the ViT-B/16 Linear 576 689 772 268
source domain, and tested on both the source and target domain. We ViT-B/16 VPT 720 785 824 550
use ImageNet-1K [6] as the source domain, where each class con- ViT-B/16 Adaptformer ~ 74.7  80.5 849 588
tains 16 training samples. The target domains include: ImageNet- ViT-B/16 Convpass 766 817 853  62.7

V2 [34], which is a new ImageNet test set collected with the original
labelling protocol; ImageNet-Sketch [37], which consists of sketch
images of the 1,000 ImageNet classes; ImageNet-A [13], which con-
tains real-world adversarial samples of 200 of the ImageNet classes;
ImageNet-R [12], which is composed of renditions of 200 ImageNet
classes. Following [48], for training samples, we randomly resize and
crop them to 224 x 224, and then implement random horizontal flip;
for validation/test samples, we resize them to 224 x 224. All samples
are finally normalized with ImageNet’s mean and standard deviation.

4.3.2 Baselines

The CLIP [32] model consists of an image encoder and a text
encoder, which are pretrained via contrastive learning on image-
text pairs. Our method is compared with the following baselines:
Zero-Shot (ZS) CLIP uses prompted label texts (e.g., “A photo of
<class name>.”) as the text encoder inputs, and classifies the im-
ages based on cosine similarity between image and text features ;
Linear Probe (LP) CLIP discards the text encoder and learns a lin-
ear classification head for image encoder; CoOp [47] makes use of
trainable vectors as prompts of labels; CoCoOp [48] learns a meta-
net to generate prompts of labels from images; Tip-Adapter-F [45]
caches features of training data to initialize an adapter after the im-
age encoder. Note that CoOp, CoCoOp, and Tip-Adapter-F are PETL
methods designed for CLIP specifically.

To apply our methods to CLIP, we make the following modifi-
cations. First, we insert Convpass modules into the image encoder
only, while the text encoder stays unchanged. Second, we add a FC
layer as classification head of the image encoder, whose bias is zero-
initialized and whose weight is initialized with encoded prompted
label texts of all classes (just as in ZS CLIP). Then, the text encoder
is discarded, and only the Convpass modules and head are finetuned.
We call this ported PETL method Convpassczip.

4.3.3  Setup

In our experiments, all methods use a ViT-B/16 as the image encoder,
and a BERT-like [7] model as the text encoder. For our methods, we
train the Convpass modules and classification heads for 50 epochs.
Other hyperparameters are listed in Table 3.

Table 4: Results on VTAB-1K. ConvNeXt-B and Swin-B have in-
herent inductive bias for vision, while ViT introduces such inductive
bias via Convpass during finetuning. Avg.: Average, Nat.: Natural,
Spe.: Specialized, Str.: Structured.

4.3.4 Results

The results are shown in Table 2. Our method, though not designed
for CLIP, still outperforms the baselines tailored for CLIP on the
source domain. On three out of the four target domains, Convpasscyip
also achieves SOTA performance. On ImageNet-A, Convpasscrip
performs a bit poorly, which is probably because the ImageNet-A
dataset is collected by selecting samples misclassified by ResNet.
Since Convpass modules are ResNet-style blocks, they may be more
easily misled by these samples as well. Overall, the results prove that
Convpasscypp is robust under domain shift.

4.4  Further Analyses
4.4.1 Comparison with Other Backbones

One of the motivations for designing Convpass is to introduce visual
inductive bias to ViT during finetuning. However, since there are also
ViT variants (e.g., Swin Transformer [26]) which have already incor-
porated visual inductive bias into their model designs, finetuning on
these models can naturally benefit from such prior knowledge. Then
a question arises: Can the models that acquire inductive bias during
finetuning outperform these models that have innately hard-coded
inductive bias?

We conduct comparisons among the three backbone models: ViT-
B/16, Swin-B [26], and a SOTA CNN ConvNeXt-B [27]. All of
them are pretrained on ImageNet-21K and have a similar size. As
the results shown in Table 4, when using traditional transfer learning
methods (Full and Linear), Swin-B and ConvNeXt-B perform sig-
nificantly better than ViT-B/16 as expected, which indicates the piv-
otal role of visual inductive bias during finetuning. However, when
equipped with Convpass, the average performance of ViT-B/16 over-
takes fully finetuned Swin-B and ConvNeXt-B. These observations
suggest that Convpass has the powerful capability to complement the
missing inductive bias for downstream transfer tasks.



208 S. Jie et al. / Convolutional Bypasses Are Better Vision Transformer Adapters

MLP &
Norm &
V!
g

MHSA &

(a) Convpassu

(b) Convpassamn
Figure 6: Four ways to insert a Convpass module into ViT.

Method Avg. Nat. Spe. Str.
Seq-Convpass,p 74.5 80.0 83.6 59.9
Seq-Convpassasm 74.9 80.6 84.1 60.0

Convpassp 75.4 80.3 84.5 61.2
Convpassasm 75.8 81.2 84.7 61.5

Table 5: Results on VTAB-1K. We find that (i) parallel is superior to
sequential, and (ii) alongside MHSA is superior to alongside MLP.

@MLP @MHSA Avg. Nat. Spe. Str.
1x1 1x1 75.1 81.1 84.8 59.5
3x3 1x1 75.8 81.2 84.4 61.7
I1x1 3x3 75.8 81.3 84.4 61.5
3x3 3x3 76.6 81.7 85.3 62.7

Table 6: Results on VTAB-1K. “1x1 @MLP” means the 3x3 con-
volutions in Convpass modules alongside the MLP blocks are re-
placed with 1x 1 convolutions. We find that vision-oriented is supe-
rior to language-oriented.

Moreover, we also apply Convpass to Swin. Similarly, Convpass
modules bypass the W-MHSA/SW-MHSA/MLP blocks of Swin. As
shown in Table 4, the advantage of Convpass over full finetuning still
holds on Swin, but VPT is no longer competitive. This observation
demonstrates that Convpass is a reliable PETL method performing
constantly well on various backbone networks. From the comparison
between Swin and ViT we also find that the improvement made by
Convpass diminishes on Swin. This is also expected because the de-
mand for supplementing visual inductive on Swin is not as pressing
as on ViT.

4.4.2  Where to Place the Convpass Modules

Our Convpass modules are parallel to the MHSA/MLP blocks, but
there is another choice: insert the modules after the MHSA/MLP
blocks in a sequential way like Adapter. To figure out what is the
optimal way to place the Convpass modules, we consider four forms
when only one Convpass module is inserted in each ViT layer ,
as illustrated in Figure 6. Convpass,;, and Convpassa, are paral-
lel Convpass modules alongside the MLP and MHSA blocks, while
Seq-Convpass,,;, and Seq-Convpass, follow the MLP and MHSA
blocks, respectively.

As shown in Table 5, we evaluate these designs on VTAB-1K,
and find the following. First, the parallel designs are better than
their sequential counterparts. From Figure 2, we know that the se-
quential modules add longer paths to the model, which are relatively
harder to optimize with a small amount of downstream data. On the

&
Convpass @'

MLP &

Norm &

MHSA &

Norm &

g
g
L

(c) Seq-Convpassu, (d) Seq-Convpassaun

contrary, the parallel Convpass serve as shortcuts for better gradi-
ent propagation, and introduce fully-convolutional ResNet-like paths
that do not exist in sequential designs. Second, we also find that plac-
ing the Convpass modules beside/after MHSA blocks is better than
beside/after MLP blocks. Since Convpassa» and Convpass,, are the
best two designs, our Convpass is composed of them, i.e., placing
Convpass modules alongside both MHSA and MLP blocks in paral-
lel.

4.4.3  Vision-Oriented vs. Language-Oriented

Finally, we conduct an ablation study on the vision-oriented idea. As
shown in Table 6, we replace the 3 x3 convolutions in Convpass mod-
ules alongside the MLP and/or MHSA with 1x 1 convolutions, yield-
ing four different designs. The bottom row is exactly Convpass. Re-
placing the 3 x3 convolution in a Convpass module means the mod-
ule will lose its capacity as a token mixer, degrading into a language-
oriented adaptation module similar to Adapter.

The results show that, whether we replace the 3 X3 convolutions of
Convpass modules alongside MLP or alongside MHSA, the perfor-
mance on Natural, Specialized, and Structured tasks will all degrade.
If all 3x3 convolutions are replaced, the model will perform rather
poorly on Structured. Since the Structured tasks are about obtaining
the structure of a scene (e.g., object counting or 3D depth prediction),
they fairly differ from the pretraining tasks (i.e., ImageNet classifi-
cation) and require more modifications to the pretrained token mixer.
Therefore, the Structured tasks are more complicated and the supe-
riority of vision-oriented modules is highlighted. In summary, the
language-oriented ablation models perform worse than the vision-
oriented Convpass, supporting our standpoint.

5 Conclusion

In this paper, we point out that current PETL methods used in ViT
lack inductive bias for visual tasks, which potentially degrades the
performance on downstream finetuning. For this reason, we propose
Convpass, a vision-oriented PETL method that employs trainable
convolotional bypasses to adapt pretrained ViT to downstream tasks.
Experimental results on VTAB-1K benchmark and few-shot learn-
ing show that Convpass outperforms other PETL methods and owns
remarkable domain generalization property. Our simple but effective
method reveals the importance of considering the characteristics of
visual tasks when designing ViT-based PETL methods, which lights
a promising direction for future work.
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